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Motivation
Batch effects is a frequent challenge in second generation sequencing data analysis. Several batch
effect removal algorithms have shown good sample clustering results, providing important sam-
ple pattern information in corrected distance matrices. However downstream analyses, such as
differential expression analysis, still suffer from remaining artifacts.

We have previously developed a method (Fei et al, 2018) to correct the sample distance matrix,
resulting in good sample clustering results. However the method doesn’t correct the original count
data matrix. In the current work, utilizing the corrected distance matrix as reference distance ma-
trix, we numerically solve a novel least squares loss function to conduct linear transformation on
the raw count matrix. The resulting corrected count matrix yields Pearson correlation that approx-
imates the sample pattern reflected by the reference distance matrix. Downstream analyses can
then be performed on the corrected count matrix.

Availability: The R package is available at: https://github.com/tengfei-emory/scBatch

Problem setup
•X: p× n count matrix subject to batch effects.
•D0: n× n distance matrix output from correction method QuantNorm (Fei et al, 2018).
•W : n × n weight matrix to be optimized, such that the Pearson correlation of the linear-

transformed count matrix Y = XW approximates the sample pattern in D0.
• Y = XW : p× n corrected count matrix used in downstream analyses.
•DY : the Pearson correlation matrix of Y .
• || · ||F : Frobenius norm.
•Define C = XT (Ip − 1
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Loss function and algorithm

Figure 1: Algorithm flow chart.

In order to solve W , we propose to minimize the fol-
lowing least squares loss function
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Thus, the optimized weight matrix Wopt satisfies
Wopt = argminWL(W ) and the corrected count ma-
trix is Yopt = XWopt. By chain rule, the gradient of
the loss function L(W ) is
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By some algebra, the columnwise gradient satisfies
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where ek is a n × 1 vector with kth entry equal to
one and others equal to zero and
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where�, ◦ respectively represents Hadamard product
and power, ⊗ represents outer product.

We adapt a flexible gradient descent algorithm (Figure 1) which updates m randomly chosen
columns in W in each iteration. The flexibility alleviated both the long running time of coordi-
nate gradient descent and the underperformed result of full gradient descent algorithm. In order
to dynamically adjust the learning rate, we utilized Armijo line search. The algorithm is stopped
when the step size ε is less than a threshold, indicating approximation to a local minimum.

Simulation study
We applied Bioconductor package splatter (Zappia et al, 2017) to simulate single-cell RNA-
seq data. Four batches with equal size were simulated, each containing the same four biological
groups with different proportions. The probability of each gene to be a DE gene was set to 0.1.
The simulated data sets contained DE factors for each gene in each group, providing a gold stan-
dard to assess DE gene detection. edgeR (Robinson et al, 2010) was used for DE gene detection.

We compared the DE gene detection performance with two popular batch effect removal meth-
ods: ComBat (Johnson et al, 2007) and mnnCorrect (Haghverdi et al, 2018). As can be
observed in Figure 2, the proposed method consistently achieved better area under the ROC curve
(AUC) and area under the precision-recall curve (PRAUC), indicating a better DE gene detection.

Figure 2: The DE gene detection results of 50 simulations when sample size is 200 and number of genes is 25000.
The composition of the four biological groups is 40%, 30%, 15% and 15% respectively.

ENCODE Human and mouse tissues data
For real data analysis, we first conducted clustering analysis on the ENCODE Human and mouse
tissues data (Lin et al, 2014) using the three methods. As Figure 3 displays, our method retrieved
most biological pattern by matching most pairs of tissues. The other two methods also corrected
batch effects to some extent.

Figure 3: Heatmap for the corrected ENCODE data by three approaches.

Mouse neuron scRNA-seq data GSE59739
The GSE59739 scRNA-seq data (Usoskin et al, 2015) contains 25334 genes and 622 cells. As
illustrated by Fei et al, 2018, although the biological pattern was largely retained in the raw data,
there were still batch effects between samples from different libraries. Thus, we conducted batch
effect correction for the data so as to investigate whether clustering and DE gene analysis would
be affected by batch effects. As Figure 4 and Figure 5 demonstrate, our method outperforms the
other two methods in both clustering and DE gene detection.

Figure 4: 3D PCA plots for raw and corrected data
by three approaches. Four different colors refer to
the four cell types. As can be seen, the batch effect
is weak in the raw data, while the proposed method
can still improve the sample pattern.

Figure 5: Venn diagram for detected DE genes (by
edgeR, q-value < 0.05) using corrected data from
three approaches for selected four pairs of cell types.
The proposed method helps detect more DE genes,
especially for cell types tangled before correction.
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