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Background and Motivation

I A number of brain regions have been implicated in anxiety disorder [1]; however, none of the
regions alone is fully responsible for anxiety disorder pathology.

I There is an increasing interest to identify dysfunctional brain circuits resulting from previous
traumatic events as capturing the underlying biological susceptibility towards PTSD
symptoms.

I Moreover, there is a lack of prediction and inferential tools for PTSD using a combination of
both brain networks and trauma exposure, which are also able to identify whole brain
network features that work in conjunction with trauma exposure to drive PTSD severity.

I Network valued data contain rich information, however there have been limited advances in
regression approaches involving network valued covariates in literature. The high
dimensionality of the networks often results in models with inflated number of parameters
leading to computational burden and inaccurate estimation.

I Alternative approaches seek to reduce network dimension and then use the low-rank
structure in prediction. This class of methods often lack interpretability and have reduced
exploratory value.

I We wish to develop a novel two stage Bayesian framework to find a node-specific low-rank
representation for the network covariates and then use a flexible regression framework for
prediction. The approach results in a dramatic reduction in the number of regression
parameters and is able to maintain interpretability at the node level.

Methods

Notation:
Y = (y1, · · · , yn)T denotes continuous scalar response vector for n subjects; e.g. log (PSS)
score.
G i , i = 1, · · · , n denote undirected binary network predictors with p nodes; value 1 for
element (l , s) represents connection between node l and node s, while value 0 represents no
connection. This network may either correspond to the brain functional network computed
from the rs-fMRI data or it may refer to the structural network obtained via probabilistic
tractography using DTI data.
Z i , i = 1, · · · , n denote other exposure covariates of q dimension.

Stage I: Low-rank representation of network

Inspired by Hoff’s latent space model [2], we assume that for subject i , each node k within
the network can be accounted by a d dimensional latent scale uik such that the whole network
obtains a representation U i = (ui1, · · · ,uip) which satisfies the following model:

P(G i ,(l ,s)) =
[
1 + exp(−ai − uT

il uis)
]−1

, l 6= s

Typically, the dimension d would be much smaller compared to the node number p.

Methods continued

Stage II: Gaussian Process Regression
The regression model for the continuous scalar response is:

yi = b0 + φ(U i) + εi , εi ∼ i .i .d .N(0, τ−1)

We assume that function φ(·) has a Gaussian process prior with mean 0 and covariance
matrix κ whose element (i , i ′) associated with subject i and i ′ has the following structure:

κ(i , i ′) = ψ1exp
(
−

p∑
k=1

ψuk||uik − ui ′k||22 −
q∑

j=1

ψzj

(
z ij − z i ′j

)2
)

I As the likelihood in Stage I remains the same when the latent scales are rotated by any
angle, we need to perform a Procrustes transformation with respect to rotations before
calculating the kernel in Stage II.

I ψuk, k = 1, · · · , p and ψzj, j = 1, · · · , q are the characteristic length-scale parameters for
network node and other exposure covariates. We can estimate them using
maximum-likelihood method or using hierarchical Bayesian model. More specifically, if
we place spike-and-slab prior on these length-scale parameters, we can obtain variable
selection inference from posterior samples [3].

Data Augmentation Scheme for Stage I
An efficient EM algorithm for Stage I estimation is fascilitated by the following theorem from
[4]:

Theorem 1. Let p(ω) denote the density of the random variable ω ∼ PG (b, 0), b > 0.
Then the following integral identity holds for all a ∈ R:

(eψ)a

(1 + eψ)b
= 2−beκψ

∫ ∞
0

e−ωψ
2/2p(ω)dω,

where κ = a−b/2. Moreover, the conditional distribution p(ω|ψ) is also in the Pólya-Gamma
class: (ω|ψ) ∼ PG (b, ψ).
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