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Research Questions

(1) How are non-parametric hypothesis tests affected when
competing events are treated as censored?

(2) Under what conditions is the estimated subdistribution
hazard ratio (SHR) in the Fine-Gray (F-G) model [1]
substantially different than the estimated cause-specific
hazard ratio (csHR) for the event of interest in the
cause-specific hazards (CSH) model?
• Does the treatment effect on the competing event matter?
• Does the proportion of competing events matter?

(3) Can model diagnostics detect lack-of-fit when one of the
CSH model or F-G model holds, but the other is
misspecified? How does model misspecification affect
inference?

Background

• Context: Time-to-event data analysis.
• Problem: How to handle more than one type of event?
• Competing risk: An event whose occurrence precludes the occurrence

of the event of interest.

• One solution: Treat competing events as censored and use
traditional time-to-event analysis methodology.
• This strategy can result in biased inference.
• e.g. 1-KM as an estimator of the CIF is biased upwards.

• Violates assumption of non-informative censoring.

• Better solution: Use methods that properly account for
competing events.

• The main functions of interest, their interpretations, and
appropriate models/estimators for the functions in both
traditional time-to-event analysis and the competing risks
setting are described in Table 1.

Simulation Study

• Treatment and control, with N = 250 per arm.

• Data simulated under CSH and F-G models.
• Treatment effects for both competing event (CE) and

primary event (PE).
• “No,”“Decreases (-),” and “Increases (+)” correspond to csHR or
SHR = 1, 0.67, 1.5, respectively.

• Proportion of CEs varied from 10% to 40%.

• Censoring fixed at 30%.

• Non-parametric hypothesis testing: logrank test vs.
Gray’s test [2] for H0: “CIF1,trt(t) = CIF1,ctrl(t) ∀t.”
• Semi-parametric modelling: ĉsHR vs. ŜHR.
• Goodness-of-fit: simulation parameters changed to induce

mild or severe lack-of-fit.
• Overlay model-based estimator of CIF on non-parametric estimator.

Table 1: Main functions of interest in traditional time-to-event analysis and the competing risks setting.

Traditional

Name Definition Interpretation Model/Estimator

Survivor function S(t) = P (T > t) probability that the event occurs after time t Kaplan-Meier (KM) estimator

Hazard function h(t) = lim∆t→0
P (t≤T<t+∆t|T≥t)

∆t instantaneous event rate at time t, Cox model:
given that the event has not occurred before time t hi(t) = exp

xTi β
h0(t)

Competing Risks

Cumulative Incidence Function (CIF) CIFj(t) = P (T ≤ t, δ = j), j = 1, . . . , J probability of experiencing event j before time t “KM-like” estimator (But not 1-KM)

Cause-specific Hazard (CSH) hj(t) = lim∆t→0
P (t≤T<t+∆t, δ=j|T≥t)

∆t , j = 1, . . . , J instantaneous rate of event j at time t, CSH model:
among individuals who are event-free up to time t hj,i(t) = exp

xTi βj
hj,0(t), j = 1, . . . , J

Subdistribution Hazard (SH) λj(t) = lim∆t→0
P (t≤T<t+∆t, δ=j|{{T≥t}∪{T≤t and δ 6=j}})

∆t , j = 1, . . . , J instantaneous rate of event j at time t, F-G model:
among individuals who are event-free up to time t λ1,i(t) = exp

xTi θ1
λ1,0(t)

or experienced a competing event before time t (other SHs left unspecified)

Results: Non-parametric Hypothesis Testing
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(i) True CSH model
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(ii) True F-G model

Figure 1: Proportion of simulations in which P < 0.05.

Results: Semi-parametric Modelling
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(ii) True F-G model

Figure 2: Means of estimated hazard ratios.

Results: Goodness-of-fit
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(i) True CSH model, mild lack-of-fit (ii) True CSH model, severe lack-of-fit
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(iii) True F-G model, mild lack-of-fit (iv) True F-G model, severe lack-of-fit

Figure 3: Plots of non-parametric and model-based estimators
of the CIF for the event of interest under true CSH model and
true F-G model.

Summary of Results

• Non-parametric Hypothesis Testing
• Use Gray’s test instead of the logrank test for testing equality of CIFs.
• The logrank test can have inflated Type I error rate when H0 is true

and poor power when H0 is false.

• Semi-parametric modelling
• ĉsHR and ŜHR differ most when the treatment affects the

competing event and the proportion of competing events is large.

• Goodness-of-fit
• The CSH model and F-G model both properly account for competing

risks, but are not interchangeable.
• If one model fits the data adequately, it does not imply the other will also!
• Misspecification of the F-G or CSH model can result in poor inference if the

other model is the true model.

• Traditional GOF methods only useful for detecting lack-of-fit if the
proportionality assumption is severely violated.

Recommendations

• Do not ignore competing risks!

• Fit and report the results from both the CSH model and
F-G model.
• Prespecify a preferred model and base decisions

regarding the trial outcome on that model.
• e.g. one might choose a preferred model based on convenience

of model interpretation.

• Provide for a contingency plan: If there is evidence for
significant lack-of-fit in the preferred model, but the
other model appears to fit the data adequately, base
decisions regarding the trial outcome on the model that
fits the data adequately.
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