Empirical likelihood inference

for the panel count data with

informative observation process

Faysal Satter, Yichuan Zhao

Georgia State University

1. Panel Count Data

Arise in long-term event-history or lon-

observation process O_i up to time t-.

The observation process $O_i(t)$ follows the

where $\lambda = (\lambda_1, \cdots, \lambda_p)'$ is the solution to

 $\sum_{i=1}^{n} \frac{W_{ni}(\beta;\hat{\gamma})}{1 + \lambda' W_{ni}(\beta;\hat{\gamma})} = 0$

gitudinal studies.

- It may infeasible or unrealistic to monitor the study subjects continuously.
- They are only observed at discrete time points within the study period.
- Only the total number of events occurred between two time points is known instead of actual time of the events.
- Such datasets are commonly known as panel count data.

2. Example

Patient	Size	Э																N	[0]	nt	h	s		 		 	 	 		
ID			0										1()										20					9	30
												Р	la	ce	eb	00	g	rc	ou	р										
1	3		1	0																										
2	1		2	0				0																						
3	1		1								0																			
4	1		5				0					0	0																	
5	1		4	0				0]	L	0		0																	
6	1		1				0						0					0).											
7	1		1		()							0			2				3	3		0							
8	1		1				0											0).				0							

proportional rate model

 $E\{dO_i(t)|Z_i(t)\} = e^{\gamma Z_i(t)}\lambda_0(t)dt,$

where γ is a vector of unknown parameters and $\lambda_0(\cdot)$ is an unspecified baseline rate function.

we model the conditional mean function of $Y_i(t)$ given $Z_i(t)$ and \mathcal{F}_{it} as $E\{Y_{i}(t)|Z_{i}(t),\mathcal{F}_{it}\}=g\{\mu_{0}(t)e^{\beta_{1}'Z_{i}(t)+\beta_{2}'H(\mathcal{F}_{it})}\},\$

where $g(\cdot)$ is a known twice continuously differentiable and strictly increasing function, $\mu_0(t)$ denotes an unknown arbitrary function of t, β_1 and β_2 are vectors of unknown regression parameters, and $H(\cdot)$ is a vector of known functions of \mathcal{F}_{it} .

5. Empirical Likelihood

Theorem 1: Under the regularity conditions stated in the Appendix, $l(\beta_0)$ converges in distribution to χ_p^2 as $n \to \infty$, where χ_p^2 is a chi-square distribution with p degrees of freedom.

6. Simulation Result

	au = 1									
	β	1	β	2						
(β_1,β_2)	NA	EL	NA	EL						
				n = 30						
(0, 1, 0, 1)	0.888	0.900	0.848	0.871						
(0.1, 0.1)	(2.012)	(2.063)	(0.237)	(0.266)						
(0, 2, 0)	0.904	0.911	0.849	0.870						
(0.3, 0)	(2.455)	(2.451)	(0.326)	(0.324)						
	× ,	× ,								
(0, 0, 1)	0.896	0.901	0.848	0.867						
(0, 0.1)	(2.056)	(2.128)	(0.246)	(0.262)						
(0, 2, 0, 1)	0.890	0.915	0.842	0.879						
(0.3, 0.1)	(1.931)	(1.985)	(0.223)	(0.287)						

- $1 \quad 1 \quad 0 \quad . \quad 8 \quad . \quad . \quad 0 \quad . \quad 0 \quad . \quad . \quad 8 \quad . \quad 0 \quad . \quad . \quad 8 \quad . \quad . \quad . \quad . \quad .$

3. Underlying Processes

- The recurrent event process: Controls the number of events occurred between two time points.
- The observation process: Controls the observation times for each subject.

4. Model Setup

Denote:

 $Y_i(t)$: The cumulative number of event occurrences before or at time t,

 $O_i(t)$: The total observation before or at time t.

 $Z_i(t)$: A vector of covariates.

Advantages:

- EL enjoys parametric likelihood benefits
- Parametric assumption not required
- Confidence region shaped by data only
- The confidence interval is range respective, transformation invariant, Bartlett correctable.
- Perform better when sample size is small
- Estimation of variance is not needed, as the studentization is done internally

Define $W_{ni}(\beta; \hat{\gamma}) =$ $\int_0^\tau W(t) \{ X_i(t) - \hat{E}_X(t;\beta,\hat{\gamma}) \} d\hat{M}_i(t;\beta,\hat{\gamma}) \}$ $-\int_{0}^{ au} rac{W(t)R(t;eta,\hat{\gamma})}{S^{(0)}(t,\hat{\gamma})} d\hat{M}_{i}^{*}(t;\hat{\gamma}) \hat{P}(\beta,\hat{\gamma})\hat{D}^{-1}\int_{0}^{\tau} \{Z_{i}(t) - \bar{Z}(t;\hat{\gamma})\}d\hat{M}_{i}^{*}(t;\hat{\gamma}).$

Let $p = (p_1, p_2, \cdots, p_n)$ be a probability vector, i.e., $\sum_{i=1}^{n} p_i = 1$, and $p_i \geq 0$ for all *i*. Then the EL ratio, evaluated at true parameter value β_0 is defined as: $R(\beta_0) = \sup\{\prod_{i=1}^n np_i : \sum_{i=1}^n p_i W_{ni}(\beta_0; \hat{\gamma}) = 1\}$ $0, p_i \ge 0, \sum_{i=1}^n p_i = 1$. The empirical log-likelihood ratio at β is given by

(0.6, 0.2)	$\begin{array}{c} 0.870 \\ (1.535) \end{array}$	0.872 (1.588)	$0.802 \\ (0.172)$	$0.818 \\ (0.188)$
				n = 70
(0.1, 0.1)	$0.926 \\ (1.351)$	$0.925 \\ (1.393)$	$0.886 \\ (0.161)$	0.899 (0.187)
(0.3, 0)	0.941 (1.637)	0.944 (1.668)	0.887 (0.224)	0.899 (0.228)
(0, 0.1)	$0.919 \\ (1.381)$	0.922 (1.419)	0.877 (0.164)	$0.886 \\ (0.174)$
(0.3, 0.1)	0.923 (1.300)	$0.924 \\ (1.343)$	$\begin{array}{c} 0.878\\ (0.151) \end{array}$	$0.902 \\ (0.164)$
(0.6, 0.2)	0.914 (1.034)	$0.920 \\ (1.126)$	$0.822 \\ (0.115)$	$0.854 \\ (0.134)$

7. Bladder Cancer Dataset

Two treatment groups: placebo (47 patients) and theitepa (38 patients). Let β_1 , β_2 and β_3 represent the effects of the treatment, the size of the largest tumor, and the number of initial tumors, respectively. In addition, α is the effect of the

One can observe the dataset:

 $\{O_i(t), Z_i(t), Y_i(T_{i,1}), \cdots, Y_i(T_{i,M_i});$ $0 \leq t, T_{i,K_i} \leq C_i, i = 1, \cdots, n\},\$

i.e., we only have panel count data on $Y_i(t)$ 'S.

Define $\mathcal{F}_{it} = \{O_i(s), 0 \leq s < t, i =$ $1, \dots, n$ as the history or filtration of the $l(\beta) = -2logR(\beta) = 2\sum_{i=1}^{n} log\{1 + \lambda' W_{ni}(\beta; \hat{\gamma})\}$

observation or visit process.

Also, we assume $H(\mathcal{F}_{it}) = O_i(t-)$.

	NA		EL	
	CI	Length	CI	Length
β_1	(-2.487, -0.996)	1.491	(-2.497, -0.979)	1.518
β_2	(-0.314, 0.111)	0.425	(-0.342, 0.103)	0.445
β_3	(0.157, 0.416)	0.259	(0.161, 0.436)	0.275
α	(0.006, 0.011)	0.093	(0.002, 0.099)	0.097