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1. Panel Count Data

•Arise in long-term event-history or lon-
gitudinal studies.
• It may infeasible or unrealistic to moni-

tor the study subjects continuously.
•They are only observed at discrete time

points within the study period.
•Only the total number of events occur-

red between two time points is known
instead of actual time of the events.
•Such datasets are commonly known as

panel count data.

2. Example

3. Underlying Processes

•The recurrent event process: Controls
the number of events occurred between
two time points.
•The observation process: Controls the

observation times for each subject.

4. Model Setup

Denote:
Yi(t): The cumulative number of event
occurrences before or at time t,
Oi(t): The total observation before or at
time t.
Zi(t): A vector of covariates.

One can observe the dataset:
{Oi(t), Zi(t), Yi(Ti,1), · · · , Yi(Ti,Mi

);

0 ≤ t, Ti,Ki
≤ Ci, i = 1, · · · , n},

i.e., we only have panel count data on
Yi(t)’s.

Define Fit = {Oi(s), 0 ≤ s < t, i =

1, · · · , n} as the history or filtration of the

observation process Oi up to time t−.

The observation process Oi(t) follows the
proportional rate model

E{dOi(t)|Zi(t)} = eγZi(t)λ0(t)dt,

where γ is a vector of unknown parame-
ters and λ0(·) is an unspecified baseline
rate function.

we model the conditional mean function
of Yi(t) given Zi(t) and Fit as

E{Yi(t)|Zi(t),Fit} = g{µ0(t)e
β′1Zi(t)+β

′
2H(Fit)},

where g(·) is a known twice continuously
differentiable and strictly increasing func-
tion, µ0(t) denotes an unknown arbitrary
function of t, β1 and β2 are vectors of unk-
nown regression parameters, and H(·) is
a vector of known functions of Fit.

5. Empirical Likelihood

Advantages:
•EL enjoys parametric likelihood benefits
•Parametric assumption not required
•Confidence region shaped by data only
•The confidence interval is range res-

pective, transformation invariant, Bar-
tlett correctable .
•Perform better when sample size is

small
•Estimation of variance is not needed, as

the studentization is done internally

Define Wni(β; γ̂) =∫ τ
0 W (t){Xi(t)− ÊX(t; β, γ̂)}dM̂i(t; β, γ̂)

−
∫ τ

0
W (t)R̂(t;β,γ̂)
S(0)(t,γ̂)

dM̂ ∗
i (t; γ̂)−

P̂ (β, γ̂)D̂−1
∫ τ

0 {Zi(t)− Z̄(t; γ̂)}dM̂ ∗
i (t; γ̂).

Let p = (p1, p2, · · · , pn) be a probability
vector, i.e.,

∑n
i=1 pi = 1, and pi ≥ 0 for

all i. Then the EL ratio, evaluated at true
parameter value β0 is defined as:
R(β0) = sup{

∏n
i=1 npi :

∑n
i=1 piWni(β0; γ̂) =

0, pi ≥ 0,
∑n

i=1 pi = 1}.
The empirical log-likelihood ratio at β is
given by

l(β) = −2logR(β) = 2

n∑
i=1

log{1+λ′Wni(β; γ̂)}

where λ = (λ1, · · · , λp)′ is the solution to
n∑
i=1

Wni(β; γ̂)

1 + λ′Wni(β; γ̂)
= 0

Theorem 1: Under the regularity conditi-
ons stated in the Appendix, l(β0) conver-
ges in distribution to χ2

p as n→∞,
where χ2

p is a chi-square distribution with
p degrees of freedom.

6. Simulation Result

7. Bladder Cancer Dataset

Two treatment groups: placebo (47 pati-
ents) and theitepa (38 patients).
Let β1, β2 and β3 represent the efects of
the treatment, the size of the largest tu-
mor, and the number of initial tumors, res-
pectively. In addition, α is the effect of the
observation or visit process.
Also, we assume H(Fit) = Oi(t−).


