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Model Formulation

• Motivated by the work [4], we study a citation network, where each
node (i.e., item) can be a technical report or a publication. We denote
a binary random variable Xij, where 1 ≤ i, j ≤ n and n is the total
number of nodes. We have Xij = 1 if and only if either node i cites
node j or vice versa; otherwise Xij = 0.

• Latent Variable Model For each node i, we assume that there is an
associated binary vector fi ∈ RK, such that the kth entry of fi, fik = 1,
if and only if node i is related to topic (i.e., factor) k, 1 ≤ k ≤ K. Here
K is the total number of underlying topics (i.e., factors, or trends). We
assume a logistic model for Xij’s: for 1 ≤ i, j ≤ n,

P(Xij = 1) = eα+fTi Dfj

1 + eα+fTi Dfj
, (1)

The justification of above model is that when both node i and node j
are related with topic k, they have a higher chance to cite one another.

• Conditional Graphical Model The graphical model will comple-
ment the latent model by characterizing links that are not interpretable
via common factors. For the aforementioned binary random variable
Xij, 1 ≤ i, j ≤ n, we define

P(Xij = 1) = eα
′+Sij

1 + eα
′+Sij

, (2)

where Sij ∈ R, Sij ≥ 0, for 1 ≤ i, j ≤ n, denotes the relation between
nodes i and j.

• Combined Model By combining above two models, we can fully
account the dependent structure of citation network. Under the as-
sumption of independence of Xij, 1 ≤ i, j ≤ n, we can write joint
probability function as follows

P(X | α, F,D, S) =
∏

1≤i<j≤n

eXij(α+Sij+fTi Dfj)

1 + eα+Sij+fTi Dfj

(3)
Assumptions and Penalization

• We want the matrix S ∈ Rn×n to be as sparse as possible.
• We would like the number of nonzeros in each column of F to be
small, reflecting that each node is associated with a small number
of underlying topics.

• Overall, the rank of matrix F TDF cannot be larger than min{n,K}
(k << n)

• There is an identifiability issue with the formation F TDF . More specif-
ically, let P ∈ RK×K be a signed permutation matrix, then we have
P TP = In, where In ∈ RK×K is the identify matrix. Notice that ma-
trix F ′ = PF is also a factor loading matrix, and matrix D′ = PDP T

is still a diagonal matrix; we have
F TDF = F TP TPDP TPF = (F ′)TD′F ′ = L,

• Neither rank K of L nor the graphical structure is known.

Along with the line of these assumptions, we propose a penalized log-
likelihood estimation approach as follows:

(α̂, L̂, Ŝ) = arg minα,L,S
{
−1
n
Ln(α,L, S;X) + γ‖S‖1 + δ‖L‖∗

}
(4)

On the choice of Tuning parameters

We can choose γ and δ in (4) by minimizing the Bayes information
criterion (BIC; [7]) that is known to yield consistent variable selection.
BIC is defined as

BIC(M) = −2Ln(β̂(M)) + |M | logN,
where M is the current model, Ln(β̂(M)) is the maximal log-likelihood
for a given model M . Note that N = n(n − 1)/2, when n denotes the
number of papers in network. If rank(L) = K, we can establish the
following

|M | =
∑
i<j

1{Sij>0} + nK − K(K − 1)
2

Because the number of free parameters in L is K plus nk−K(K+1)/2,
which is the number of free parameters in determining K orth-normal
vectors.

Summary

•We propose a combined latent and graphical model for the citation network, where either a latent model or a graphical model
alone is often insufficient to capture the structure of the data. The proposed model has a latent (i.e., factor analysis)
model to represents the main technological trends (aka factors), and adds a sparse graphical component that
captures the remaining ad hoc dependence.

•Model selection and parameter estimation are carried out simultaneously through construction of a pseudo-likelihood
function and properly chosen penalty terms. The convexity of the pseudo-likelihood function allows us to develop an
efficient algorithm, while the penalty terms generate a low-dimensional latent component and a sparse graphical
structure. Simulation results are reported which can demonstrate our new method works well in practical situations.
The proposed method has been applied to a real application in HEP-Ph (high energy physics phenomenology)
citation data set.

Synthetic and Real Data Analysis

Figure 1: (a) is the case where all other nine papers are connected with one in the center. We can quickly realize that ten papers in (a) are connected by one commonly shared topic,
and there is no ad-hoc dependent structure, which cannot be explained by this common topic. In second and third case, (b) and (c), we add one and two artificial edges to the first case,
(a), which can be considered as ad-hoc dependent structures of the network system. Fourth case, (d), displays the network with two common latent topics and no ad-hoc dependency
between 20 papers. We also perform additional experiment whether our proposed method decomposes the sparse and latent component well under the setting stated in Table2. [3]

Figure 2: Hub papers of each topics are represented with red circles, papers which form the ad-hoc dependencies with blue circles. Respective IDs of blue nodes on the above are
9311274 and 9506257 from left to right, those on below are 9803214 and 9706487 from up to down.

• We present the analysis of real citation graph provided as part of the 2003 KDD Cup [5]. The HEP-Ph (high energy physics phenomenology) citation
graph from the e-print arXiv covers all the citations within a dataset of n=34,546 papers with e = 421,578 edges.

• We extract arbitrary 70 papers and the links between them. We did this so that the computational costs of running the combined latent and graphical
model remain within reasonable time limits, given the 100 iterations of algorithm for grid search to find a minimized BIC value. Among 70, 43 papers
turns out to have either incoming or outgoing edges with each other.

• We use a celebrated text-based topic model, LDA [1], to uncover the topics of each chunks of papers. We perform the analysis with the abstracts of
papers, preprocess the text data by following the procedures introduced in paper [6] (Hornik et al), and use the standard VEM method for parameter
estimation.
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Computation of Estimator : ADMM

We present each of the three steps of the ADMM algorithm [2] here. Let
xm = (xmα , xmM , xmL , xmS ), zm = (zmα , zmM , zmL , zmS ), um = (umα , umM , umL , umS ).
Step 1. Due to the special structure of (4), xm+1

α , xm+1
M , xm+1

L , and xm+1
S

can be updated separately. More precisely, we have

xm+1
α , xm+1

M = arg minα,Mf (α,M) = −α
n

∑
1≤i<j≤n

Xij −
1

2n
X •M

+ 1
n

∑
1≤i<j≤n

log
(
1 + eα+Mij

)
+ 1

2λ
[α− (zmα − umα )]2

+ 1
2λ
‖M − (zmM − umM)‖2

F ,

xm+1
L =arg minL�0 δ‖L‖∗ + 1

2λ
‖L− (zmL − umL )‖2

F ,

xm+1
S =arg minS=S> γ‖S‖1 + 1

2λ
‖S − (zmS − umS )‖2

F ,

We can utilize a standard optimization algorithm to update xm+1
M , xm+1

α

such as the BFGS algorithm. xm+1
L and xm+1

S can also be easily
updated through eigen and soft thresholding, respectively.

Step 2. A closed-form solution exists here. Denote ᾱ = xm+1
α +umα , M̄ =

xm+1
M + umM , L̄ = xm+1

L + umL , and S̄ = xm+1
S + umS ,

min
α,M,L,S

1
2[α− ᾱ]2 + 1

2‖M − M̄‖
2
F + 1

2‖L− L̄‖
2
F + 1

2‖S − S̄‖
2
F

subject to M is symmetric and M = L + S.

The above optimization problem has a closed-form solution, which
is as follows:

zm+1
α = ᾱ,

zm+1
M = 1

3
M̄ + 1

3
M̄T + 1

3
L̄ + 1

3
S̄

zm+1
L = 1

6
M̄ + 1

6
M̄T + 2

3
L̄− 1

3
S̄

zm+1
S = 1

6
M̄ + 1

6
M̄T − 1

3
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3
S̄.

Step 3. We solve um+1 = um + xm+1 − zm+1, which is a simple

arithmetic.

Scalability Issue

• The BFGS algorithm used at updating xm+1
α , xm+1

M in the first step of
ADMM has a quadruple time complexity, O(n4), when n denotes the
number of paper.

• Consensus Algorithm We decompose a function f (α,M) in the
first step of ADMM into n sub-functions, so that they can be solved in
parallel fashion by introducing local variables αj ∈ R and a common
global variable α, as follows:

minimize
α,α1,...,αn,M1,...,Mn

n∑
j=1

fj(αj,Mj)

subject to α = αj, j = 1, . . . , n.

• The consensus algorithm’s time complexity of our case isO(kn2), where
k denotes the number of iterations for the algorithm to be converged.
If we warm-start αj-updates with α and dual variable obtained from
previously converged ADMM, the k decreases fast as ADMM in section
6 iterates. [2]

Figure 3: (Left) Comparison of CPU time taken to solve the Case 1 while increasing
the total number of papers from 5 to 40 with 5 equal interval. (Right) CPU time taken
to solve the Case 1 using consensus method varying the total number of papers from
10 to 150 with 10 equal interval.


