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Motivation for considering time-varying interventions

In many clinical contexts, the treatment of interest is administered in phases over time.

antihypertensive drug therapy administered daily;
biphosphonate drug therapy administered weekly;
injection of antiretroviral suspension administered every month;
immunosuppressant infusion therapy administered every two months.

The observed data are often of the form
L0 ÝÑ A0

time 0
ÝÑ L1 Ñ A1

time 1
ÝÑ ¨ ¨ ¨ ÝÑ LK ÝÑ AK

time K
ÝÑ Y ,

where we have defined components
Lk “ covariates recorded at time k;
Ak “ treatment assignment at time k;
Y “ outcome recorded at the end of the study.
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Motivation for considering time-varying interventions

We can consider the counterfactual outcome Ypa0, a1, . . . , aKq defined by enforcing
treatment assignment pA0,A1, . . . ,AKq “ pa0, a1, . . . , aKq.

This allows to define causal contrasts that address the scientific question of interest.
(Chapters 24-26 of van der Laan & Rose, 2011; Chapter 4 of of van der Laan & Rose,
2018; Chapter 19 of Hernán & Robins, 2018)

Weekly alendronate therapy for osteoporosis and one-year incidence of hip fracture:

Lk “ covariates recorded at week k
(e.g., sex, age, dexascan values, thyroid hormone levels, side effects, fracture status);

Ak “ indicator that alendronate was taken at week k;
Y “ indicator that hip fracture occurred within one year.

We may be interested in the average effect

ErYp1, 1, . . . , 1qs ´ ErYp0, 0, . . . , 0qs

of year-long weekly alendronate therapy on one-year risk of hip fracture versus no
alendronate therapy, or other contrasts defined by values of pa0, a1, . . . , a52q.
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Motivation for considering time-varying interventions

Even when the treatment is administered at a single time-point, it is often the case
that the data are incompletely recorded in the follow-up period.

missing data: patient did not show up to a scheduled clinic visit;
loss to follow-up: patient moved out of the country and dropped out of the study.

It would be natural then to consider a counterfactual outcome defined by enforcing
1 the administration of a particular treatment (baseline only or time-varying);
2 complete follow-up and complete recording of data (time-varying).

What would the outcome have been had:
ą the patient taken an experimental treatment regime, the follow-up been complete,

and all data been completely recorded?
ą the patient taken a control treatment regime, the follow-up been complete, and

all data been completely recorded?
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Motivation for considering time-varying interventions

For example, if treatment is only administered at baseline, we could set:

Lk “ covariates recorded at time k;
A0 “ treatment assignment at time 0 (i.e., at baseline);
Ak “ indicator that, at time k, patient has not yet been lost to follow-up

and all measurements on this patient are complete;
Y “ outcome recorded at the end of the study.

We might then be interested in

ATE “ ErYp1, 1, 1, . . . , 1qs ´ ErYp0, 1, 1, . . . , 1qs .
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Motivation for considering time-varying interventions

If treatment is administered over time, we could instead set:

Lk “ covariates recorded at time k;
Ak,1 “ indicator that, at time k, patient has not yet been lost to follow-up

and all measurements on this patient are complete;
Ak,2 “ indicator of treatment assignment at time k;

Y “ outcome recorded at the end of the study.

and let Yppa0,1, a0,2q

a0

, pa1,1, a1,2q

a1

, . . . , paK,1, aK,2q

aK

q be the counterfactual defined by

pA0,A1, . . . ,AKq “ pa0, a1, . . . , aKq ,

where we write Ak :“ pAk,1,Ak,2q.

We might then be interested in

ErYpp1, 1q, p1, 1q, . . . , p1, 1qqs ´ ErYpp1, 0q, p1, 0q, . . . , p1, 0qqs .
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Dynamic treatment rules

Counterfactuals defined by fixed treatment profiles are often neither particularly
clinically interesting nor supported by data.

Treatment decisions are usually dynamic and incorporate real-time patient information.

Example: mercaptopurine in IBD patients

static intervention: ‘always treat’ versus ‘never treat’
if patient develops signs of liver damage, therapy is usually stopped
liver function is a time-varying confounder between treatment status and survival
if poor liver function is a contraindication for therapy, it may not be possible to
observe treatment adherence among patients with recent liver failure
static intervention is unrealistic and not identifiable
dynamic intervention: ‘treat while liver function permits it’ versus ‘never treat’

dptq “

#

1 : if recent liver function is adequate
0 : otherwise

.
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Dynamic treatment rules

Counterfactuals can be naturally defined in terms of dynamic treatment rules
encoding treatment decisions that possibly depend on current and past patient info.

In the mercaptopurine example, we may want to learn about the average effect

ATEpd, d0q :“ ErYpdqs ´ ErYpd0qs

of rule d enforcing treatment whenever liver function permits it and rule d0 enforcing
no mercaptopurine use.

Our goal is to contrast the mean outcome under various sequences of interventions
occurring over time. To simplify notation, we focus on static treatment profile
pa0, a1, . . . , aKq “ p1, 1, . . . , 1q, but methods easily extend to dynamic treatment rules.
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Identification of average treatment effects

Our goal is to contrast the mean outcome under various sequences of interventions
occurring over time. To simplify notation, we focus on static treatment profile
pa0, a1, . . . , aKq “ p1, 1, . . . , 1q, but methods easily extend to dynamic treatment rules.

(Sequentially) randomized trial

We can imagine conducting a trial in which, at each of these time-points, individuals
are randomized to one of the possible interventions.

In this case, at each time-point, the intervention assignment is independent of the
possible counterfactual outcomes.

Yp1, 1, . . . , 1q K A0 , Yp1, 1, . . . , 1q K A1 , . . . , Yp1, 1, . . . , 1q K AK .
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Identification of average treatment effects

Our goal is to contrast the mean outcome under various sequences of interventions
occurring over time. To simplify notation, we focus on static treatment profile
pa0, a1, . . . , aKq “ p1, 1, . . . , 1q, but methods easily extend to dynamic treatment rules.

Observational study

In an observational study, there are often factors that influence both the intervention
assignment mechanisms and the counterfactual outcome distribution.

Examples of time-varying confounding:
a patient may discontinue chemotherapy because they have ceased to respond,
which may itself be a marker of disease progression;
a patient may have ceased smoking because they developed respiratory
symptoms, which may be a sign of lung cancer.
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Identification of average treatment effects

Our goal is to contrast the mean outcome under various sequences of interventions
occurring over time. To simplify notation, we focus on static treatment profile
pa0, a1, . . . , aKq “ p1, 1, . . . , 1q, but methods easily extend to dynamic treatment rules.

Observational study

The vector of time-varying covariates pL0, L1, . . . , LKq can be used to deconfound the
relationship between Y and pA0,A1, . . . ,AKq provided

Yp1, 1, . . . , 1q K A0 | L0 , Yp1, 1, . . . , 1q K A1 | L1,A0 “ 1 , . . .

Yp1, 1, . . . , 1q K AK | LK,AK´1 “ 1K ,

where the symbol 1j is used to denote a vector p1, 1, . . . , 1q of length j.

In other words, at each time-point, intervention assignment is randomized within each
stratum defined by recorded patient history up to that point, among patients who have
received the intervention of interest so far.

This is referred to as the sequential randomization (or exchangeability) condition.
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Identification of average treatment effects

Our goal is to infer what the mean outcome would be in the target population under
the multi time-point intervention of interest.

We must be able to observe the intervention of interest for each different “type” of
individual (as defined by recorded covariates) from this population:

g0pℓ0q “ PpA0 “ 1 | L0 “ ℓ0q ą 0 for each possible ℓ0;
g1pℓ1q “ PpA1 “ 1 | L1 “ ℓ̄1,A0 “ 1q ą 0 for each possible ℓ̄1;
¨ ¨ ¨

gKpℓKq “ PpAK “ 1 | LK “ ℓ̄K,AK “ 1Kq ą 0 for each possible ℓ̄K.

This is referred to as the positivity condition.
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Identification of average treatment effects

Under these conditions, the mean counterfactual E rYp1, 1, . . . , 1qs equals the multi
time-point G-computation formula (Robins, 1986).

E
”
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”
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”

. . .
”

E
”

E
´

Y
ˇ

ˇ

ˇ
AK “ 1, LK

¯

Q̄K`1pLKq

ˇ

ˇ
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AK´1 “ 1, LK´1

ı

Q̄KpLK´1q

. . .
ıˇ

ˇ

ˇ
L1,A0 “ 1

ı

Q̄2pL1q

ˇ

ˇ

ˇ
L0

ı

Q̄1pL0q

ı

Q̄0

.

where, for any k, we write Ak :“ pA0,A1, . . . ,Akq and Lk :“ pL0, L1, . . . , Lkq.

The (mathematically equivalent) IPTW identification formula is given by

E rYp1, 1, . . . , 1qs “ E
„" A0A1 . . .AK

ḡKpLKq

*

Y
ȷ

,

where, for any k, we write ḡk “
śk

m“1 gm.
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Identification of average treatment effects

The equivalence between the IPTW and G-computation identification formulas can be
established through repeated uses of the law of total expectation.

E
«#
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+

Y
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E
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ffff
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Estimation procedures

The G-computation and IPTW formulas suggest natural estimation strategies.
For G-computation, sequentially estimate outcome regressions.
For IPTW, estimate propensity for treatment at each time.

There are also frameworks for combining the two approaches including
augmented inverse probability of treatment weighting (AIPTW)
targeted minimum loss-based estimation (TMLE).

There are several benefits to considering these more complex frameworks.
Nonparametric efficient estimation if outcome regressions and propensity scores
are both consistent for their true respective counterparts.
Consistent estimation if either outcome regressions or propensity scores are
consistent for their true respective counterparts.
The latter property is known as double-robustness.
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Inferential procedures

What about inference? We would like to formally compare (e.g., test) differences in
average outcomes under different treatment strategies.

If outcome regressions and propensity scores can be consistently estimated via
parametric regressions, inference may be facilitated via the nonparametric bootstrap.

In practice, correctly specifying a single parametric model is challenging.
Here, we require at least K correct parametric regression models!

Modern statistical learning methods (e.g., machine learning) offer an alternative to
classic parametric approaches.

Better chance of getting either outcome regressions or propensity score correct.
BUT inference is only valid if both are correct.
When one is incorrect, naive confidence intervals have poor coverage.
Nonparametric bootstrap is not generally valid when using these methods.

16 / 21



Inferential procedures

Why the poor performance of standard inference?

When one of the outcome regression or propensity score is inconsistent, the bias
of the estimate of the counterfactual shrinks slower than n´1{2.

Standard Wald-style confidence intervals and hypothesis tests are based on
standard error estimates that shrinks at rate n´1{2,

σ̂ “
yVartpErYp1, . . . , 1qsu

n1{2 .

Intervals shrink with n´1{2, but center around the truth at a slower rate ñ

asymptotic coverage probability of 0% and type-I error rate of 1!
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Double-robust inference

To correct for this, we require a better understanding of how inconsistent estimation
of a nuisance parameter generates bias in the estimate of the target parameter.

Requires characterization of the second-order remainder of the von Mises
expansion of target parameter.

It is possible to use the TMLE framework to construct an estimator that
1 is efficient when both outcome regression and propensity scores are consistent;
2 is consistent when at least one is consistent;
3 when suitably normalized, tends to a mean-zero normal distribution with variance

we can consistently estimate, when at least one is consistent.

It does not appear possible to adapt the AIPTW estimator for this purpose.

Details for a single timepoint intervention are provided in Benkeser, Carone, van der
Laan & Gilbert (2017) and in the R package drtmle (available on CRAN).
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Summary: estimation and inference

Properties of estimation procedures outlined

Q̄ + ḡ Q̄ + ḡ Q̄ + ḡ
difficulty target ci target ci target ci

IPTW + ✓ ✓
G-COMP ++ ✓ ✓
AIPTW +++ ✓ ✓ ✓ ✓
TMLE ++++ ✓ ✓ ✓ ✓ ✓ ✓

Q̄ + g : outcome regressions estimated well but not propensity scores
Q̄ + g : propensity scores estimated well but not outcome regressions
Q̄ + g : outcome regressions and propensity scores estimated well

target : does the estimator hit the right target?
ci : is valid inference possible and readily available, even when flexible learning

regression strategies are used?
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Key points

Methods for time-varying interventions are extremely versatile, and can be used to
tackle loss to follow-up and missing data.

Dynamic treatment rules may better reflect realistic interventions and prevent
positivity violations.

Doubly-robust estimators should be preferred as they confer efficiency, additional
robustness and the ability to use flexible regression estimators.

Naive inference with inconsistent regression estimates can be disastrous.
Additional steps are needed to ensure valid inference.
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