Designs for computer experiments constructed from block-circulant matrices
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In this presentation, we propose procedures for constructing orthogonal or
low-correlation block-circulant designs for computer experiments. Emphasis
is given on the construction of block-circulant Latin hypercube designs. The
basic concept of these methods is to use vectors with a constant periodic
autocorrelation function to obtain suitable block-circulant orthogonal
matrices. Using these matrices in a construction, including their full fold-over
design, orthogonal Latin hypercube designs are obtained. In addition, an
expansion of the method is provided for constructing Latin hypercube designs
with low correlation. This expansion is useful when orthogonal Latin
hypercube designs do not exist. The properties of the generated designs are
further investigated. Some examples of the new designs, as generated by the
proposed procedures, are tabulated. In addition, a brief comparison with the
designs that appear in the literature is given.

An experimental design D(n,s™) with » runs, m factors and s levels will
be denoted by an nxm matrix X =[x,...,x,], where x, is the jth factor
(column vector) and 4, is the level of factor j on the ith experimental run.
The levels of a design X are selected to be centered, equally spaced and for
simplicity integer-valued. This class of designs includes the well known and
commonly used family of Latin hypercube designs where in this case s is
equal to ». There are several variations on how to space the levels "uniformly’
for each factor. The simplest scheme, and the one that we will employ in this
paper, is to take the levelstobe (—(s-1)2, ..., -1, 0, 1, ...,(s—1¥2) when
s is odd and (—s2, ..., -1, 1, ...,s/2) when s is even. All levels (except
zero; if exist) should be equally replicated in each column so that the design
will be mean orthogonal.

In regression analysis, it is desirable to include orthogonal independent
variables in a regression model, so that the estimates of the factors and
interactions coefficients would be uncomrelated. Usually, a polynomial model,

of degree k& with m factors, is fitted. This model is of the form
lY =B+ Bx+ Y, Boxx, et D B X X, tE,

where x, are the independent‘lv;riables, B are L‘e ilinear effecs of x,, B, .
effect of the ¢ -order interaction of Xy Xy Obviously g, corresponds to the
quadratic effect of factor x;, while B o for i, # i,, is the second order interaction of
factors xx, .

Let A={4,:4,=(a,4.q,,,-a,,,), j=1,...,€}, be a set of ¢ row vectors of
length ». The periodic autocorrelation function P,(s) (abbreviated as PAF), is

is the

£ n-1

defined, reducing i+s modulo n, as |P,(s)=> > a,.a,,,,, s=0,L..,n-1,
J=1i=0
Construction of orthogonal matrices :
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is an orthogonal matrix a4, Z(AZJ—IA; -Az:A;--u) :
of order 4n. B =

_ | is an orthogonal matrix of order 8n.
The needed squared matrices can be circularly constructed from generating
vectors of length » with zero periodic autocorrelation function.

The construction methods:
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1. Let D be an orthogonal matrix of order 7. D can be constructed by G5 or
H- array using circ matrices. If each column of abs(D) is a permutation of

® (1,...,2n-3,2n 1), then there exists an orthogonal Latin hypercube design
L(2n,r)with2n runs and n factors (Use X, ). [Georgiou&Stylianou (2011)]
® (1,...,n-1,n), then there exists an orthogonal Latin hypercube design
L(2n-+1,n) with [2n+1 runs and » factors (Use X,).

® (2,....2n—1,2n+1), then there exists a Latin hypercube design L(2n+2,n) with
[27+2 runs and n factors with low correlation (Use X.).

® (2,...nn+l), then there exists a Latin hypercube design L(2n+3,n) with
[2n+3 runs and n factors with low correlation (Use X;).

2. Let A=(a,a,,...,a,) be a row vector of length n and P,(s)=y ,
Vs=12,...,n—1 . Set D=circ(A). If the 1x2n row vector [4,-4] is a
permutation of

®(1,3,....2n—1,2n+1,...,-3,-1) then X, is Latin hypercube design L(2n,n)
withcorrelationof columns x and y.

More Examples:
A= (b+21,b+5,~(b+27),b+29,b+23)
A, =(b+25,b+31,b+33,6+35-(b+37)

Using (*) in GS-array, suitably chosen integer
N numbers b and the construction X, we

Ay =(b+39,b+1,(b+3),(b+T),—~(b+9) obtain an OLHD(40m,20) for m=1,2,....

Ay =11, +13,-(b+15),b +17,-(b +19))

A =(b+15,(b+5),b+19) A, =(b+17,~(b+21),b+23) & Using (**) as above we obtain

A =(B+1,b+3(b+T) A, =(b+9,b+11,b+13) an [OLHD(24m, 12) for m=1,2,...
Theorem (Lin et al. [2010]): Suppose that an OLH(n,m) is available where n is a
multiple of 4 such that a Hadamard matrix of order n exists. Then an OLHD(2an,am)

and an OLHD({2an + 1,am) for a=1,2,4,8 can all be constructed.
We extent this result to construct the above designs for |a =1,2481 2,16,20,24].

*

LBST SIL LBST SLL
Runs | Factors Factors Factors | Runs | Factors | Factors Factors In eolumns “LBST
24 12 8 4 256 | 64 192 128 Factors” and “SLL
iﬁ ;g 12 1:’ i:‘: ?24 :: 331 Factors” we present
s | 12 8 512 | 128 _ 256 ";et'h"“;nb‘?r effeckor
61 16 32 32 576 | 144 _ 32 of the designs
80 20 12 8 640 | 160 9 64 constructed by Lin et
9 % % 16 768 | 192 9% 128 al. (2010) and Sun et
128 | 32 43 64 | 768 | 288 96 128 al. (2010),
160 | 40 24 16 960 | 240 24 32 respectively
192 18 18 32 1024 | 256 384 512

REFERENCES Lin, C.D., Bingham, D., Sitter,R.R., and Tang, B.

® (12,...,n-n,...-2,-1) then X, is Latin hypercube design [L(2n+1,n)|
with correlation |r,, = 6y/{n(n+1)}2n+1)}| of columns x and y.

Example:

The following four wvectors A=(511,-7% , K=(91315 ,

C=(-17,-1921) and D=(-23,1,-3) of length n=3 have zero

periodic autocorrelation function. Thus, a 12 x12 suitable orthogonal

matrix D is constructed using the GS-array. By X, we obtain an

orthogonal LHD |£(24,12) . Note that this orthogonal Latin hypercube

design is new and cannot be constructed by the methods proposed in

Steinberg and Lin(2006), Lin etal. (2009) or Georgiou{2009).

Important Properties: 1. Any quadratic effect of a factor is orthogonal to all
the main effects in the constructed orthogonal design. 2. Any two-factor
interaction is orthogonal to all the main effects in the constructed orthogonal
design.
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