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Abstract

We investigate the problem of distributed monitoring large-scale
data streams where an undesired event may occur at some un-
known time and affect only a few unknown data streams.
We propose to develop scalable global monitoring schemes by par-
allel running local detection procedures and by combining these
local procedures together to make a global decision based on SUM-
shrinkage techniques.

Problem Formulation and Existing Research

Problem formulation
Online Monitoring independent large-scale data streams:

Data Stream 1 : X1,1, X1,2, · · ·
Data Stream 2 : X2,1, X2,2, · · ·

. . . . . .
Data Stream K : XK,1, XK,2, · · · .

At some unknown time ν, an event occurs and affects a few un-
known data streams in the sense of changing the distributions of
Xk,n’s from N(0, 1) to N(µk, 1), while µk may or may not be
known.
Objective: Detect the true change time ν as soon as possible.
Mathematically, find a stopping time T to minimize the “worst
case” detection delay proposed by Lorden (1971):

Eδ1,··· ,δK(T ) = sup
ν≥1

ess sup E(ν)
(

(T − ν + 1)+
∣∣∣∣Fν−1

)
,

subject to the global false alarm constraint:
E(∞)(T ) ≥ γ. (1)

Applications: Industrial quality control, signal detection, bio-
surveillance (CDC Biosense) etc.
Challenges:
• Time domain: Repeatedly test hypotheses of H0 : ν =∞ (no
change) against H1 : ν = 1, 2, . . . , (a change occurs) at each
and every time step n when new data arrives.

• Spatial domain: We do not know which subset of data
streams is affected, and the post-change parameter µk’s might
also be unknown. If r out of K data streams are affected, there
are

(K
r

)
possible combinations.

Existing Research
• Tartakovsky and Veeravalli (2008) and Mei (2010): Assume the
post-change parameter µk’s are completely specified if affected.

• Xie and Siegmund (2013) proposed a semi-Bayesian scheme by
assuming the proportions :

TXS(a, p0) = inf

n ≥ 1 : max
0≤i<n

K∑
k=1

log(1− p0+

p0 exp
[(

max
(

0, 1√
n− i

n∑
j=i+1

Xk,j

))2
/2
]
≥ a

 ,
(2)

where p0 is the fraction of affected data streams.

Our Proposed Methodology

Our proposed research has two components:

• Local detection statistics Wk,n’s that can efficiently detect local
change at kth local sensor up to time n.

• A SUM-shrinkage method that combines the local detection
statistics Wk,n’s suitably.

Let us postpone the discussion of Wk,n’s and focus on the SUM-
shrinkage method first, which is motivated by parallel computing
in the censoring sensor networks.

X
1,n

 X
K, n

 

S
1
 S

K
 

Final Decision 

Fusion Center 

Possible Feedback 
U

1,n
 U

K,n
 

Figure 1: A widely used configuration of censoring sensor networks [8].

At time n, each local data stream does the dimension reduction
by automatically filtering out non-changing streams.

Uk,n = hk(Wk,n) =e.g.

{
Wk,n, if Wk,n ≥ bk
NULL, if Wk,n < bk

,

where bk ≥ 0 is the kth local censoring parameter.
At the global level, we use the local data streams that appear to be
affected by the occurring event to make the decision. The general
“SUM-shrinkage” form:

Gn =
K∑
k=1

Uk,n =
K∑
k=1

hk(Wk,n). (3)

Raise a global alarm at the time:
NG(a) = inf{n ≥ 1 : Gn ≥ a}. (4)

Three special choices of Gn’s are as follows:
• Hard-thresholding: Treat the “NULL” values as lower
limit 0, and thus h(x) = x1{x ≥ b} for some constant b,

Gn =
K∑
k=1

Wk,n1{Wk,n ≥ bk}.

• Soft-thresholding: Treat the “NULL” values as upper limit
bk’s, and thus h(x) = max{x− b, 0} for some constant b,

Gn =
K∑
k=1

max(Wk,n, bk).

• Order-thresholding: If (at most) r out of K data streams
are affected by the occurring event, and thus
h(x) = x1{x ≥ w(r)}, w(r) is the r-th largest of w1, . . . , wK,

Gn =
r∑
k=1

U(k),n.

Non-Homogeneous Sensors with Known
Post-Change Distributions

The Wk,n’s are chosen as the well-known local CUSUM statistics
(Page 1954)

Wk,n = max
(
Wk,n−1 + µk,n −

µ2
k,n

2
, 0
)
, (5)

for n ≥ 1 and Wk,0 = 0 for k = 1, · · · , K.
The choice of bk’s: If sensors are homogeneous, a “good”
choice is bk = ρkb, for k = 1, . . . , K and constant b ≥ 0, where
ρk = I(gk,fk)∑K

k=1 I(gk,fk)
and I(gk, fk) is the Kullback-Leibler information

number.
A choice of b = (1/ρmin) log η−1 will guarantee that on average,
at most 100η% of K sensors will transmit messages at any given
time when no event occurs.
Theoretical results: Suppose that the delay effects δk’s satisfy
the following post-change hypothesis set ∆ :

∆ =
{

(δ1, . . . , δK) : the δk’s either =∞ or
satisfy 0 ≤ δk << log γ and min

1≤k≤K
δk = 0

}
,

where γ is the false alarm constraint in (1).
Theorem 1. For any given post-change hypothesis
(δ1, . . . , δK) ∈ ∆ subject to the false alarm constraint (1), as γ
goes to∞, the hard-thresholding scheme Nhard(a, b) asymptot-
ically minimize E(Nhard(a, b)) (up to the first-order). The con-
clusion also holds for the soft thresholding scheme Nsoft(a, b)
and the combined thresholding scheme Ncomb,r(a, b) when the
occurring event affects at most r data streams.

Homogeneous Sensors with Unknown
Post-Change Distributions

Challenge: Determine the local detection statisticsWk,n’s prop-
erly when the post-change mean µk is unknown.
Motivation: The recursive register approach for one-sided prob-
lem in one-dimensional case by Lorden and Pollak (2008).
A technical assumption: µ ≥ ρ, where ρ is the smallest mean
shift that is meaningful in practice.
Idea: Replace the unknown µ by its estimate from the past ob-
served data in (5). At time n, the Wn can produce a candidate
post-change time ν̂ ∈ {0, 1, · · · , n− 1}, and thus µ is estimated
by Xν̂, Xν̂+1, · · · , Xn−1.
Procedure:
• Define ν̂ as the largest 0 ≤ i ≤ n− 1 such that Wi = 0, and
denote by Tn = n− ν̂ and Sn = ∑n−1

i=ν̂ Xi the total number and
the summation of observations Xi’s between the candidate
post-change time ν̂ and time step n− 1.

• A Bayes-type estimate of µ at time n:

µ̂n = max
(
ρ,
s + Sn
t + Tn

)
, (6)

• Let S0 = T0 = W0 = X0 = 0, and µ̂1 = ρ. For all n ≥ 1,

Wn = max
(
Wn−1 + µ̂nXn −

1
2

(µ̂n)2, 0
)
, (7)

where the Sn and Tn in (6) has the recursive formula:

Homogeneous Sensors with Unknown
Post-Change Distributions (Cont’ d)

(
Sn
Tn

)
=



(
Sn−1 + Xn−1
Tn−1 + 1

)
, if Wn−1 > 0,(

0
0

)
, if Wn−1 = 0.

(8)

For the two-side test in multi-dimensional case: The
local detection statistics for kth data stream is

Wk,n = max(W (1)
k,n,W

(2)
k,n),

where W (1)
k,n and W (2)

k,n are applied to detect positive and negative
mean shifts, respectively. The estimate of µk’s are defined in the
similar form as in (6).
The three SUM-shrinkage methods can then be applied to combine
this new local detection statistics Wk,n’s together.
Comparison: Xie and Siegmund’s schemes are computationally
heavy with large local memory requirements to store past infor-
mation, so it is computationally infeasible for online monitoring
large-scale data streams over long time period. However, our pro-
posed scheme is scalable, computationally simple and fast.
Simulation Results:
Table 1: A comparison of detection delays when the change is instantaneous and
the post-change mean µk = 1 if affected. Results are based on 2500 Monte Carlo
simulations.

γ # local data streams affected
1 3 5 8 10 20 30 50 100

Smallest standard error 0.19 0.08 0.06 0.04 0.03 0.02 0.01 0.01 0.00
Largest standard error 0.40 0.14 0.08 0.05 0.04 0.03 0.02 0.02 0.01

Xie and Siegmund’s schemes TXS(a, p0)
TXS(a = 53.5, p0 = 1) 52.4 18.3 11.1 7.1 5.7 2.9 2.0 1.2 1.0
TXS(a = 19.5, p0 = 0.1) 31.1 13.4 9.2 6.7 5.7 3.5 2.5 1.8 1.0

5000 Soft-thresholding Schemes Nsoft(a)
Nsoft(a = 127.86, b1 = 0) 75.0 35.4 25.2 18.5 16.0 10.3 8.1 6.1 4.1
Nsoft(a = 84.91, b1 = 0.50) 72.1 33.9 24.1 17.7 15.3 10.0 7.9 6.0 4.2
Nsoft(a = 24.01, b1 = log(10)) 45.8 22.0 16.4 12.8 11.5 8.5 7.3 6.1 5.0
Nsoft(a = 7.88, b1 = log(100)) 29.0 17.2 14.2 12.0 11.2 9.2 8.3 7.3 6.4

Soft-thresholding Schemes Nsoft(a)
Nsoft(a = 136.07, b1 = 0) 89.0 39.9 27.9 20.2 17.4 11.1 8.7 6.5 4.4
Nsoft(a = 92.79, b1 = 0.50) 85.7 38.2 26.8 19.4 16.7 10.7 8.4 6.3 4.4

5× 104 Nsoft(a = 29.05, b1 = log(10)) 55.1 25.3 18.4 14.1 12.6 9.1 7.8 6.5 5.2
Nsoft(a = 11.11, b1 = log(100)) 35.5 19.7 16.0 13.4 12.4 10.0 8.9 7.9 6.8
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