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Combinatorial drugs have been widely applied in disease treatment, especially
chemotherapy for cancer, due to its improved efficacy and reduced toxicity com-
pared with individual drugs. The study of combinatorial drugs requires efficient
experimental designs and proper follow-up statistical modeling techniques. Lin-
ear and nonlinear models are often used in the response surface modeling for
such experiments. We propose the use of kriging models to better depict the
response surfaces of combinatorial drugs. We illustrate our method via a drug
combination experiment on lung cancer and further show how proper exper-
imental designs can reduce the necessary run size. We demonstrate that only
27 runs are needed to predict all 512 runs in the original experiment and achieve
better precision than existing analyses.
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1 INTRODUCTION

Combination chemotherapy with multiple drugs has been widely applied in cancer therapy. Such combinatorial drugs
can have enhanced efficacy and reduced toxicity.1-3 Preclinical experiments in vitro are usually conducted to characterize
the pathological mechanisms and find the optimal drug combinations. In the analyses of these experiments, different
response surface modeling techniques have been used to quantify the dose-effect relationships. Response models that
require less runs and have better predictive powers are preferred in practice.

Hill models based on ray designs3 are popular for studying fixed-ratio combinations; however, for three or more drugs,
Hill models are less applicable as there are too many ratios to be studied. Polynomial models accompanied by full or
fractional factorial designs are often used in analyzing multiple drug combinations,4 but the predicted responses from
polynomial models are unbounded as the dose levels increase to infinity, which is an obvious deviation from the real-
ity. Hill-based models5 overcome these shortcomings by combining Hill and polynomial models together. However,
the Hill-based model includes many parameters in a complex nonlinear formulation, and sometimes the optimization
algorithm used in model estimation may fail to converge. Neural networks have also been applied to drug combination
analyses.6 However, neural networks involve many parameters and require a large amount of data to achieve accuracy
and good predictions.

This paper explores the application of kriging models7 to the analyses of drug combination experiments. Originally
from geosciences, the kriging model is now widely used in deterministic computer experiments for optimization and
sensitivity analysis.8,9 Due to the existence of measurement errors in physical experiments, we add a noise term to the
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original kriging model and apply it to the data from a three-drug combination experiment on lung cancer.6 Kriging models
are parsimonious and robust under various experimental designs and can efficiently identify drug interactions. Kriging
models fitted with 27 design points can provide similar or even more accurate predictions than either polynomial or
Hill-based models fitted with a 512-run full factorial design. These results demonstrate the superiority of the kriging
models compared with other modeling techniques.

This paper is organized as follows. In Section 2, we briefly describe the kriging models, as well as the neural networks,6

the polynomial models,5 and the Hill-based models.5 In Section 3, we compare these four response surface modeling
techniques in analyzing a drug combination experiment on lung cancer.6 Section 4 concludes and discusses some future
research.

2 RESPONSE SURFACE MODELING

2.1 The kriging model
In a deterministic simulation, eg, a computer experiment, the key idea of the kriging model is to consider its responses
(outputs) as realizations of a Gaussian process. Detailed introductions to the kriging model can be found in many existing
literatures.8-11 Compared with the universal kriging model, the ordinary kriging model often suffices and is commonly
used in practice.12 In this paper, we focus on the ordinary kriging model and all results can be easily generalized to the
universal kriging model.

Because drug combination experiments have measurement errors, we consider an ordinary kriging model with a noise
term, which is defined as

𝑦(x) = 𝜇 + Z(x) + 𝜖, (1)

where 𝜇 is the trend parameter, Z(x) is a stationary Gaussian process with zero mean and covariance function 𝜙 defined
in (2), and 𝜖 ∼ N(0, 𝜏2) is a random error term and independent of Z(x). The covariance function for Z(x) is

𝜙(xi, x𝑗) = Cov
(

Z(xi),Z(x𝑗)
)
= 𝜎2

d∏
l=1

K(hl; 𝜃l), (2)

where 𝜎2 is the variance parameter, hl = |xi,l − xj,l|, xi,l and xj,l are the lth elements of the ith run xi and the jth run xj, d is
the dimension of x (ie, number of drugs studied), and K(hl; 𝜃l) is a chosen correlation function with positive parameter 𝜃l.
Popular correlation functions include Gaussian and Matérn family correlations. The sample paths of Z(x) with Gaussian
correlation K(h; 𝜃) = exp(−h2∕(2𝜃2)) have derivatives at all orders and are too smooth in some cases, which may result in
nearly singular covariance matrices and thus cause numerical problems in model estimations.13 The Matérn correlation
function with parameter 𝜈 = 5∕2 is defined as

K(h; 𝜃) =

(
1 +

√
5h
𝜃

+ 5h2

3𝜃2

)
exp

(
−
√

5h
𝜃

)
. (3)

The sample paths of Z(x) with this Matérn correlation are twice differentiable and less smooth than that with the
Gaussian correlation. Another choice is the Matérn correlation function with 𝜈 = 3∕2, which is K(h; 𝜃) = (1 +√

3h∕𝜃) exp(−
√

3h∕𝜃). This leads to even rougher paths than correlation function (3). The Matérn correlation function
with parameter 𝜈 = 5∕2 offers a good balance and is recommended in practice.14 Figure 1 shows the Matérn correlation
function (3) with different 𝜃. The correlation decreases as the distance h increases. The larger the 𝜃 is, the slower the
decreasing rate is. When 𝜃 is close to 0, identifiability problems may raise.10

Unknown parameters can be estimated by the maximum likelihood estimation (MLE) method. The best linear unbiased
prediction at point x is given by

𝑦(x) = 𝜇 + 𝛾TC−1(y − 𝜇), (4)
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FIGURE 1 Examples of spatial correlation functions of Matérn family

where 𝜇 = (1TC−11)−11TC−1y is the MLE of 𝜇, 1 is a column of ones, 𝛾 = (𝜙(x, x1), … , 𝜙(x, xn))T , C = Φ + Δ, Φ is the
variance-covariance matrix (𝜙(xi, x𝑗))1⩽i,𝑗⩽n, and Δ is a diagonal matrix with diagonal elements 𝜏2. The predicted response
at any point can be viewed as a weighted average of observed responses. When 𝜏 = 0, the kriging model interpolates the
observed data.

2.2 Neural networks
Neural networks15,16 are widely used in machine learning, pattern recognition, medical diagnosis, and many other areas.
An (artificial) neural network is a multilayer model based on a collection of connected units called neurons. Neurons in
each layer receive inputs from the last layer and produce outputs via a predefined activation function.

When analyzing the lung cancer drug combination experiment, Al-Shyoukh et al adopted a single (hidden) layer
four-neuron multilayer perceptron (neural network),6 which is shown in Figure 2. In this neural network model, for the
jth hidden neuron ( j = 1, 2, 3, 4), the most commonly used network activation function is

𝑓 ( 𝑗)(x) = 1
1 + e−

∑
wi,𝑗xi,𝑗

,

where wi, j are parameters to be estimated, x0, j = 1, and xi, j is the ith input value (i = 1, 2, 3). Here, the linear output
g(x) =

∑
w′
𝑗
x′
𝑗

is adopted, where w′
𝑗

are parameters to be estimated, x′0 = 1, and x′
𝑗

is the output from the jth hidden neuron
( j = 1, 2, 3, 4). Neural networks can be estimated via resilient back-propagation method, and the R package “neuralnet”17

is a current popular tool.

FIGURE 2 A multilayer perceptron with one hidden layer of four neurons
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2.3 Polynomial and Hill-based models
The polynomial model is a common analytic tool to study main effects and interactions. A second-order polynomial model
for studying three drugs at dosages x1, x2, x3 is defined as

𝑦 = 𝛽0 + 𝛽1x1 + 𝛽2x2 + 𝛽3x3 + 𝛽4x2
1 + 𝛽5x2

2 + 𝛽6x2
3 + 𝛽7x1x2 + 𝛽8x1x3 + 𝛽9x2x3 + 𝜖, (5)

where y is the response, 𝛽 i are parameters to be estimated and 𝜖 ∼ N(0, 𝜎2) is a random error. This model can be easily
generated to accommodate more drugs.

In vivo system, the relationship between the drug dosage and its effect usually follows a sigmoidal curve.3 Based on
this, the Hill-based model,5 which combines the polynomial model and Hill model, is proposed

𝑦 = 1

1 +
(

C
IC50(p)

)𝛾(p) + 𝜖, (6)

where C is the total dosage of all drugs, p is a vector with each entry being the proportion of a drug, and IC50( p) and 𝛾( p)
are two second-order polynomials of p. As an illustration, for three drugs with p = ( p1, p2, p3),

IC50(p) = a0 + a1p1 + a2p2 + a3p2
1 + a4p2

2 + a5p1p2,

𝛾(p) = b0 + b1p1 + b2p2 + b3p2
1 + b4p2

2 + b5p1p2,

where ai and bi are parameters to be estimated. Note that p1 + p2 + p3 = 1; thus, IC50( p) and 𝛾( p) include only two
independent entries of p. The IC50( p) measures the dosage of the drug combination, which yields 50% effect level, and
𝛾( p) measures the changing rate of the smooth curve. Hill-based models are able to characterize the interaction patterns
for all drug combinations.5

3 RESULTS

3.1 A drug combination experiment on lung cancer
We focus on the data of a drug combination experiment on lung cancer.6 The experiment studied three drugs, AG490 (A),
U0126 (B), and indirubin-3′-monoxime (C), which are inhibitors targeting signaling pathways for cell survival and pro-
liferation. A 512-run eight-level full factorial design (Dfull) was applied to normal cells and lung cancer cells separately.
The eight levels were the eight dosages listed in Table 1. The response variable was the total cellular adenosine triphos-
phate (ATP) level (standardized to 0 to 1 range) measured 72 hours after drug treatment. Cellular ATP is one of the most
common and essential markers for live cells. Small ATP level indicates low cell activity. One purpose of this experiment
was to characterize the response surface.

3.2 Model fitting and comparison
We fit the kriging model in (1), the neural network shown in Figure 2, the polynomial model in (5), and the Hill-based
model in (6) to the full data (Dfull), as well as subsets of the data. Subsets are chosen according to three designs, ie, an
80-run random subdesign RD80, a 27-run random subdesign RD27, and a 27-run three-level full factorial design D047. In

TABLE 1 Dose levels for each drug in the combinatorial
experiment on lung cancer

Drug Dosage (𝝁M)

AG490 (A) 0 0.3 1 3 10 30 100 300
U0126 (B) 0 0.1 0.3 1 3 10 30 100
I-3-M (C) 0 0.3 1 3 10 30 100 300
Order of dosages 0 1 2 3 4 5 6 7

Abbreviations: I-3-M, indirubin-3′-monoxime.
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TABLE 2 The “1000 · MSE (r)” for different models on normal cells

Dfull RD80 RD27 D047

Kriging (𝜏 = 10−4) 0(100.00%) 0.11(99.94%) 1.39(99.36%) 0.18(99.92%)
Kriging (𝜏 = 10−3) 0(100.00%) 0.19(99.91%) 0.97(99.82%) 0.06(99.97%)
Kriging (𝜏 = 10−2) 0(100.00%) 0.21(99.88%) 0.98(99.56%) 0.31(99.86%)
Neural network 0.21(99.89%) 1.24(99.39%) 3.58(98.35%) 6.78(96.95%)
Polynomial 0.48(99.75%) 1.16(99.42%) 3.65(98.39%) 1.12(99.49%)
Hill-based 0.89(99.10%) 1.07(99.49%)* 3.57(98.30%)* 3.30(98.39%)

TABLE 3 The “1000 · MSE (r)” for different models on cancer cells

Dfull RD80 RD27 D047

Kriging (𝜏 = 10−4) 0(100.00%) 0.20(99.92%) 2.06(99.16%) 0.49(99.82%)
Kriging (𝜏 = 10−3) 0(100.00%) 0.26(99.89%) 2.36(99.04%) 0.15(99.94%)
Kriging (𝜏 = 10−2) 0(100.00%) 0.37(99.78%) 1.84(99.23%) 1.08(99.65%)
Neural network 0.48(99.79%) 1.55(99.35%) 4.31(98.28%) 10.87(96.23%)
Polynomial 2.98(98.67%) 6.77(97.09%) 39.82(87.74%) 5.84(97.66%)
Hill-based 1.42(98.80%) 1.67(99.33%)* 4.99(97.93%)* 4.70(97.92%)

design D047, the three levels are the dosages with orders 0, 4, and 7 in Table 1. For fitting each model, the dosages for each
factor are normalized to 0 to 1 range. We use each fitted model to predict the 512 responses for the full design Dfull. We
fit kriging models using the R package “DiceKriging”10 with the Matérn correlation function (3). When analyzing drug
combination experiments, the error term (𝜖 ∼ N(0, 𝜏2)) in (1) represents the measurement error or experiment error. Since
the measurement was accurate to two decimal places in this study, we report results with three choices of 𝜏 = 0.0001,
𝜏 = 0.001, and 𝜏 = 0.01.

Tables 2 and 3 show the mean squared error (MSE) and the correlation (r) between predicted and observed responses
for normal and cancer cells, respectively. Results are shown in the format “1000·MSE (r).” The R package “neuralnet”
for neural network yields slightly different results each time, so we run the command 100 times and take the average.
Results for designs RD80 and RD27 are averages from 100 random designs. When fitting Hill-based models with RD80 and
RD27, the optimization algorithm fails to converge 6 and 35 times, respectively, so we mark the results with asterisks in
the tables.

From Tables 2 and 3, kriging models always produce smaller MSEs and larger correlations between predicted and
observed responses compared with other models. More excitingly, for both normal and cancer cells, kriging models fit-
ted with the 27-run design D047 perform better than polynomial and Hill-based models fitted with the 512-run full
design Dfull, and neural networks fitted with 80-run random designs. Kriging models describe the dose-effect relation-
ship precisely and hence can make good predictions with a small number of observations, which is a preferred feature
by experimenters for saving time and expense. In contrast, neural networks do not work well with the three-level
design D047.

Since kriging is an interpolation method, the prediction error using Dfull is roughly zero as long as 𝜏 is small. Com-
paring the results using RD80, RD27, and D047, we see that different 𝜏 values lead to similar prediction accuracy here,
considering the measurement error was around 0.01 in this experiment. In the following, we illustrate the results
from 𝜏 = 0.01.

Figures 3 and 4 show the scatter plots of predicted versus observed responses for all four models with design D047.
Kriging models are the best in prediction for both normal and cancer cells. For polynomial models, several predicted
responses are negative for both normal and cancer cells, which deviates from the fact that the ATP levels cannot be
negative. Neural networks and Hill-based models perform poorly for both normal and cancer cells, probably because they
require more observations to achieve accuracy.

Kriging models have the least number of parameters to be estimated. In this experiment, the kriging model only contains
five parameters, compared with 21, 10, and 12 parameters for the neural network, polynomial, and Hill-based models,
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FIGURE 3 Scatter plots of predicted versus observed adenosine triphosphate (ATP) levels on normal cells using design D047

respectively. Kriging models are parsimonious and suitable for fitting high dimensional data, ie, data consisting of a large
number of drugs. Table 4 shows the estimated parameters (or hyperparameters in some literature) and their standard
errors (SEs) for kriging models accompanied by designs Dfull and D047. Here, the SEs are estimated via a simulation
approach.10

In order to study drug interactions, we investigate contour plots of effect levels predicted by kriging models using designs
Dfull and D047. Figures 5 and 6 report the contour plots on pairwise drug combinations with the third drug dosage fixed
at 0 for two types of cells, respectively. Designs Dfull and D047 provide similar contour plots, which implies that kriging
models require few observations for detecting drug interactions. Two drugs are synergistic when they work cooperatively
and antagonistic when they inhibit each other. From Figures 5 and 6, when both of the pairwise drugs are at low dosages,
contours are nearly straight or slightly convex, which suggests no drug interactions or slight synergism. For the A/B and
A/C plots, their contours show more synergism as dosages increase. In addition, comparing the A/C contour plots for
both types of cells, we can find many pairwise drug combinations, which produce less than 0.1 effect level for cancer cells
but more than 0.3 effect level for normal cells. These drug combinations can lead to potential treatments that can kill
cancer cells effectively while protecting normal cells.
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FIGURE 4 Scatter plots of predicted versus observed adenosine triphosphate (ATP) levels on cancer cells using design D047

TABLE 4 Estimations of parameters (and standard errors) in kriging models

Normal cells 𝜽A 𝜽B 𝜽C 𝝈2 𝝁

Dfull 1.24(0.11) 2.00(0.04) 1.24(0.12) 0.26(0.04) 0.62(0.06)
D047 1.11(0.22) 1.89(0.26) 1.08(0.22) 0.24(0.05) 0.54(0.10)
Cancer cells 𝜽A 𝜽B 𝜽C 𝝈2 𝝁

Dfull 0.98(0.11) 1.21(0.13) 0.52(0.06) 0.12(0.04) 0.39(0.04)
D047 0.83(0.20) 1.46(0.23) 0.41(0.10) 0.16(0.04) 0.37(0.06)

For a given fixed ratio of pairwise drugs, the Loewe interaction index (I) is widely used to study pairwise drug
combinations18,19

I =
CA,r

ICX ,A
+

CB,r

ICX ,B
, (7)

where X is the reference effect level; ICX,A and ICX,B are the respective dosages of drugs A and B to achieve X effect level
when applied individually; r is the predetermined fixed ratio between drugs A and B; CA,r and CB,r are dosages of drugs A



XIAO ET AL. 243

Dfull

A

B

 0.1 

 0.2 

 0.3 

 0.4 

 0.5 

 0.6 

 0.7 
 0.8 

 0.9 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

D047

A

B

 0.2 

 0.3 

 0.4 

 0.5 

 0.6 
 0.7 

 0.8 
 0.9 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Dfull

C

B

 0.1 

 0.2 

 0.3 

 0.4 

 0.5 
 0.6 

 0.7 
 0.8 

 0.9 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

D047

C

B

 0.1 

 0.2 

 0.3 

 0.4 
 0.5 

 0.6 
 0.7 

 0.8 
 0.9 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Dfull

A

C

 0.1 

 0.2 

 0.3 

 0.4 
 0.5 

 0.6 
 0.7 

 0.8 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

D047

A

C

 0.1 

 0.2 

 0.3 

 0.4 

 0.5 
 0.6 

 0.7 
 0.8 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FIGURE 5 Contour plots of predicted adenosine triphosphate (ATP) levels via Dfull and D047 under kriging models on normal cells

and B in the drug combination with fixed ratio r to result in X effect level, respectively. Given X and r, if I = 1, there is no
interaction between drugs A and B (additive mixture); if I < 1, these two drugs work cooperatively (Loewe synergism),
and if I > 1, the two drugs inhibit each other (Loewe antagonism).
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FIGURE 6 Contour plots of predicted adenosine triphosphate (ATP) levels via Dfull and D047 under kriging models on cancer cells

On the basis of our fitted kriging models using designs Dfull and D047, we show in Table 5 the Loewe interaction indexes
(I) and their SEs at effect level X = 0.5 and fixed ratio r = 1 ∶ 1. Both designs result in similar estimates of the Loewe
interaction indexes. Design D047 has smaller number of runs and hence larger SEs, compared to Dfull. From this table,
pairwise drugs are nearly additive or slightly synergistic at effect level X = 0.5, which is consistent with the contour plots
in Figures 5 and 6.
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TABLE 5 Loewe interaction indexes (and standard errors)
based on fitted kriging models

Normal Cells A/B A/C B/C
Dfull 0.964(0.015) 0.946(0.022) 1.010(0.013)
D047 0.986(0.066) 0.973(0.072) 1.031(0.068)
Cancer Cells A/B A/C B/C
Dfull 0.977(0.012) 0.997(0.009) 0.995(0.014)
D047 1.008(0.078) 0.965(0.037) 1.051(0.089)

4 CONCLUSIONS AND DISCUSSIONS

In drug combination analyses, an accurate response surface model can not only provide desirable drug combinations, but
also help characterizing their pathological mechanisms. In this paper, we have compared four types of response surface
models along with four possible designs in analyzing a drug combination experiment.6 We find that kriging models need
the least number of runs and give the most accurate predictions. The 27-run design D047 is sufficient for fitting kriging
models in this study. The choice of designs is not unique. For example, choosing a 27-run full factorial design with dosage
orders 0, 5, and 7 provides similar results.

When fitting kriging models in this study, if we assume 𝜏 as a parameter to be estimated, its MLE is essentially (nearly)
0 up to some rounding error. However, we should not use 𝜏 = 0 here for two reasons. First, when designs Dfull and RD80
are used, 𝜏 = 0 will lead to nearly singular covariance matrices and cause problems in model estimation, as the data
points are too close to each other. Second, the kriging model with 𝜏 = 0 will give zero response variance at all observed
data points, which is not an appropriate assumption for drug combination experiments where experiment errors exist.

Due to the complexity of underlying biological systems, a systematic quantification of effects for multiple drugs is
challenging, and thus, various models should be explored for such experiments. In such situations, space-filling designs
are ideal due to their robustness.20-24 Maximin distance designs are ideal for kriging models, as any unobserved point will
not be too far from observed design points and thus the prediction error will not be too big. An interesting topic for the
future research is how space-filling designs, especially maximin distance designs, perform under kriging models in drug
combination studies.
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