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SUMMARY

Maximin distance Latin hypercube designs are widely used in computer experiments, yet their
construction is challenging. Based on number theory and finite fields, we propose three algebraic
methods to construct maximin distance Latin squares as special Latin hypercube designs. We
develop lower bounds on their minimum distances. The resulting Latin squares and related Latin
hypercube designs have larger minimum distances than existing ones, and are especially appealing
for high-dimensional applications.

Some key words: Computer experiment; Costas array; Cyclic design; Maximin distance design; Space-filling design.

1. INTRODUCTION

Computer experiments are increasingly being used to investigate complex systems (Santner
etal., 2013; Fang et al., 2006; Morris & Moore, 2015). The most suitable designs for such exper-
iments are space-filling Latin hypercube designs (Lin & Tang, 2015). Several criteria have been
proposed to measure space-filling, including discrepancy criteria via reproducing kernel Hilbert
spaces (Hickernell, 1998) and maximin and minimax distance criteria (Johnson et al., 1990). In
this paper, we adopt the maximin distance criterion, which maximizes the minimum distance
between design points. This criterion optimizes the worst case, thus generating robust space-
filling designs. Johnson et al. (1990) showed that maximin distance designs are asymptotically
optimal under a Bayesian setting. Morris & Mitchell (1995), Joseph & Hung (2008), Ba et al.
(2015) and many others proposed algorithms to construct maximin Latin hypercube designs;
see Lin & Tang (2015) for a summary. To the best of our knowledge, the R package SLHD by
Baetal. (2015) implements the most efficient current algorithm. Zhou & Xu (2015) proposed to
construct maximin Latin hypercube designs via good lattice point sets.

Morris (1991) and Kleijnen (1997) gave many computer models involving several hundred
factors, which may require run-economic designs. Under such a situation, it is not unreasonable
to assume effect sparsity, that is, relatively few active factors. Loeppky et al. (2009) provided
an informal rule of thumb that the number of runs for a computer experiment should be around
ten times the input dimension, but also suggested that, under effect sparsity, the run size should
be around ten times the effective dimension, given good a priori knowledge on the number of
active factors. In order to identify active factors from a large number of factors with limited
budgets or runs, saturated or even supersaturated Latin hypercube designs are useful; see, for
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Fig. 1. (a) Difference triangle and (b) cyclic Latin square from Costas array (6,4, 5, 1,3,2); (c) difference triangle
and (d) cyclic Latin square from vector (0, 6,4, 5,1, 3,2).

example, Butler (2001, 2007). Yet, the construction of such maximin Latin hypercube designs is
challenging.

An n x n Latin square is a supersaturated Latin hypercube design where each row and each
column is a permutation of n levels. We propose three algebraic methods for constructing n x n
maximin Latin squares, where n = ¢q,q — 1 or ¢ — 2 and ¢ is a prime or a prime power. We
study their properties and derive lower bounds on their minimum distances. The generated Latin
squares and related saturated n x (n — 1) Latin hypercube designs have larger minimum distances
than existing ones. Our methods are associated with Costas arrays, which are introduced next.

2. COSTAS ARRAYS AND THE WELCH METHOD

Costas arrays are widely used in radar and sonar applications due to their ideal autocorrelation
properties (Costas, 1984; Drakakis, 2006). A Costas array of order n can be represented geo-
metrically by allocating » points on an n x n checker-board, such that each row and column has
only one point and all of the n(n — 1)/2 displacement vectors between each pair of points are
distinct. Costas arrays can be represented algebraically as permutation vectors, which are used
in this paper.

DermniTiON 1 (Difference triangle). For any vector a = (ay, .. .,ay), the difference triangle
T(a)is (tij), wheretij = ajyj—ajfori=1,...,n—landj=1,...,n—1.
DEerINITION 2 (Costas array). Let a = (ay,...,a,) be a permutation of 1,...,n. Then a is a

Costas array of order n if and only if no row in the difference triangle T (a) contains a repeated
value.

Figure 1(a) shows the difference triangle, 7 (a), for a permutation vector a = (6,4, 5,1, 3,2).
All elements in each row of 7 (a) are distinct, so a is a Costas array.

An n x k Latin hypercube design is an # x k matrix where each column is a permutation of
n equally-spaced levels, which are denoted by n consecutive numbers, say, 1 tor or 0 ton — 1.
The minimum distance of a design D, denoted by dpin (D), is the minimum distance between
any two distinct rows. In this paper we consider Li-distance, also known as the rectangular or
Manhattan distance. For any n x k Latin hypercube design, the average row pairwise L1-distance
is (n + 1)k/3 (Zhou & Xu, 2015). The minimum distance cannot exceed the integer part of the
average; thus we have the following upper bound.
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LEMMA 1. For any n x k Latin hypercube design D, din (D) < dupper = [(n+ 1)k /3], where
|x]| is the integer part of x.

Let p be a prime throughout the paper. In Galois field F,, a number « is a primitive root
modulo p if and only if for every nonzero element i in [, there exists an integer k such that
of =i mod p. In other words, if « is a primitive root modulo p, the vector («, o, .o h
mod pisapermutationofl,...,p—1. The Welch—Costas array is defined as follows; see Golomb

(1984) and Drakakis (2006).

DEerFmiTION 3 (Welch—Costas array). Let « be a primitive root modulo p. Fori = 1,...,p—1,
let aj = o'~'7¢ mod p where c is an integer and 1 < ¢ < p — 1. The permutation vector
a=(ay,...,ap_1) is a Costas array of order p — 1.

From a Welch—Costas array of order p — 1, we can generate a (p — 1) x (p — 1) cyclic Latin
square by right shifting the vector p — 2 times. We can also generate a p x p cyclic Latin square
by augmenting the vector with an additional element 0.

Example 1. For p = 7, the Welch—Costas array with primitive root « = 3 and parameter
c=3isa=(6,4,5,1,3,2). Figure 1(b) shows the 6 x 6 cyclic Latin square generated by a. Its
minimum distance is 12. To construct a 7 x 7 Latin square, we use a, = (0, a) as the generator
which is the first row of the cyclic design. Figures 1(c¢) and (d) show the difference triangle 7 (a,)
and the Latin square, respectively. Its minimum distance is 18.

LEMMA 2. For any n X n cyclic Latin square D with generator a, there are at most |n/2 |
distinct pairwise Li-distances, and its ith (i = 1,..., |n/2]) possible distance is the sum of the
absolute values of all elements in the ith and (n — i)th row of the difference triangle T (a).

As an illustration, the 6 x 6 cyclic design in Fig. 1(b) has three possible distances: 14, 12 and
18 which are calculated via the (1st, 5th), (2nd, 4th) and (3rd, 3rd) rows of 7 (a) in Fig. 1(a),
respectively. With Lemma 2, for an n x n cyclic design, it requires only O(n?) operations to
determine the minimum distance, while for a general n x n design, it requires O(n>) operations.

ProposITION 1. All possible (p — 1) x (p — 1) cyclic Latin squares via generators of Welch—
Costas arrays with order p — 1 are equivalent under row and column permutations.

From the proof of Proposition 1, we can see that all such cyclic Latin squares are equivalent to
the leave-one-out good lattice point designs in Zhou & Xu (2015). Thus, the minimum distance
of all such designs is (p?> — 1)/4 by Theorem 4 and Proposition 2 in Zhou & Xu (2015).

The (p — 1) x (p — 1) Welch designs have bad two-dimensional projections. For example,
the points of the Welch design in Fig. 1(b) lie on the diagonal when projected onto the first and
fourth columns. Here we propose a simple modification: replace p — 1 with 0 when constructing
(»—1) x (p— 1) Welch designs. The modified Welch designs not only have improved projections
and column correlations, but also have larger minimum distances when p > 7, though forp = 5
and p = 7, they have smaller minimum distances. See § 5 for details.

Comparing Figs. 1(a) and (c), 7 (as) is equivalent to 7 (a) adding the Costas array
(6,4,5,1,3,2) as the first column. Even if a is a Costas array, a, = (0,a) may or may not
be one.

LEmMA 3. Let a, = (0,a). The difference triangle T (a) is equivalent to T (a) adding the
vector a as the first column.
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THEOREM 1. Let p > 5 be any prime and a be any Welch—Costas array of order p — 1. The
p X p cyclic Latin square D with generator a, = (0, a) has dpin (D) > (p2 +7)/8+ 2.

This bound is very conservative and in practice the results are much better. If « is a primitive
root modulo p, 8 = @~ mod p is another primitive root modulo p. The number of different
primitive roots modulo p can be calculated by the Euler’s totient function ¢ (p — 1), which counts
the number of integers up to p — 1 that are coprime top — 1; ¢p(n) = n Ht|n(1 — 1/¢t), where the
product is over all distinct prime numbers ¢ dividing ».

Example 2. For p = 7, the primitive roots are 3 and 5. From either primitive root, we can
construct six Welch—Costas arrays with order 6, and then construct six 7 x 7 Latin squares. Five
designs have dpin = 16 and one design has dpi, = 18. The lower bound in Theorem 1 is 9 and
the upper bound in Lemma 1 is 18. The best design from our construction achieves the upper
bound, and the worst designs have much larger minimum distance than the lower bound.

PROPOSITION 2. Let o be a primitive root modulo p and B = a«~' mod p. Let a and b be

two Welch—Costas arrays with primitive roots a and B, and parameters c1 and c;, respectively.
Whenci +c; =1 mod (p — 1), the p X p cyclic Latin squares with generators a, = (0, a) and
by = (0, b) have the same distance distribution.

As an illustration, when p = 13, using two Welch—Costas arrays with « = 2, ¢; = 8 and
B =17, cy =5, we can generate two 13 x 13 designs with the same distance distribution and
minimum distance of 56. Proposition 2 shows that it is equivalent to use primitive root « and
B = a~' mod p in the construction. Thus, in all we only need to compare ¢ (p — 1)(p — 1)/2
possible designs.

3. GILBERT METHOD

The Gilbert construction was proposed by Gilbert (1965) and called the logarithmic Welch
construction by Costas (1984). Gilbert (1965) used these arrays to construct Latin squares without
repeated diagrams. Our purpose and use of these arrays are different from his.

DErINITION 4 (Gilbert—Costas array). Let 8 be a primitive root modulo p. Fori = 1,...,p—1,
let b; = logﬂ(i) +1—c mod (p — 1), wherec=1,...,p— 1, if b = 0set by = p — 1. The
permutation vector b = (by,...,b,_1) is a Costas array of order p — 1.

Gilbert—Costas arrays are inverse permutations of Welch—Costas arrays. As any permuta-
tion is a bijection, if {/(1),...,f(n)} is a permutation of {1, ..., n}, its inverse permutation is

U1, T

Example 3. For p = 7, with primitive root 3 and parameter ¢ = 1, the corresponding Welch—
Costas array is a = (3,2,6,4,5,1) and the Gilbert—Costas array is b = (6,2, 1,4,5,3). It is
clear that b is the inverse permutation of a. The 6 x 6 cyclic Latin square with generator b is an
equal distance design with all pairwise distances equal to 14. The 7 x 7 cyclic Latin square with
generator b, = (0, b) has dpin, = 14.

THEOREM 2. Let p > 5 be a prime and b be a Gilbert—Costas array of order p — 1. The
(» — 1) x (p — 1) cyclic Latin square D with generator b has dmin (D) = (p — 1)(p + 3)/8 when
p=1 mod 4, and dyin(D) > (p + 1)>/8 when p =3 mod 4.
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This lower bound in Theorem 2 is tight for p = 5 or 7. For example, the 6 x 6 design with
generator b = (5, 1,6, 3,4,2), a Gilbert—Costas array with primitive root 3 and parameter ¢ = 2,
has dpjn, = 8 which equals the lower bound.

PROPOSITION 3. Let a and b be two Gilbert—Costas arrays with primitive roots « and B, and
parameters c| and ¢y, respectively. The (p — 1) x (p — 1) cyclic Latin squares with generators
a and b have the same distance distribution under either of the following conditions: (i) ¢ = B

andcy —c;=(@p—1)/2 mod (p—l);(ii),B:oF1 mod pandci +c; =1 mod (p — 1).

By Proposition 3, there are at most ¢ (p — 1) (p — 1) /4 designs with different minimum distances
via the Gilbert construction. For example, when p = 7, the generated cyclic designs via primitive
root 3 and parameters 1, 2, 3, 4, 5 and 6 have the same distance distribution as the designs via
primitive root 5 and parameters 6, 5, 4, 3, 2 and 1, and their minimum distances are 14, 8, 12, 14,
8 and 12, respectively.

THEOREM 3. Let p > 5 be a prime and b be a Gilbert—Costas array of order p — 1. The p X p
cyclic Latin square D with generator b, = (0, b) has dpyin(D) > (p2 + 7)/4.

This lower bound in Theorem 3 is roughly 75% of dypper in Lemma 1 for large p, which nearly
doubles the lower bound in Theorem 1.

PROPOSITION 4. Let b be any Gilbert—Costas array of order p— 1 via primitive root B modulo p.
All possible p x p cyclic Latin squares with generators b, = (0, b) are equivalent under row and
column permutations.

By Proposition 4, the p x p cyclic Latin squares generated via Gilbert—Costas arrays do not
depend on parameter c. Thus, in all we have ¢ (p — 1) possible designs.

4. GOLOMB METHOD

Let g = p™ be a prime power and consider the Galois field ;. If m = 1, elements and primitive
roots are integers in IF,. If m > 2, the elements and primitive roots in IF, are polynomials. If & is
a primitive root, o V'=1and (@,0?,...,a9 V) isa permutation vector of nonzero elements in
IF,. There are ¢(g — 1) primitive roots in IF,. Golomb (1984) constructed the following Costas
arrays.

DEFINITION 5 (Golomb—Costas array). Let « and B be two primitive roots in Fg where g = p™.
Fori,j=1,...,q—2,letg; =jifa'+p = linF,. The permutation vector g = (g1, ...,84-2)
is a Costas array of order g — 2.

The two primitive roots « and 8 are not necessarily different. By switching o and 8, we obtain
another Golomb—Costas array, which is the inverse permutation.

THEOREM 4. Let ¢ = p™ > 7 be a prime power and g be a Golomb—Costas array of order
q—2.The (g —2) x (¢ —2) cyclic Latin square D with generator g has dupin(D) > ¢*/8 for even
q and dpin (D) > (q2 —1)/8 for odd q.

THEOREM 5. Let ¢ = p™ > 7 be a prime power and g be a Golomb—Costas array of order
q—2.The (¢ — 1) x (¢ — 1) cyclic Latin square D with generator g, = (0,g) has dmin(D) >
(g — 1)(qg —3)/4 + 2 for odd q and diin(D) > (q — 2)* /4 + 3 for even q.
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PROPOSITION 5. Given the same primitive root 8 and possible different a in Fy, all (g — 1) x
(g — 1) cyclic Latin squares with generators g, = (0,2) are equivalent under row and column
permutations.

The lower bounds of dp,i, in Theorems 4 and 5 are roughly 37-5% and 75% of the upper bound
dypper in Lemma 1 for large p, respectively. These bounds are conservative and in practice the
minimum distances of Golomb designs are much larger.

Example 4. Let ¢ = 2* = 16 and set the irreducible polynomial as x* + x + 1 over Fy. Set
primitive roots @« = B = x. Fori = 1,..., 14, solving equations x’ +x = 1 in Fy4, we find
solution pairs (Z,7) which are (1,4), (2, 8), (3, 14), (6,13), (11, 12), (7,9) and (5, 10) where i and
j are interchangeable in the solution pairs since « = f. By Definition 5, this Golomb—Costas
array is g = (4,8,14,1,10,13,9,2,7,5,12,11,6,3). The 14 x 14 Latin square with generator
g has minimum distance of 62, and a ratio (dmin/dupper) 0f 89%. This is much better than the
lower bound in Theorem 4 which is 32. The 15 x 15 Latin square with generator g, = (0, g) has
minimum distance of 70 and a ratio (dmin/dupper) of 88%, where the lower bound in Theorem 5
is 58.

Setting m = 1, the Golomb method can efficiently generate (p—2) x (p—2) and (p—1) x (p—1)
maximin designs. In generating (p — 1) x (p — 1) designs, this lower bound in Theorem 5 nearly
doubles the lower bound in Theorem 2 where the Gilbert method is used.

Example 5. For p = 13, there are four primitive roots 2, 6, 7 and 11, and thus in all 16
possible Golomb—Costas arrays g. With generators g, we can construct four 11 x 11 designs with
dmin = 38 and twelve designs with dp,;, = 40. By Proposition 5, with generators g, = (0, g2),
we can fix ¢ = 2 and there are four possible 12 x 12 designs whose dpi, are 38, 40, 42 and 48,
respectively. As a comparison, the best 12 x 12 Gilbert design has dyi, = 46.

5. RESULTS AND COMPARISONS

In this section, we compare our three methods with the R package SLHD by Ba et al. (2015)
and the good lattice point method by Zhou & Xu (2015). The following lemma is straightforward.

LEmMMA 4. Let D be a Latin square with levels 1 to n and D' be the (n+ 1) x n design obtained
by adding a row of zeros to D. Then duin(D') = dmin (D).

With Lemma 4, we generate p x (p — 1) Latin hypercube designs by adding a row of zeros to
our (p — 1) x (p — 1) Latin squares from the Welch, Gilbert or Golomb method. Table 1 compares
p X (p — 1) Latin hypercube designs constructed via different methods. The p x (p — 1) Welch
designs are equivalent to good lattice point designs whereas the modified Welch designs have
larger minimum distances than good lattice point designs when p > 7. For the modified Welch
designs we add a row of (p — 1)s to the (p — 1) x (p — 1) Latin squares whose levels are from
0 to p — 2. The Gilbert and Golomb designs outperform good lattice point designs for all cases
and outperform linearly permuted good lattice point designs for most cases. For the R package
SLHD, we run the command maximinSLHD with option # = 1 and default settings for 100 times,
and choose the best results. The best of the Gilbert and Golomb methods are comparable to the
R package SLHD, especially for large p. All of our three methods are much faster than the R
package SLHD. For example, it takes about an hour for the 97 x 96 case using the R package



Maximin distance Latin squares 461

Table 1. Comparison of minimum Li-distances for p x (p — 1) Latin hypercube designs

p mWel Gil Gol GLP LGLP SLHD p mWel Gil Gol GLP LGLP SLHD
7 10 14 14 12 13 15 47 596 672 668 552 676 672
11 32 34 34 30 34 37 53 752 848 856 702 846 857
13 52 46 48 42 54 50 59 926 1056 1050 870 1050 1067
17 82 86 80 72 84 87 61 988 1134 1130 930 1132 1135
19 104 102 106 90 106 108 67 1186 1372 1378 1122 1362 1370
23 152 154 158 132 154 159 71 1328 1518 1538 1260 1516 1541
29 236 250 244 210 250 253 73 1402 1632 1634 1332 1596 1628
31 268 276 292 240 280 289 79 1636 1888 1898 1560 1872 1919
37 376 408 404 342 408 411 83 1802 2122 2112 1722 2090 2120

41 458 512 498 420 508 510 89 2066 2442 2456 1980 2382 2435
43 502 558 542 462 562 562 97 2446 2902 2872 2352 2886 2898

mWel, modified Welch method; Gil, Gilbert method; Gol, Golomb method; GLP, good lattice point method; LGLP,
linearly permuted good lattice point method; SLHD, R package SLHD.

100 —

95

90

85

Ratio percentage

80

75 4

70

0 100 200 300 400
p

Fig.2. Ratio percentages for (p — 1) x (p — 1) Latin squares generated by Gilbert method (solid), Golomb method
(dashed), simplified Gilbert method (dotted), and simplified Golomb method (dot-dash).

SLHD on a laptop with an Intel 2-50GHz 17 CPU, while our algebraic methods take only a
few seconds. The minimum distances of our designs can be further improved in some cases by
permuting levels as Zhou & Xu (2015) did. We do not pursue this here.

The Gilbert method outperforms the Welch method and the R package SLHD for constructing
p x p Latin hypercube designs when p > 29, and the Golomb method outperforms the R pack-
age SLHD in most cases for constructing (p — 2) x (p — 2) Latin hypercube designs; see the
Supplementary Material.

Our algebraic construction methods are suitable for constructing high-dimensional designs.
As p gets larger, the Gilbert and Golomb methods tend to produce better designs in the sense
that the ratios of din /dypper become higher as shown in Fig. 2, where dypper is the upper bound
given in Lemma 1. Here we further introduce two simplified methods which avoid searching
primitive roots and parameters. The simplified Gilbert method uses the smallest primitive root
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and parameter ¢ = 1. The simplified Golomb method uses the smallest primitive root as o and
the second smallest primitive root as 8. Figure 2 shows that all of our methods perform well
when p is large. The simplified Golomb method is better than the simplified Gilbert method, and
the ratios of dpin/dupper are near or above 90% when p > 100 for the former method. It would
be interesting to find the explicit forms of dy,j, for the Gilbert and Golomb methods or to study
their asymptotical properties.

From a Latin square, we can generate many Latin hypercube designs by deleting one or more
columns. Deleting one column from an n x n Latin square reduces the minimum distance by at
most n — 1. If we start with an n x n design with large dpin/dupper ratio, we can drop a small
number of columns which will lead to good designs with large minimum distances. To drop a
comparatively large number of columns, one can adopt a searching scheme such as threshold
accepting, which has been thoroughly discussed in Fang et al. (2006).

Based on the Welch, Gilbert and Golomb constructions, there are some secondary constructions
of Costas arrays with orders of p, p — 2, p — 3, p", p" — 1, p™ — 3, p™ — 4 and p"* — 5; see
Beard (2006) and Drakakis et al. (2011). As a generalization of our methods, we can also use
these Costas arrays to construct cyclic Latin squares. It is straightforward to extend all theoretical
results in this paper using the L,-distance.
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes tables comparing the Welch,
Gilbert and Golomb methods and the R package SLHD in generating p x p and (p —2) X (p — 2)
Latin hypercube designs, and proofs of Theorems 2 and 4 and Propositions 3, 4 and 5.

APPENDIX

Proof of Lemma 2. Denotex; = (ai,...,a,) andx; = (@,_i12, .., An, A1, . .- An_isy) for2 <i < n. Let
ay = a, for convenience. For any i < j, x; is obtained from x; by applying k = j — i steps of right-cyclic
shift, and their L,-distance is Z:’Zl | @(itk) mod » — a; | Which is denoted as d, here. Further, d,_; = Z:’Zl |

n n . .
Aipn—t) modn — @i |= Dy | @iy moan — @i |= D iy | @Gy moa n — @i |= di. Thus, all pairwise L;-
distances can be categorized into |n/2] groups which are represented by the L,-distances between its 1st
row and its 2nd, .. ., (|n/2] + 1)th row. Furthermore, dy = Y | | d+k) mod » — @i |= Z::lk | Gipr — a; |
—k k —k k
+er‘l:n—k+1 | Aivk—n — i |= Z;’:I | Aiy — aQ; | +Zf:1 | aj — Ap—f+j |= Zz"’:l | tk,i | +Z]‘:1 | [nfk,j |;
where #;; is the jth element in the kth row of the difference triangle 7 (a). This completes the proof. [

Proof of Proposition 1. Let D, be the (p — 1) x (p — 1) generated design using the Welch—Costas
array with primitive root o and parameter c. Denote the (ith, jth) element in design D, . where ¢ & 0
as x;;, and in design Dy as y;;. Letj/ = j+ ¢ mod (p — 1) and if j/ = 0 setj/ = p — 1. We have
Xij = X1jit] mod (1) = &/ md =D mod p = ¢/~ md =D mod p = y,,. Thus, any D, where
¢ * 0 is equivalent to D, under column permutations. Without loss of generality, let ¢ = 0 in the
following proof. For any two different primitive roots « and B, there exists a unique integer ¢ which is
coprime to p — 1, such that 8 = @’ mod p. Denote the (ith, jth) element in design Dy as z;;. Let i’ = i
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mod (p — 1) and /' = f mod (p — 1). Then ' — i’ = t(j — i) mod (p — 1) and /'~ = BI0~) = o~
mod p. This leads to zy 7 = y;;. Thus, D, and Dg are equivalent under row and column permutations.
This completes the proof. O

Proof of Theorem 1. With Lemmas 2 and 3 and the Costas property of 7 (a) that there are no repeated
values in any row of the difference triangle, for the p x p generated design, the lower bound of the pairwise
distances can only occur between the 1st and {(p + 1)/2}th row under the following situations.

(1) Whenp = 4k+1andk > 2, the lower bound occurs when the (2k)th row of 7 (a) consists of numbers:
—1,1,...,—k, k, the 2k + 1)th row of 7 (a) consists of numbers: —1,1,...,—(k—1),(k —1),—k or k,
and the two elements added at the first position are 1 and 2. Under such a situation, by Lemma 2, d,,;, (D) >
4x {1+ +k—-D}+3k+14+2=2k>+k+3 = (p*+7)/8 + 2. The bound also holds for p = 5.

(i) When p = 4k + 3 and k& > 1, the lower bound occurs when the (2k + 1)th row of 7 (a) consists of

numbers: —1,1,...,—(k+1) or (k+1), the 2k +2)throw of 7T (a) consists of numbers: —1,1,..., —k, k,
and the two elements added at the first position are 1 and 2. Under such a situation, by Lemma 2, d,;, (D) >
Ax A+ +h+G(+D+14+2=202+3k+4=@p*+7)/8+2. O

Proof of Proposition 2. Denote two Welch—Costas arrays as a and b where a; = o/™1~! mod p and
by=p"2"" modp.Given =o' modpandci+c; =1 mod (p — 1), =a7 2" =72 =
ar7ta=l =g, ; mod p. Thus, b is the inverse reflection of a. When only considering absolute values
and ignoring the order, elements are the same for every uth (u = 1,...,p — 2) row of difference triangles
T (a) and 7 (b). Define a, = (0,a) and b, = (0, b). With Lemma 3, for 7 (a,) and 7 (b,), the sum of the
first element of the uth (u = 1,..., (p — 1)/2) and (p — u)th rows are the same. Further, by Lemma 2 the
p X p designs with generators of a, and b, have the same distance distribution. |

Proof of Theorem 3. We first prove a claim that in the difference triangle 7 (), if number v exists in
the uth row, 2 < u < (p — 1)/2, then number —v cannot exist in the (p — u)th row. Suppose otherwise,
by Definitions 1 and 4, there exist integers i and j where | < i,j < p— 1,1 <i+4+u < p-—1,
l<j+p—u<p—Tlandl <| v |< p— 1, such that log, (i) — logg(i + u) = v mod (p — 1) and
log,(j) —logg(j +p —u) = —v mod (p —1). Then, we have i = (i + u)f” mod pandj+p —u=jp"
mod p- This leads to ij8" = (i + u)(j — u) " mod p. Since 8* £ 0 mod p, we have ij = (i + u)(j — u)
mod poru(j —i—u) =0 mod p. Sinceu £ 0 mod p, wehavej =u+i mod p.Since ] <j<p—1
and1 <i4+u<p—1,wehavej=u+iButforl <j+p—-—u<p—1,wehavel <i+p<p—-1
which is a contradiction to 1 < i < p — 1. Thus, our claim is proved.

With Definition 2, Lemma 3 and the proved claim above, ignoring the first column of 7 (b,.), for any
u=2,...,(p —1)/2, considering the absolute values of elements in the uth and (p — u)th row of 7 (b,.)
together, no value can appear more than twice. Since  is a primitive root modulo p, #~/2 = p—1 mod p
andlogz(p—1) = (p—1)/2. Thenp —u = (p — )u mod p and logz(p —u) = logs(p — 1) + logs(u) =
(p—1)/2+logg(u) mod (p—1). Thisimplies b, , = b,+(p—1)/2 mod (p—1). Therefore, with Lemma
2, the lower bound is dpin (D) = 2 x {14+ (P —=3)/2}+(@—-D/24+1+1+ @ —1/2 = @p*+7)/4
When considering # = 1, by Definition 2 and Lemma 2, it is straightforward that the above lower bound
stands. |

Proof of Theorem 5. First we prove a claim that for Golomb—Costas array g = (gy,...g,—») where
g = p" with primitive roots @ and 8, in the difference triangle 7 (g), if number v exists in the uth row where
2 < u < (¢ — 1)/2, then number —v cannot exist in the (¢ — 1 —u)th row. Suppose otherwise, by Definition
5 there exist integers 7 and j where 1 <i,7,8,,8 < q¢—2, 1 <i+u<g—-2,1<j+q—-1-u<qg—-2
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and 1 <| v |< ¢ — 2, such that in Galois field I,

o + =1, o'+ B = B,

e o (p —a) = p" 1,
o +pY =1, o + Y =1, (B —at)y =B — 1.
el e =1, ajfuIBv + B9 =p,

InF,,if B¥ —a" + 0, we have o' = o . Since « is primitive root and given the range of i and j, we have
j=i+u.Thenj+qg—1—-u=i+q—1> q—2 contradicts with the condition 1 <j+¢qg—1—u < g—2.
InF,, if B” — " = 0, we have &' + B = 1 and o™ + B4’ = 1. Thus, we have o’ + B = 1 and
a¥(a’ + B%) = 1. Then, " = 1 and u = g — 1. This contradicts with the range 2 < u < (¢ — 1)/2. Thus,
our claim is proved. With this claim, similar to the proof of Theorem 3, we can compute the lower bound
as follows. When g is odd, dpin (D) 22 x {1 4+---+(g—3)/2}+1x2=(¢—1)(g—3)/4+2; when g
iseven, dpn(D) 22 x {14+ -+ (q—4)/2}+(q—2)/2+14+2=(q—2)*/4+3. O
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