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Abstract

Higher Order Interaction Terms

Artificial Neural Networks (ANN) have been shown to be uniquely effective for many predictive tasks,
such as image recognition and natural language processing. However, as they have become more
ubiquitous, there have been several examples of these models exhibiting anthropomorphic bias (e.g.

making predictions correlated with race or gender for unrelated tasks) due to over fitting, amplifying e Objective not compatible with SGD methods

)
and systematizing bias already inherent in training data. To address this problem, we consider a novel = * The term G(y, {z;}",, {v:}",,{z:}",) confounds data in objective (and gradient)
regularization approach for deep learning, inspired by the constrained optimization literature, that 2 . Need additive decomposition by data
directly penalizes unwanted disparities in treatment of populations proportionally to their impact on
observed bias. Using this method, we can control bias at training time, as opposed to in a pre- or post-
processing step; this results in concurrent out-of-sample improvements in both fairness and accuracy
for some data sets. Our methods fit well into existing optimization and training approaches and can be
easily generalized across network architectures and notions of fairness. We validate our methods
empirically on several real world data sets that contain implicit bias. Namely we consider the impact of _ ,
race on recidivism prediction, gender on income, and wine color on quality. . * Use higher order moment constraints
= Elo(z;)™ 2] < Om.
>
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2 * Similar to constraints in Zafar et al. (2017)

Effectively a moment matching constraints on X, and X_

Z; € {—1, —|-1}

protected label

x € X: data feature tuple

y € {—1,+1}: target label

Proposition 1. For appropriate values of A, > 0, the objective function for

an ANN trained for the classification task of interest the relaxed higher order interaction constraints can be expressed as:

w € F:

g:X x 0O — [0,1]: final activation layer of ¢

> £l u) + A= S olw)" ),

» Referred to as “disparate impact” in the literature

and the corresponding gradient signal is given by:
* Decision uncorrelated to protected class
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True-positive rate False-positive rate
* Alternatively, equalized opportunity (Hardt et al., 2016)
* Require no correlation when restricted to those “deserving”
* Can also be implemented within our framework

Remark 1. For the case of the first order term (i.e. m = 1) and binary
protected class, the resulting reqularizer is equivalent to the demographic parity
reqularizer, but with the activation function as opposed to the prediction label.

|IP’ p(x) =+1z =41,y = +1] =P [p(x;) = +1|z = =1,y = +1] ‘ <A

Remark 2. For the case of the first order term (i.e. m = 1) and binary pro-
tected class, the resulting reqularizer can be modified to encode equal opportunity
by performing a similar procedure on the constraint:

* QOur approach to approximately solve the constrained
training problem:
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e Where G is one of the fairness notions stated above
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Table 1: Results for the Adult Income dataset on a single- Table 2: Results for the Wine Quality dataset on a single-
layer network architecture layer network architecture

e Olfat & Aswani (2018) METRIC ACCURACY  AUC DP METRIC ACCURACY  AUC DP
VERSION PARAMS VERSION PARAMS
These methods were mostly developed for convex training problem with UnMop. 0.0 0.7885  0.6238 0.0489 Unmop. 0,0 0.7246  0.7268 0.2009
- : PRE 0,0 0.7149  0.6186  0.3173 PRE. 0,0 0.6333 0.6231 0.1925
small data, they do not generalize well to deep learning POST 0.0 0.7067 - 0.0465 oSt 0.0 0 6877 i 0 1651
FIRST -100, 0 0.7470 0.6226 0.0498 — 100, 0 0.7372 0.7362 0.1925
. . -1000, 0 0.7799  0.6189 0.0459 1000, 0 0.7259  0.7272  0.1979
Adversarial Deep Learning Approaches:  Pre-Processing and In Training : )
100, 1 0.7894 0.5893  0.0337 100, -1 0.7307  0.7313  0.1870
* Edwards and Storkey (2015) * Bolukbasi (2016) -100, 10 0.7824  0.5818  0.0283 100. -10 0.695 0.6884 0.1473
SECOND SECOND , : 7 : 147
* Beutel et al (2017) e Burns et al (2018) -1000, 1 0.7942 0.5925  0.0336 1000, -1 0.7296  0.7298 0.1617
+ Madras et al (2018) “1000, 10 ] 0.7819 05814 0.0292 1000,-10 | 0.6880  0.6780 0.0173

e Zhang et al (2018)

Table 4: Results for the Adult Income dataset on a two-layer

Table 3: Results for the Recidivism dataset on a single-layer :
network architecture

network architecture

. . . METRIC ACCURACY AUC DP
These methods often involve either large parameter counts or are highly METRIC | ACCURACY  AUC EO VERSION  PARAMS
model specific, our method is more general and requires fewer parameters VROION  mARAWS U 0.0 07318 06190 0.0478
’ UNMOD. 0, 0 0.6761  0.6758 0.3073 NMOP- P, ' ' '
P . . 2
PRE 0,0 05476 0.5486 0.0471 R 0 0ol Tse el
POST 0,0 0.5057 — 0.0001 ’ ' '
-100, 0 0.7769  0.6176  0.0440
— 100, 0 0.6705  0.6706  0.2994 FIRST -1000, 0 0.7571  0.6190  0.0407
1000, 0 0.6761  0.6756 0.3056
: : : : -100, 1 0.7849  0.5870  0.0308
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SECOND - : : 1747 -1000, 1 0.7076  0.6086  0.0343
1000, -1 0.6723  0.6722  0.3001 -1000,10 | 0.7567  0.6070  0.0383
1000, -10 | 0.6089  0.6122 0.1071

Table 6: Results for the Recidivism dataset on a single-layer
network architecture

* Consider the optimization problem:
mn

Table 5: Results for the Wine Quality dataset on a single-
layer network architecture

Hll.gl__ E(gp(xz), yz) METRIC ACCURACY AUC EO
pe 1 METRIC ACCURACY AUC DP VERSION PARAMS
VERSION PARAMS
n n n UNMOD. 0.0 0.6667  0.6664 0.2733
s.it. Glo,{x;i i1 4yt {zite,) <A UNMOD. 0, 0 0.7100  0.7160 0.1266 — — T o sere o oi
* Need to reformulate to fit SGD ECR)ET 8’ 8 8'213% 00820 8'(1)(5)3(2) PosT 0.0 0.0149 — 08D
* General method: relax constraint to form regularization 000 300 0735 01181 First 000 0| 00138 00730 10200
. . FIRST ’ ‘ ’ ’ : ' : :
. : 1000.0 | 0.7200  0.7239  0.1027
Lagrangian relaxation 100, -1 0.6714  0.6713 0.2918
n 100, 1 0.7162  0.7173  0.0891 secony  100.-10 | 05928 0.5961 0.1084
. 100.10 | 0.7085  0.6605 0.0068 1000,-1 | 0.6676  0.6678 0.2690
min L(o(xi),y:) + MG, {x; i {yi b, {zibiey) — Q) SECOND 1000, 1 | 0.7177  0.7212  0.1161 1000,-10 |  0.6013  0.6042  0.1503
pEF L= = = = 1000, 10 | 0.7031  0.6549  0.0906
1=

Simlar to I-2 and |-1 regularization that can be viewed as Lagrangian relaxations
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