
Eur. Phys. J. Spec. Top. (2021) 230:2253–2263
https://doi.org/10.1140/epjs/s11734-021-00204-y

THE EUROPEAN
PHYSICAL JOURNAL
SPECIAL TOPICS

Regular Article

Statistical Analysis of Complex Computer Models in
Astronomy
Joshua Lukemire1, Qian Xiao2, Abhyuday Mandal2,a, and Weng Kee Wong3

1 Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA
2 Department of Statistics, University of Georgia, Athens, GA, USA
3 Department of Biostatistics, University of California, Los Angeles, CA, USA

Received 12 February 2021 / Accepted 22 June 2021 / Published online 9 August 2021
© The Author(s), under exclusive licence to EDP Sciences, Springer-Verlag GmbH Germany, part of
Springer Nature 2021

Abstract We introduce statistical techniques required to handle complex computer models with poten-
tial applications to astronomy. Computer experiments play a critical role in almost all fields of scientific
research and engineering. These computer experiments, or simulators, are often computationally expensive,
leading to the use of emulators for rapidly approximating the outcome of the experiment. Gaussian process
models, also known as Kriging, are the most common choice of emulator. While emulators offer significant
improvements in computation over computer simulators, they require a selection of inputs along with the
corresponding outputs of the computer experiment to function well. Thus, it is important to select inputs
judiciously for the full computer simulation to construct an accurate emulator. Space-filling designs are
efficient when the general response surface of the outcome is unknown, and thus they are a popular choice
when selecting simulator inputs for building an emulator. In this tutorial we discuss how to construct these
space filling designs, perform the subsequent fitting of the Gaussian process surrogates, and briefly indicate
their potential applications to astronomy research.

1 Introduction

Computer experiments, or simulators, are an increas-
ingly important tool in many scientific fields. In these
experiments, a computer model is defined relating a set
of inputs to an output. Instead of conducting a tra-
ditional experiment, a researcher will provide a set of
inputs to the computer model and obtain the model
output. This approach is very appealing in fields such
as physics, where the computer experiment model can
be setup using a series of known relationships/equations
and different inputs may consist of unknown constants
in those equations or other properties such as mass
or chemical compositions. These experiments can be
effective alternatives to experiments which may be too
expensive or otherwise impossible to perform in a tra-
ditional setting. They differ from standard experiments
in several key ways. Most importantly, computer exper-
iments are generally deterministic; for a set of input set-
tings the experiment will return the same result every
time it is conducted. Second, the experiments will gen-
erally not have an easily described response surface;
for example a standard linear regression model will not
generally describe the outcome accurately.

Many research areas in astronomy do not easily per-
mit conducting traditional experiments. For example,
researchers may be interested in the formation of binary

a e-mail: amandal@stat.uga.edu (corresponding author)

black holes. Clearly the researchers will not be able to
create multiple black holes and observe their dynam-
ics over time. Computer experiments make it possible
to study such phenomena by creating computer mod-
els based on the theorized properties of these binary
systems and then comparing the output to what is
observed in Nature (Fig. 1). For example, Compact
Object Mergers: Population Astrophysics and Statis-
tics (COMPAS) is used to investigate binary popula-
tion synthesis. The computer experiment takes input
as initial conditions and simulates the lifespan of stars
[50] [56]. Similarly, binary population synthesis code
ComBinE has been used to perform binary population
syntheses [32], and the tool UniverseMachine [4] allows
researchers to study galaxy formation.

Computer experiments for many complex systems
can be very expensive to perform (see, for example,
[62]). This computational expense can be a significant
problem, especially if a researcher hopes to conduct
the experiment for many sets of inputs. An alterna-
tive to directly performing these computer experiments
is to instead create a surrogate or emulator [18]. Sur-
rogates are popular for computer experiments when it
is not realistic to evaluate a fine grid over the entire
input space. Instead, a (relatively) small number of
points are chosen to evaluate under the original com-
puter simulation. Then, a model is fit to the output
from these limited runs. Predictions under this model
for new inputs, as well as uncertainty quantification,

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjs/s11734-021-00204-y&domain=pdf
mailto:amandal@stat.uga.edu

2254 Eur. Phys. J. Spec. Top. (2021) 230:2253–2263

Fig. 1 An example from a simulation examining whether
two black holes merge. Source: https://www.black-holes.
org/code/SpEC.html

can be obtained from the surrogate without the need
to re-run the expensive computer simulation at the new
points. If the model fits well, then the predicted values
will be close to the true values that would have been
obtained if the full computer experiment was used.

The most common tool used to fit the data points
and create the surrogate model is the Gaussian pro-
cess (GP) [48] [18]. The GP is appealing for creating
surrogates because it interpolates known data to evalu-
ate new data points. This is especially important when
the outcome for a fixed set of inputs is determinis-
tic, which is frequently the case in computer experi-
ments. This approach is becoming more popular in the
astronomy literature. Some recent work includes [22],
who proposed using GP emulation to obtain confidence
intervals for the parameter vector of a phase-space dis-
tribution function for dwarf spheroidal galaxies.

Section 2 of this tutorial paper introduces GP mod-
els and discusses their applications to computer exper-
iments. We provide codes and examples throughout in
the R programming language [45]. Section 3 of this
paper focuses on determining what inputs to use to
generate the responses used to fit the GP model to
obtain an accurate surrogate. We draw upon the design
of experiments statistical literature to discuss design of
computer experiments. In particular we focus on Latin
hypercube designs and discuss several techniques for
finding them.

2 Surrogates for Computer Models

Simpler surrogates or emulators are often preferred for
complex deterministic computer models. GP models
are a popular choice for this purpose [48]. Consider an
n-run computer experiment with d-dimensional input
vectors xi = (xi1, . . . , xid)T and deterministic outputs
y(xi), for i = 1, 2, . . . , n. To fix ideas, assume that we
are interested in a 2-dimensional input for a computer

experiment with output given by the Branin function
as defined by [6], see also [14].

y(x1, x2) =
(

x2 − 5.1
4π2

x2
1 +

5
π

x1 − 6
)2

+10
(

1 − 1
8π

)
cos (x1) + 10, (1)

where the design space is given by values of x1 ∈
[−5, 10] and x2 ∈ [0, 15]. The R code below can be used
to evaluate this function.

x is a vector of inputs (length 2)

branin <- function(x){

a <- 1

b <- 5.1 / (4 * pi^2)

c <- 5 / pi

r <- 6

s <- 10

t <- 1 / (8 * pi)

return(a*(x[2] - b*x[1]^2 + c*x[1] -r)^2 + s*(1-t)*cos(x[1]) + s)

}

The left panel in Figure 2 displays the output for this
function over the entire design space.

2.1 Stationary Gaussian Process - Krigging

The simplest possible GP model, known as ordinary GP
or krigging, is given by

y(xi) = μ + Z(xi), (2)

where μ is the mean and Z(x) is a GP, denoted
by Z(x) ∼ GP (0, σ2R). This notation implies that
the GP has zero-mean, and the covariance function
Cov (Z(xi), Z(xj)) = σ2R(.|θ), where θ = (θ1, . . . , θd)T
is the vector of unknown correlation parameters with
all θs > 0 (s = 1, . . . , d). The correlation between out-
puts is determined by a stationary correlation function
R with parameter θ. Two of the more commonly-used
correlation functions are the power-exponential and the
Gaussian functions. Under a power-exponential corre-
lation structure the (i, j)th term is defined as:

R(xi,xj |θ) =
d∏

s=1

exp

{
− θs | xis − xjs |ps

}
for all i, j,

(3)

where smoothness parameters p1, . . . , ps are all between
0 and 2. Of special importance is ps = 2, for all
s = 1, . . . , d, which corresponds to the popular Gaus-
sian correlation function:

R(xi,xj |θ) = exp

{
−

d∑
s=1

θs(xis − xjs)2
}

for all i, j.

(4)

123

https://www.black-holes.org/code/SpEC.html
https://www.black-holes.org/code/SpEC.html

Eur. Phys. J. Spec. Top. (2021) 230:2253–2263 2255

Fig. 2 Left: the true
response under the Branin
function. Right: The
estimated response using
the surrogate model

The flexibility of the correlation structure is what
makes the GP model a popular surrogate for complex
computer models. For any given input x∗ in the design
space, the fitted GP surrogate gives the predicted com-
puter model response as,

ŷ(x∗) = μ + rT(x∗)R−1(y − μ1n), (5)

where

r(x∗) =

[
corr

(
Z(x∗), Z(x1)

)
, corr

(
Z(x∗), Z(x2)

)
,

. . . , corr
(
Z(x∗), Z(xn)

)]T

, (6)

1n is a vector of ones of length n, R is the n × n corre-
lation matrix for (Z(x1), ..., Z(xn))T, y is the response
vector (y(x1), . . . , y(xn))T, and the associated uncer-
tainty estimate is

s2(x∗) = σ2
(
1 − r(x∗)TR−1r(x∗)

)
. (7)

In practice, the parameters μ, σ2 and θ in Equations (5)
and (7) are unknown and need to be estimated from the
data. The parameters can be estimated using the mlegp
function in R. Assume that we already have a design
with 10 points (details for obtaining this design will be
presented in Section 3). Then we can fit a GP with a
Gaussian correlation function as,

library(mlegp)

Obtaining this design is discussed in Section 3

design <- matrix(c(-4.25, -1.25, 4.75, 7.75, -2.75, 1.75,

6.25, 3.25, 0.25, 9.25, 8.25, 6.75, 11.25, 12.75, 0.75,

2.25, 9.75, 5.25, 14.25, 3.75), ncol=2)

Obtain the output at the set points in our design

Yx <- apply(design, 1, branin)

Use the observed outputs to construct a surrogate

branin_surrogate_1 <- mlegp(design, Yx)

Similarly, estimates across the entire design space can
be obtained by using the surrogate model by specifying
the inputs on a grid:

Construct a grid of points to obtain predictions at

x1 <- seq(from = -5, to =10, length.out = 25)

x2 <- seq(from = 0, to =15, length.out = 25)

test_points <- expand.grid(x1, x2)

Get predictions from the gaussian process

yhat <- predict(branin_surrogate_1, test_points)

predictions <- matrix(yhat, nrow = length(x1))

plot the predictions, theta and phi control viewing angle

persp(x1, x2, predictions, theta = -45, phi=45)

The right panel in Figure 2 displays a plot of the
surrogate output. Comparing this output to the true
values in the left panel, it is clear that the surrogate
model is able to obtain a very close approximation to
the true process.
The formulation in equation (2) can be extended to
incorporate a global trend function for the mean μ [57].
This is known as Universal Kriging:

y(x) = μ(x) + Z(x), (8)

with μ(x) = g(x)Tβ =
∑m

i=1 βigi(x), where g is a m-
dimensional known function and β = (β1, . . . , βm)T is
a vector of unknown parameters. If we assume g1(x) =
1 and let G = (g1(x), . . . , gm(x))T, then the optimal
predictor under model (8) is given by

ŷ(x∗) = gT(x∗)β̂ + rT(x∗)R−1(y − Gβ̂), (9)

where β̂ = (GTR−1G)−1(GTR−1y). If the assumed
μ(x) is close to the truth, this formulation will lead to
a better prediction than ordinary krigging. Note that
this universal kriging formulation uses μ(x) to capture
the known trends, but in most real applications, these
trends are not known, and hence ordinary kriging is
commonly used [61].

123

2256 Eur. Phys. J. Spec. Top. (2021) 230:2253–2263

2.2 Non-stationarity

Note that Equation (3) refers to a stationary GP, that
is

Cov
(
Z(x + h), Z(x)

)
= σ2R(h), (10)

where the correlation function R(h) is a positive
semidefinite function with R(0) = 1 and R(−h) =
R(h). These stationary GPs are popular surrogates for
complex computer models, since it can be shown that
the corresponding predictor of μ in equation (2)

μ̂ = (1T
nR

−11n)−11T
nR

−1y (11)

is the best linear unbiased predictor (BLUP) in the
sense that it minimizes the mean squared prediction
error. In reality this assumption of stationarity may not
hold. Under these circumstances, the above predictor is
no longer optimal. Some literature is available to deal
with non-stationary GPs for emulating computation-
ally expensive functions. For example, [67] introduced
the idea of nonlinear mapping based on a parameter-
ized density function, and [20] proposed a Bayesian tree
structure by dividing the design space into subregions.

[2] used composite Gaussian process (CGP) models
to address the nonstationarity problem. In their formu-
lation, the model takes the following form:

y(x) = Zglobal (x) + Zlocal (x),

Zglobal (x) ∼ GP
(
μ, τ2R1(·)

)
,

Zlocal (x) ∼ GP
(
0, σ2R2(·)

)
. (12)

Here Zglobal (x) and Zlocal (x) are two stationary GPs
that are independent of each other. Just as the univer-
sal kriging generalizes the ordinary kriging by adding
a trend function μ(x), the composite GP model given
in equation (12) is a further extension which adds
a more flexible global trend component. The model
was extended to incorporate the non-constant variance
assumption as follows:

y(x) = Zglobal (x) + σ(x)Zlocal (x),

Zglobal (x) ∼ GP
(
μ, τ2R1(·)

)
,

Zlocal (x) ∼ GP(0, R2(·)) . (13)

The model can be further extended for noisy data by
adding a third GP (with zero correlation) to the model
(13).

2.3 Numeric Considerations - Local GP

Note that the prediction involves the inversion of the
n × n correlation matrix R, where n is the number of
data points (see equation (5) or (11), for example). This
is a big hurdle in implementing GPs. To overcome this
problem, [19] introduced the idea of local GP approx-
imation for large computer models. They provided a

family of local sequential design schemes that dynami-
cally define the support points of a GP predictor based
on a local subset of the data. Their approach is differ-
ent from that of k-nearest neighbours. The basic idea
is simple, under the standard choices of the covariance
structures the correlation between points is dependent
on the distance between those points, with data points
far from x∗ having very little effect on its prediction.
Hence it is not a good use of computational resources to
invert the full covariance matrix, as the elements cor-
responding to “far away” points will contribute little
to the prediction of y(x∗). An interested reader should
refer to [19] for the formulas of the GP predictor based
on a local subset of data. The end result is a global pre-
dictor that takes advantage of modern multicore paral-
lel computing tools.

2.4 Extension to Qualitative Inputs

The conventional GP models consider quantitative pre-
dictor variables only, but many computer experiments
may have both quantitative and qualitative inputs. In
order to construct an emulator with qualitative factors,
a naive approach would be to create distinct GP models
for data collected at the different level combinations of
the qualitative factors. Clearly this approach has many
limitations, particularly when there are several qualita-
tive factors. There are some more advanced techniques
to deal with such cases. To fix ideas, for an n-run com-
puter model, denote the kth (k = 1, . . . , n) data input
as wk = (xT

k , zT
k)T where xk = (xk1, . . . , xkp)T ∈ R

p

is the quantitative part and zk = (zk1, . . . , zkq)T ∈ N
q

is the qualitative part (coded in levels) of the input.
Note here that previously x denoted the input, which
was entirely continuous. However, now w denotes the
entire input, with x referring to the continuous part.
For these kind of problems, a popular GP based model
was introduced by [44], among many others [23], [72],
[53], [70] and [71]. Specifically, an ordinary GP model
with a multiplicative covariance function is considered
(for any two inputs w1 and w2):

Cov(Z(w1), Z(w2)) = σ2

q∏
j=1

τ (j)
z1jz2jR(x1,x2|θ), (14)

where the parameter τ
(j)
z1jz2j represents the correlation

between two levels (z1j and z2j) in the jth qualita-
tive factor z(j), and R(x1,x2|θ) is given before in
equation (4). Different choices of τ

(j)
z1jz2j lead to dif-

ferent types of correlation functions. For example,
an exchangable correlation function is obtained when
τ
(j)
z1jz2j is some constant between 0 and 1. Alternatively,

an additive GP model was proposed in [11], which
adopts the following covariance function:

Cov(Z(w1), Z(w2)) =
q∑

j=1

σ2
j τ

(j)
z1jz2jR(x1,x2|θ(j)),

(15)

123

Eur. Phys. J. Spec. Top. (2021) 230:2253–2263 2257

where σ2
j and θ(j) (j = 1, . . . , q) are the process variance

and correlation parameters, respectively, corresponding
to z(j).

The methods above do not have good physical inter-
pretation of the correlation structures. Motivated by
this, [64] proposed an EzGP method inspired from the
ANOVA (Analysis of Variance) idea to jointly model
the quantitative and qualitative inputs:

Y (w) = μ + Gz(x), (16)

which implies that for any level combination of z, Y (w)
is a GP. In particular, they considered

Gz(x) = G0(x) + Gz(1)(x) + · · · + Gz(q)(x), (17)

where G0 and Gz(h) (h = 1, . . . q) are independent
GPs with mean zero and some covariance functions.
Here, G0 is a standard GP taking only quantitative
inputs x, which can be viewed as the base GP reflect-
ing the intrinsic relation between y and x. On the other
hand, Gz(h) ’s can be viewed as an adjustment to the
base GP by the impact of the qualitative factor z(h)

(h = 1, . . . q). This EzGP technique enjoys some nice
theoretical properties and is able to flexibly address
heterogeneity in computer models involving multiple
qualitative factors. [64] also developed two variants of
the EzGP model to achieve computational efficiency for
data with high dimensionality and large sizes.

2.5 Calibration

The notion of calibration and sensitivity analysis is
important in the context of physical and computer
experiments. Instead of observing the real physical pro-
cess, yReal, we are only able to observe a process yField

as:

yField(x) = yReal(x) + ε, (18)

where ε is the usual normal error. This yReal is approxi-
mated by a computer model yModel. Note that the com-
puter model yModel not only has the input variables x,
but also some unknown parameters θ, called calibration
parameters which are used to fine tune the model. Note
that these calibration parameters can be, for example,
the correlation parameters discussed above. The field
data yField is used mainly to learn more about the real
phenomenon yReal. [30] proposed a Bayesian framework
to address this as follows:

yReal(x) = yModel(x, θ) + b(x)

yField(x) = yModel(x, θ) + b(x) + ε, (19)

where b(x) is a functional discrepancy, called bias. [30]
used Bayesian methods to estimate the bias correction
function and unknown calibration parameter θ under
a GP prior. An alternative to this Bayesian approach
is an iterative history matching algorithm such as the

one proposed by [55] for calibrating a galaxy forma-
tion model called GALFORM. This is actually a hands-
on process, which intelligently eliminates the implau-
sible points from the input (or parameter) space and
returns a set of plausible candidates for the parame-
ters θ. Recently, [5] used this algorithm for calibrat-
ing hydrological time-series models and [46] further
extended this method with a more systematic approach,
in which they discretize the target response series on a
few time points, and then iteratively apply the history
matching algorithm with respect to the discretized tar-
gets.

3 Design of Computer Experiments

The computer experiments under consideration have
deterministic outputs, and thus replicates at a given set
of input settings should be avoided, as they do not pro-
vide any further information about the response. Good
designs for computer experiments are then designs that
are “space-filling” in some sense, which make it easier
to fit accurate surrogate models. We will next discuss
a few types of space-filling designs and examine tech-
niques which can be used to construct them.

3.1 LHD: Efficient Experimental Designs

Latin hypercube designs (LHDs) are n × d matrices
whose columns are permutations of numbers 1 to n (or
0 to n − 1) [39]. They have unique point projections on
every dimension and avoid replications, making them
ideal for determining which inputs to use for computer
experiments [13]. For a given number of runs and input
size, an LHD can easily be generated in R:

Load an R library for finding LHDs

library(LHD)

Generate a Latin Hypercube design with 10 runs and 2 factors

lhd1 <- rLHD(10, 2)

While it is intuitive to favor a design that is space-
filling, in practice it is difficult to identify such designs
for experiments with different number of runs and fac-
tors. One of the more common approaches is to use
orthogonal or nearly-orthogonal LHDs (OLHDs). An
OLHD minimizes the correlations among the input set-
tings of the design [15] [52]. They can be obtained
by minimizing a correlation-based design criteria. For
example, two of the most commonly used criteria for
OLHDs are the average absolute correlation (ave(|r|))
and the maximum absolute correlation (max|r|):

ave(|r|) =
2
∑d−1

s=1

∑d
s′=s+1 |rss′ |

d(d − 1)
,

max |r| = max
s,s′

|rss′ |, (20)

123

2258 Eur. Phys. J. Spec. Top. (2021) 230:2253–2263

where rss′ is the correlation between the sth and s′th
columns of the design. If the design is a orthogonal
LHD, then ave(|r|) = 0 and max|r| = 0. For exam-
ple, to generate an OLHD in R with 8 factors and 32
runs we can write:

Obtain an orthogonal latin hypercube design

Need n_factor = r * 2^(C+1)

OLHD <- OLHD.S2010(C = 3, r = 2, type = ‘‘even’’)

The design can easily be verified to be orthogonal by
examining:

All off diagonal elements are 0
t(OLHD) %*% OLHD

However, for many combinations of run size and num-
ber of inputs an orthogonal LHD does not exist, and
thus a good design will be one with small ave(|r|) and
max|r| values. Many algebraic construction methods
have been proposed for finding OLHDs, and they can
also be found via searching algorithms using ave(|r|)
or max|r| as objective functions. Some specific results
include [69], who proposed techniques for constructing
orthogonal LHDs with run-size n = 2m or n = 2m + 1
where m is an integer. [3] proposed to rotate the 2d
factorial designs for constructing d-factor orthogonal
LHDs where d must be some power of 2 and the run-
size is n = 2d. For further examples, please refer to [7],
[49], [9], [35], [51] and [68]; see [59] for a survey.

While OLHDs are very commonly used, they are not
guaranteed to be space-filling; see design (a) in Figure 3
for an example [63]. In light of this, various design opti-
mality criteria have been developed related to measures
of space-filling.

3.1.1 Centered L2-Discrepancy Criteria

[24] defined several discrepancy–based criteria among
which the centered L2-discrepancy (CD) is the most
popular. The intuition behind the CD criteria is that a
space-filling design should have points spread out uni-
formly in the whole design space or any sub-space of
the design space. If this is the case, for any rectangular
region of the design space we examine, the number of
design points in that space should be proportional to
the volume of that space. The CD criteria is defined as,

CD(Dn)2 =
∑

v �=∅

∫

Cv

∣∣∣∣
#(Dnv , Jxv)

n
− Volume(Jxv)

∣∣∣∣
2

dx,

(21)
where Dn is the n-run, d-factor, q-level design, v is
some non empty subset of 1, 2, . . . , q, Cv is the sub-
space defined by the coordinate indexes selected by v,
Dnv

is the projection of Dn onto the subspace Cu,
xv is the projection of vector x = (x1, x2, . . . , xq) on
to the subspace Cv, Jx is the chosen rectangle space
defined by x, Jxu

is the projection of Jx onto the sub-
space defined by Cu, #(Dnu

, Jxu
) is the total number

of designs points in Dnu
within the chosen area defined

by Jxu
, and V olume(Jxu

) is the volume of Jxu
. For

more details on the rationale of the CD criteria, see the
Chapter 3 in [13] for a survey.

3.1.2 Multi-objective Criteria

Another commonly-used metric for evaluating designs’
space-filling properties is the maximin distance crite-
rion [27]. This criteria favors designs with maximum
pairwise distances between inputs. Maximin designs are
popular due to their robustness, since the design crite-
ria focuses on optimizing the worst case scenario − the
closest pairwise distance between any two points. [43]
defined a computationally efficient scalar value for eval-
uating the maximin distance criterion:

φp =

⎛
⎝ n∑

i=2

i−1∑
j=1

1
up
i,j

⎞
⎠

1
p

, (22)

where ui,j is the distance between the ith and jth design
points. Designs with smaller φp values are more space-
filling. For sufficiently large p (e.g. p > 15), the φp cri-
terion is asymptotically identical to the true maximin
distance criterion.

Due to the desirability of both the orthogonality and
maximin properties, [28] proposed a multi-objective
criterion (denoted OMmcri) to generate orthogonal-
maximin LHDs (OMm LHDs), which acts as a com-
promise between orthogonal and maximin designs. The
OMmcri criteria is given by,

OMmcri(x, ω)

= ωρ2 + (1 − ω)
(φp − φp,lowerbound)

(φp,upperbound − φp,lowerbound)
.

(23)

Here, φp is the maximin criteria value from Equa-
tion (22), ρ is the ave(|r|) criteria value as defined in
Equation (20), ω is a weight value reflecting the trade-
off between the orthogonality and maximin criteria, and
φp,lowerbound and φp,upperbound are given by,

φp,lowerbound =
{(

n

2

) (�u� − u

�u�p − u − �u�
�u�p

)} 1
p

, and

φp,upperbound =

(
n−1∑
i=1

n − i

(id)p

) 1
p

,

respectively. Here u is the average distance between the
design points and �u� and �u� are the largest integer
smaller than u and the smallest integer larger than u.

Another popular class of efficient LHDs is the orthog-
onal array based LHDs (OALHDs) by [54], where
the levels in randomized orthogonal arrays (OAs) are
expanded to form LHDs. The OALHDs have desirable
sampling and projection properties, but they are not

123

Eur. Phys. J. Spec. Top. (2021) 230:2253–2263 2259

(a) (b) (c) (d)

Fig. 3 Some examples of 9-run 2-factor LHDs

necessarily space-filling [63]; see designs (b) and (c) in
Figure 3 for some examples. [33] proposed to use a sim-
ulated annealing algorithm to search for space-filling
OALHDs, and [66] further proposed to consider both
level permutation and level expansion for generating
OALHDs. See design (d) in Figure 3 for an example.
Some algebraic construction methods are also available
for constructing maximin LHDs for certain design sizes
[65] [60].

3.1.3 Maxpro: Maximum projection designs

Space-filling LHDs, including CD and and maximin dis-
tance LHDs, focus on the design’s properties in the full
dimensional spaces. Yet, their space-filling properties
in some sub-spaces (projections) may not be adequate.
[29] proposed the maximum projection LHDs (Maxpro
LHDs) that guarantee designs have space-filling prop-
erties in all projections. The maximum projection cri-
terion is defined as

min
X

ψ(X) =

{
1(
n
2

) n−1∑
i=1

n∑
j=i+1

1∏d
s=1(xis − xjs)2

}1/d

.

(24)
Here, X is a n × d matrix where each row is an input
to the computer experiment, and the minimization is
over all pairs of rows in X. Clearly a design minimizing
ψ will have every pair of design points apart from each
other in all projections, justifying the name “Maxpro.”

3.2 Searching Algorithms for Generating Efficient
LHDs with Flexible Sizes

The metrics discussed above for evaluating designs such
as the minimax criteria provide a way of quantifying
how “good” a design is in some sense. It remains to
determine how to actually construct designs that have a
good value of the criterion, which is a challenging prob-
lem in many situations. For many such design prob-
lems, it is popular to use metaheuristic optimization
algorithms to find designs. There are many problems in
astronomy that metaheuristic optimization algorithms
are applicable to. For example, large scale clustering
problems can be approached using metaheuristic algo-

rithms [12] [26]. In recent years, these metaheuristic
algorithms have seen widespread use, see, for example,
[8], [16], [41], [40], and [42].

These algorithms are preferred due to their flexibil-
ity - in general they will work with any objective func-
tion. For a more detailed review of metaheuristic algo-
rithms for finding designs, see [37]. Here we will focus on
two of the more commonly used approaches: Simulated
Annealing (SA) and Genetic Algorithms (GA).

3.2.1 Simulated Annealing Algorithms

SA is one of the most widely used general probabilis-
tic optimization techniques [31]. The algorithm follows
the annealing process in metallurgy, in which materials
are heated to a high temperature where their proper-
ties change, and then are allowed to slowly cool. [43]
adapted the classic SA algorithm for finding maximin
distance LHDs, and the approach can easily be mod-
ified to search for other types of designs by using the
other optimality criteria defined in Section 3.1.

SA starts with a random LHD and then improves
it via an element exchange method, where two ran-
dom elements from a random column in the design are
exchanged. If this exchange results in a more efficient
design, then the change is kept. If the exchange does
not result in any improvement, the change is kept with
probability controlled by the current temperature (tun-
ing parameter). Allowing changes that do not improve
the design helps the search algorithm to escape local
optima. The SA algorithm will iteratively repeat this
exchange procedure. After a certain number of rounds,
the temperature would be annealed to decrease (cool
down) the probability of updating the current design
following the annealing schedule. We summarize a gen-
eral SA framework in Algorithm 1, where the target
function Φ to be minimized can be the optimality cri-
terion defined in (20), (21), (22), (23) and (24) for the
orthogonal, CD, maximin, OMm and Maxpro LHDs,
respectively.

In the Algorithm 1, the maximum number of itera-
tions N is recommended to be around 500 according to
the convergence analysis in [59]. The decreasing rate for
the current temperature T is another important tuning
parameter. A larger rate will make T decline faster,

123

2260 Eur. Phys. J. Spec. Top. (2021) 230:2253–2263

Algorithm 1 Simulated Annealing
1: Choose values for the tuning parameters: the starting

temperature T , the number of attempts before lower-
ing the temperature S, and the maximum number of
iterations N .

2: Set the counter index C = 1.
3: Construct a random starting LHD X.
4: Select a column from X at random.
5: Exchange two randomly selected elements within this

chosen column. Denote the new design by Xnew.
6: If Φ(Xnew) < Φ(X), then X = Xnew (accept the new

design). Otherwise, let X = Xnew with probability

exp
{

−Φ(Xnew)−Φ(X)
T

}
.

7: If S attempts have passed since the last improvement,
decrease the temperature T and repeat Steps 4−6.

8: If C < N , increment C and repeat Steps 4−7; Other-
wise, terminate and return X.

and thus lead to a faster stop of the algorithm. Yet,
it may also result in larger probability of missing the
true global optimum. Considering this trade-off, it is
recommended to set T between 0.05 to 0.15. The tun-
ing parameter S indicates the maximum consecutive
attempts the algorithm will try without improvements
before temperature reduces, and [43] recommends it to
be around 5, depending on how expensive the objective
function is to evaluate.

It is straightforward to use Simulated Annealing to
find designs in R. For example:

10 Runs, 2 inputs, 25 iterations of Simulated Annealing algorithm

LHD_SA <- SA(n = 10, k = 2, N = 25)

Similarly, designs satisfying the multi-objective
approach can be found by:

10 Runs, 2 inputs, 25 iterations of Simulated Annealing algorithm

using multi-objective

multi_obj_design <- SA2008(n = 10, k = 2, N = 25)

3.2.2 Genetic Algorithms

The GA is a metaheuristic algorithm inspired by the
process of natural selection [25] [17]. The GA starts
from a population of randomly generated candidate
solutions (designs), called chromosomes. The popula-
tion of chromosomes in each iteration is called a gener-
ation. For each generation the objective function will be
evaluated for each chromosome, with the corresponding
value being known as the fitness. The more fit chromo-
somes will be allowed to survive to the next genera-
tion, while the less fit chromosomes will be replaced by
new offspring. These offspring are obtained by selecting
several chromosomes (called parents) and recombining
their settings using crossover and mutation techniques
to produce offspring with potentially better fitness.

[34] adapted the general GA framework for searching
for maximin LHDs. Their approach begins with ran-
dom LHDs as the initial population. They then per-

form a selection step in which the best half of the LHDs
are allowed to survive to the next generation. Then, a
crossover step is performed in which random columns
in these survivors are exchanged with other survivors.
Additionally, to encourage diversity in the solutions and
prevent the algorithm becoming stuck in a local optima,
a mutation step is performed in which two random ele-
ments in a column are exchanged. Note that the cur-
rent best chromosome is excluded from this mutation
in order to preserve the best current solution. Finally,
the fitness of the new population of LHDs is calculated,
and the process is repeated until the stopping criteria is
satisfied. We include a detailed description of the GA,
along with the tuning parameters, in Algorithm 2.

Algorithm 2 Genetic Algorithm for LHD
1: Set the probability of mutation, pmut. Suggested setting

is pmut = 1/(d − 1) [34]. Set the maximum number of
iterations N and the counter index C = 1.

2: Generate m random n × d LHDs, denoted by
X1, . . . , Xm, where m is the population size (number
of chromosomes). Here, m must be an even number.

3: Evaluate the objective function, Φ(Xi), for i = 1, . . . , m.
4: Select survivors: order the Xi by their objective function

values and select the best m
2

Xi (with the smallest m
2

Φ
values), denoted by Xs

i for i = 1, . . . , m
2

, WLOG.
5: Let Xs

b = argmin
i

Φ(Xs
i) (i.e. Xs

b is the best survivor)

6: for each Xs
i , excluding Xs

b , do
7: Randomly choose a column j from Xs

b , and replace it
with the jth column from Xs

i .
8: end for
9: for each Xs

i , excluding Xs
b , do

10: Randomly choose a column j from Xs
i , and replace

it with the jth column from Xs
b .

11: end for
12: Update Xi: let X1 = Xs

b and the X2, . . . , Xm/2 be the
design matrices obtained by steps 6−8. Let Xm/2+1 =
Xs

b and Xm/2+2, . . . , Xm be the design matrices gener-
ated by Steps 9−11.

13: for each Xi (except X1) do
14: for each column j of Xi do
15: if z < pmut where z ∼ Uniform(0, 1) then
16: Exchange two randomly selected elements in j.
17: end if
18: end for
19: end for
20: Calculate Φ(Xi) for all i.
21: if C ≤ N , set C = C + 1 and repeat Steps 4-21; other-

wise, stop the algorithm.

It is also straightforward to use the GA to find space-
filling designs in R. For example:

10 Runs, 2 inputs, 25 iterations of Genetic algorithm

OC is optimality criteria - phi_p is the maximin distance

LHD_GA <- GA(n = 10, k = 2, N = 25, OC = ‘‘phi_p’’)

123

Eur. Phys. J. Spec. Top. (2021) 230:2253–2263 2261

4 Summary and Conclusions

Sophisticated computer simulators allow scientists to
test complex systems which would be too expensive or
completely impossible to assess otherwise. These sim-
ulations are usually very time-consuming, and compu-
tationally cheap surrogates are called for to facilitate
the analysis and optimization of the underlying system.
GPs are popular choices for such surrogates (or emula-
tors). In order to effectively reap the benefits of utilizing
the surrogate, the simulator should be evaluated on a
set of points chosen efficiently. Latin hypercube designs
have proven efficient for that purpose.

In this tutorial paper we discussed design criteria
and subsequent metaheuristic optimization strategies
for finding designs that allow astronomy researchers
to extract the maximum benefit offered by GP sur-
rogate modeling. We provided an overview of model
fitting using GPs and identification of optimal Latin
hypercube designs. Relevant R codes have been used
for illustration. Apart from the libraries discussed in
the paper, there are many other packages in R that can
be used. Interested readers may want to consider the
laGP (Local Approximate Gaussian Process Regres-
sion [21]), DiceKriging (Kriging Methods for Computer
Experiments [47]), GPfit (Gaussian Processes Model-
ing [38]) and SLHD (Maximin-Distance (Sliced) Latin
Hypercube Designs [1]) packages.

One consideration not covered in this tutorial paper
is how to best utilize GP models when the data sets are
astronomically large. Such “big data” may cause the
estimation techniques to become quite slow, requiring
advanced techniques to speed up the estimation. This
is a topic of active research. For further details, see [36].

References

1. S. Ba, SLHD: maximin-distance (sliced) Latin hyper-
cube designs, https://cran.r-project.org/web/packages/
SLHD/index.html, R package version 2.1-1 (2015)

2. S. Ba, V.R. Joseph, Composite Gaussian process mod-
els for emulating expensive functions. Ann. Appl. Stat.
6(4), 1838–1860 (2012)

3. S.D. Beattie, D.K.J. Lin, A new class of Latin hypercube
for computer experiments, in Contemporary multivari-
ate analysis and designs of experiments, in Celebration
of Prof. Kai-Tai Fang’s 65th Birthday. Singapore: World
Scientific, pp. 205–226 (2005)

4. P. Behroozi, R. Wechsler, A. Hearin, C. Conroy, Uni-
verseMachine: the correlation between galaxy growth
and dark matter halo assembly from Z= 0–10. Mon.
Not. R. Astron. Soc. 488(3), 3143–3194 (2019)

5. N. Bhattacharjeea, P. Ranjan, A. Mandal, E.W. Tollner,
A history matching approach for calibrating hydrologi-
cal models. Environ. Ecol. Stat. 26(1), 87–105 (2019)

6. D. Bingham, Branin function. Virtual library of sim-
ulation experiments, https://www.sfu.ca/∼ssurjano/
branin.html

7. D. Bursztyn, D.M. Steinberg, Rotation designs: orthog-
onal first-order designs with higher order projectivity.
Appl. Stoch. Models Bus. Ind. 18(3), 197–206 (2002)

8. P. Charbonneau, Genetic algorithms in astronomy and
astrophysics. Astrophys. J. Suppl. Ser. 101, 309–334
(1995)

9. T.M. Cioppa, T.W. Lucas, Efficient nearly orthogo-
nal and space-filling Latin hypercubes. Technometrics
49(1), 45–55 (2007)

10. G.M. Dancik, mlegp: maximum likelihood estimates
of Gaussian processes,https://cran.r-project.org/web/
packages/mlegp/index.html, R package version 3.1.8
(2020)

11. X. Deng, C.D. Lin, K.-W. Liu, R.K. Rowe, Additive
Gaussian process for computer models with qualitative
and quantitative factors. Technometrics 59(3), 283–292
(2017)

12. S.G. Djorgovski, R. Brunner, A. Mahabal, R. Williams,
R. Granat, P. Stolorz, Challenges for cluster analysis
in a virtual observatory, in Statistical Challenges in
Astronomy (Springer, 2003), pp. 127–141

13. K.T. Fang, R. Li, A. Sudjianto, Design and modeling for
computer experiments (CRC Press, Boca Raton, 2006)

14. A. Forrester, A. Sobester, A. Keane, Engineering design
via surrogate modelling: a practical guide (John Wiley
& Sons, Hoboken, 2008)

15. S.D. Georgiou, Orthogonal Latin hypercube designs
from generalized orthogonal designs. J. Stat. Plan. Infer-
ence 139(4), 1530–1540 (2009)

16. M. Giuliano, M. Johnston, Multi-objective evolutionary
algorithms for scheduling the James webb space tele-
scope. ICAPS, pp. 107–115 (2008)

17. D.E. Goldberg, Genetic algorithms in search, in Opti-
mization and Machine Learning (Addison Wesley Pub-
lishing Co. Inc, 1989)

18. R.B. Gramacy, Surrogates: Gaussian process modeling,
design, and optimization for the applied sciences (CRC
Press, Boca Raton, 2020)

19. R.B. Gramacy, D.W. Apley, Local Gaussian process
approximation for large computer experiments. J. Com-
put. Graph. Stat. 24, 2 (2015)

20. R.B. Gramacy, H.K.H. Lee, Bayesian treed Gaussian
process models with an application to computer model-
ing. J. Am. Stat. Assoc. 103, 1119–1130 (2008)

21. R.B. Gramacy, F. Sun, laGP: local approximate gaus-
sian process regression, https://cran.r-project.org/web/
packages/laGP/index.html, R package version 1.5-5
(2019)

22. A. Gration, M. Wilkinson, Dynamical modelling of
Dwarf spheroidal galaxies using Gaussian-process emu-
lation. Mon. Not. R. Astron. Soc. 485(4), 4878–4892
(2019)

23. G. Han, T.J. Santner, W.I. Notz, D.L. Bartel, Predic-
tion for computer experiments having quantitative and
qualitative input variables. Technometrics 51(3), 278–
288 (2009)

24. F. Hickernell, A generalized discrepancy and quadrature
error bound. Math. Comput. Am. Math. Soc. 67(221),
299–322 (1998)

25. J.H. Holland et al., Adaptation in natural and artificial
systems: an introductory analysis with applications to
biology, control, and artificial intelligence (MIT press,
Cambridge, 1992)

123

https://cran.r-project.org/web/packages/SLHD/index.html
https://cran.r-project.org/web/packages/SLHD/index.html
https://www.sfu.ca/~ssurjano/branin.html
https://www.sfu.ca/~ssurjano/branin.html
https://cran.r-project.org/web/packages/mlegp/index.html
https://cran.r-project.org/web/packages/mlegp/index.html
https://cran.r-project.org/web/packages/laGP/index.html
https://cran.r-project.org/web/packages/laGP/index.html

2262 Eur. Phys. J. Spec. Top. (2021) 230:2253–2263

26. E.R. Hruschka, R.J.G.B. Campello, A.A. Freitas et al.,
A survey of evolutionary algorithms for clustering. IEEE
Trans. Syst. Man Cybern. Part C Appl. Rev. 39(3),
133–155 (2009)

27. M.E. Johnson, L.M. Moore, D. Ylvisaker, Minimax
and maximin distance designs. J. Stat. Plan. Inference
26(2), 131–148 (1990)

28. V.R. Joseph, Y. Hung, Orthogonal-maximin Latin
hypercube designs. Stat. Sin. 18, 171–186 (2008)

29. V.R. Joseph, E. Gul, S. Ba, Maximum projection
designs for computer experiments. Biometrika 102(2),
371–380 (2015)

30. M. Kennedy, A. O‘Hagan, Bayesian calibration of com-
puter models. J. R. Stat. Soc. Ser. B Stat. Methodol.
63(3), 425–464 (2002)

31. S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimiza-
tion by simulated annealing. Science 220(4598), 671–
680 (1983)

32. M. Kruckow, T. Tauris, N. Langer, M. Kramer, Robert
G. Izzard, Progenitors of gravitational wave mergers:
binary evolution with the stellar grid-based code COM-
BINE. Mon. Not. R. Astron. Soc. 481(2), 1908–1949
(2018)

33. S. Leary, A. Bhaskar, A. Keane, Optimal orthogonal-
array-based Latin hypercubes. J. Appl. Stat. 30(5),
585–598 (2003)

34. M. Liefvendahl, R. Stocki, A study on algorithms for
optimization of Latin hypercubes. J. Stat. Plan. Infer-
ence 136(9), 3231–3247 (2006)

35. C.D. Lin, R. Mukerjee, B. Tang, Construction of
orthogonal and nearly orthogonal Latin hyper-cubes.
Biometrika 96(1), 243–247 (2009)

36. H. Liu, Y.-S. Ong, X. Shen, J. Cai, When Gaussian pro-
cess meets big data: a review of scalable GPs. IEEE
Trans. Neural Netw. Learn. Syst. 31(11), 4405–4423
(2020)

37. A. Mandal, W.K. Wong, Y. Yu, Algorithmic searches for
optimal designs, in Handbook of Design and Analysis of
Experiments (CRC Press, Boca Raton, 2015), pp. 755–
783

38. B. MacDoanld, H. Chipman, C. Campbell, P. Ran-
jan, GPfit: Gaussian processes modeling, https://cran.
r-project.org/web/packages/GPfit/index.html, R pack-
age version 1.0-8 (2019)

39. M.D. McKay, R.J. Beckman, W.J. Conover, Compari-
son of three methods for selecting values of input vari-
ables in the analysis of output from a computer code.
Technometrics 21(2), 239–245 (1979)

40. M. Misiak et al., Evolutionary algorithms in astrody-
namics. Int. J. Astron. Astrophys. 6(4), 435–439 (2016)

41. S. Mohanty, Particle swarm optimization and regression
analysis-I. Astron. Rev. 7(2), 29–35 (2012)

42. S. Mohanty, E. Fahnestock, Adaptive spline fitting with
particle swarm optimization. Comput. Stat. 36, 155–191
(2020)

43. M.D. Morris, T.J. Mitchell, Exploratory designs for
computational experiments. J. Stat. Plan. Inference
43(3), 381–402 (1995)

44. P.Z.G. Qian, H. Wu, C.F.J. Wu, Gaussian process mod-
els for computer experiments with qualitative and quan-
titative factors. Technometrics 50(3), 383–396 (2008)

45. R Core Team, R: a language and environment for sta-
tistical computing, R Foundation for Statistical Com-

puting, Vienna, Austria, https://www.R-project.org/
(2019)

46. J. Resch, A. Mandal, P. Ranjan, Inverse problem for
dynamic computer simulators via multiple scalar-valued
contour estimation, https://arxiv.org/abs/2010.08941
(2021)

47. O. Roustant, D. Ginsbourger, Y. Deville, C. Clement,
Y. Richet, DiceKriging: kriging methods for computer
experiments, https://cran.r-project.org/web/packages/
DiceKriging/index.html, R package version 1.5.8 (2020)

48. J. Sacks, W.J. Welch, T.J. Mitchell, H.P. Wynn, Design
and analysis of computer experiments. Stat. Sci. 4(4),
409–423 (1989)

49. D.M. Steinberg, D.K.J. Lin, A construction method for
orthogonal Latin hypercube designs. Biometrika 93(2),
279–288 (2006)

50. S. Stevenson, A. Vigna-Gómez, I. Mandel, J.W. Bar-
rett, C.J. Neijssel, D. Perkins, S.E. De Mink, Forma-
tion of the first three gravitational-wave observations
through isolated binary evolution. Nat. Commun. 8(1),
1–7 (2017)

51. F. Sun, M.-Q. Liu, D.K.J. Lin, Construction of orthog-
onal Latin hypercube designs with flexible run sizes. J.
Stat. Plan. Inference 140(11), 3236–3242 (2010)

52. F. Sun, B. Tang, A general rotation method for orthog-
onal Latin hypercubes. Biometrika 104(2), 465–472
(2017)

53. L.P. Swiler, P.D. Hough, P.Z.G. Qian, X. Xu, C. Storlie,
H. Lee, Surrogate models for mixed discrete-continuous
variables, Constraint Programming and Decision Mak-
ing (Springer, 2014), pp. 181–202

54. B. Tang, Orthogonal array-based Latin hypercubes. J.
Am. Stat. Assoc. 88(424), 1392–1397 (1993)

55. I. Vernon, M. Goldstein, R.G. Bower, Galaxy formation:
a Bayesian uncertainty analysis. Bayesian Anal 5(4),
619–669 (2010)

56. A. Vigna-Gómez, C.J. Neijssel, S. Stevenson, J.W. Bar-
rett, K. Belczynski, S. Justham, S.E. de Mink, B.
Müller, P. Podsiadlowski, M. Renzo, D. Szécsi, On
the formation history of Galactic double neutron stars.
Mon. Not. R. Astron. Soc. 481(3), 4009–4029 (2018)

57. H. Wackernagel, Multivariate geostatistics (Springer,
Berlin, 2002)

58. H. Wang, Q. Xiao, A. Mandal, LHD: Latin hyper-
cube designs (LHDs), https://CRAN.R-project.org/
package=LHD, R package version 1.3.1 (2020)

59. H. Wang, Q. Xiao, A. Mandal, Musings about construc-
tions of efficient Latin hypercube designs with flexible
run-sizes, arXiv preprint arXiv:2010.09154v2 (2020)

60. L. Wang, Q. Xiao, H. Xu, Optimal maximin L1-distance
Latin hypercube designs based on good lattice point
designs. Ann. Stat. 46(6B), 3741–3766 (2018)

61. W.J. Welch, R.J. Buck, J. Sacks, H.P. Wynn, T.J.
Mitchell, M.D. Morris, Screening, predicting, and com-
puter experiments. Technometrics 34, 15–25 (1992)

62. D. Williams, I.S. Heng, J. Gair, J.A. Clark, B.
Khamesra, A precessing numerical relativity wave-
form surrogate model for binary black holes: a
Gaussian process regression approach, arXiv preprint
arXiv:1903.09204 (2019)

63. Q. Xiao, Constructions and applications of space-filling
designs, Ph.D. Dissertation, University of California Los
Angeles (2017)

123

https://cran.r-project.org/web/packages/GPfit/index.html
https://cran.r-project.org/web/packages/GPfit/index.html
https://www.R-project.org/
https://arxiv.org/abs/2010.08941
https://cran.r-project.org/web/packages/DiceKriging/index.html
https://cran.r-project.org/web/packages/DiceKriging/index.html
https://CRAN.R-project.org/package=LHD
https://CRAN.R-project.org/package=LHD
http://arxiv.org/abs/2010.09154v2
http://arxiv.org/abs/1903.09204

Eur. Phys. J. Spec. Top. (2021) 230:2253–2263 2263

64. Q. Xiao, A. Mandal, C.D. Lin, X. Deng, EzGP: Easy-to-
interpret Gaussian Process models for computer exper-
iments with both quantitative and qualitative factors.
Under revision for SIAM/ASA J. Uncertain. Quantif.
(2021)

65. Q. Xiao, H. Xu, Construction of maximin distance
Latin squares and related Latin hypercube designs.
Biometrika 104(2), 455–464 (2017)

66. Q. Xiao, H. Xu, Construction of maximin distance
designs via level permutation and expansion. Stat. Sin.
28(3), 1395–1414 (2018)

67. Y. Xiong, W. Chen, D.W. Apley, X. Ding, A non-
stationary covariance-based kriging method for meta-
modelling in engineering design. Int. J. Numer. Methods
Eng. 71, 733–756 (2007)

68. J. Yang, M. Liu, Construction of orthogonal and nearly
orthogonal Latin hypercube designs from orthogonal
designs. Stat. Sin. 22, 433–442 (2012)

69. K.Q. Ye, Orthogonal column Latin hypercubes and
their application in computer experiments. J. Am. Stat.
Assoc. 93(444), 1430–1439 (1998)

70. Y. Zhang, W.I. Notz, Computer experiments with qual-
itative and quantitative variables: a review and reexam-
ination. Qual. Eng. 27(1), 2–13 (2015)

71. Y. Zhang, S. Tao, W. Chen, D.W. Apley, A latent vari-
able approach to Gaussian process modeling with qual-
itative and quantitative factors. Technometrics 62(3),
291–302 (2020)

72. Q. Zhou, P.Z.G. Qian, S. Zhou, A simple approach
to emulation for computer models with qualitative
and quantitative factors. Technometrics 53(3), 266–273
(2011)

123

	Statistical Analysis of Complex Computer Models in Astronomy
	1 Introduction
	2 Surrogates for Computer Models
	2.1 Stationary Gaussian Process - Krigging
	2.2 Non-stationarity
	2.3 Numeric Considerations - Local GP
	2.4 Extension to Qualitative Inputs
	2.5 Calibration

	3 Design of Computer Experiments
	3.1 LHD: Efficient Experimental Designs
	3.1.1 Centered L2-Discrepancy Criteria
	3.1.2 Multi-objective Criteria
	3.1.3 Maxpro: Maximum projection designs

	3.2 Searching Algorithms for Generating Efficient LHDs with Flexible Sizes
	3.2.1 Simulated Annealing Algorithms
	3.2.2 Genetic Algorithms

	4 Summary and Conclusions
	References
	References

