
Design and Analysis of Complex
Computer Models

Jeevan Jankar, Hongzhi Wang, Lauren Rose Wilkes, Qian Xiao,
and Abhyuday Mandal

Abstract This chapter presents a review of some state-of-the-art statistical tech-
niques for analyzing real computer experiments which play a significant role in
various scientific research and industrial applications. In computer experiments,
emulators (i.e. surrogate models) are often used to rapidly approximate the out-
comes and reduce the computational expense. Gaussian process (GP) models, also
known as Kriging, are a common choice of emulators, and optimal experimental
designs should be used to improve their accuracy. Specifically, space-filling designs
are widely used in the literature, which proved to be efficient under GP models.
In this chapter, we review different types of GP models as well as various kinds
of space-filling designs. We further provide a practical tutorial on how to construct
space-filling designs and fit GP emulators to analyze real computer experiments.

Keywords Computer experiments · Gaussian process models · Space-filling
designs · Latin hypercube designs

1 Introduction

A computer experiment is a system of complex computer codes simulating a phys-
ical process. They are implemented like a function, taking inputs to produce the
outputs. This automation can reduce the cost, time, and/or management compared
to a traditional lab experiment (see, for example, [20]). Computer experiments are
often deterministic (specified inputs will always produce the same output), making
the results more stable and less prone to random errors compared to traditional lab
experiments. Researchers can manipulate the code to systematically adjust a wide
range of inputs and generate outputs based on what they are trying to study. They
are instrumental in cases where a physical experiment would be impossible, such
as modeling black holes [29]. Due to these characteristics, computer experiments
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become very popular in various scientific research and industrial applications (see,
for more examples, [12, 20]). For example, [8] created a 3D mixed finite element
model to study flexoelectric material. The Flexoelectric Effect is where strain gra-
dients polarize electric fields. This process is complicated to study, especially in a
practical context, so the finite element method is a numerical approach, i.e. computer
experiment, used to study this effect. Mixed finite elements simplify this task further
using an alternative way of handling higher order derivatives.

Computer experiments are often computationally intensive, though computing
power has increased in recent years. To rapidly generate many outcomes and reduce
the computational expenses, emulators (i.e. surrogate models) are needed which are
often fitted with only a few data points. Emulators should also allow uncertainty
quantification to measure how accurate the model is for predictions. If a good emu-
lator is selected, it may be more useful than the underlying physical process as it
eliminates noise. The Gaussian Process (GP) model is a widely used emulator [20,
43]. The GP assumes all observations following a multivariate normal distribution,
which is characterized by a mean vector μ and a covariance matrix�. The GPmodel
would interpolate the observations, which is desirable for computer experiments hav-
ing deterministic outputs. It also allows for accurate uncertainty quantification. By
specifying different types of covariance functions, researchers may further add prior
knowledge about the shape of the response surface.

The GP model has been applied to many computer experiments in Chemistry,
Computational Biology, Robotics and others [30]. As an illustration, it has accu-
rately simulated the collision dynamics of complex molecules [6], the spread of
COVID-19 [52], flagging suspicious Internet claims [63] and autonomous learning
in robots [7]. Data scientists at Microsoft introduced a framework that enables the
application of GP models to data sets containing millions of data points [23]. As
pictured in Fig. 1, a Bayesian framework is used for human body pose tracking [10].
Instead, a GP experiment can be used to take in a description of a human silhou-
ette as inputs and outputs to identify human pose [68]. One useful application of
GP in Astronomy is modeling the collision of two black holes. Researchers cannot
create black holes to observe and experiment with, so computer experiments offer
a veritable way to simulate the outcome of black hole collisions. Figure2 illustrates

Fig. 1 An example of Bayesian framework for human pose tracking Source https://www.ncbi.
nlm.nih.gov/pmc/articles/PMC3292173/ [68]

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3292173/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3292173/
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Fig. 2 Computer simulation of two black holes colliding Source https://www.black-holes.org/
code/SpEC.html

that computer models and GP emulators are created based on the known properties
of black holes and the surrounding system of space and are compared to naturally
observed black hole movement in order to test how accurate they are [58]. Another
interesting application of GP is on car crash simulation to study the damage on the
car. Here, models are validated by comparing simulation results with an actually
controlled crash. Figure3 depicts some results from a finite element method.

Fig. 3 An example of Gaussian Process experiment in car crash simulation Source https://www.
csm.ornl.gov/SC98/car.html

https://www.black-holes.org/code/SpEC.html
https://www.black-holes.org/code/SpEC.html
https://www.csm.ornl.gov/SC98/car.html
https://www.csm.ornl.gov/SC98/car.html
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The remainder of this chapter is organized as follows. In Sect. 2, we systemati-
cally review the GP models. Specifically, we discuss the ordinary and universal GP
in Sect. 2.1, their model estimations and uncertainty quantification in Sect. 2.2 and
methods for including qualitative inputs in Sect. 2.3. In Sect. 3, we review popular
experimental designs used in computer experiments, and we conclude this chapter
in Sect. 4.

2 The Gaussian Process Model

In this section, we aim to understand GP as a flexible nonparametric regression for
surrogate modeling in computer experiments. GP is widely used in many statistical
and probabilistic modeling enterprises. GP is a very generic term, and all it means
is that any finite collection of realizations is modeled as having a multivariate nor-
mal (MVN) distribution. That means, a finite collection of n observations can be
completely characterized by their mean vector μ and covariance matrix �.

Let y(xi) be the output which is assumed to be a deterministic real-valued function
of the d-dimensional variable xi = (xi1, . . . , xid)

T ∈ D ⊂ �d , for i = 1, 2, . . . , n.
Let (Yx)x∈D be a square-integrable random field and y be a realization of (Yx)x∈D .
LetX = {x1, . . . , xn} be the points where their responses have been observed, which
is denoted by y = (y(x1), . . . , y(xn))T . The aim of GP is to optimally predict Yx by
a linear combination of the observations y, for any x ∈ D.

2.1 Model Formulation

Ordinary GP, also known as ordinary Kriging, has the form

y(xi) = μ + Z(xi), (1)

where μ is the mean vector and Z(xi) is a GP such that Z(xi) ∼ GP(0,σ2�).
In the above model, Z(xi) is GP with zero mean, and the covariance function
φ(·) = σ2�(·|θ), where θ = (θ1, . . . , θd)

T is the vector of unknown correlation
parameters with all θk > 0 (k = 1, . . . , d) and � is a stationary correlation func-
tion that determines the correlation between inputs with parameters θ. The mean of
the GP controls the trend, whereas the correlation function controls the smoothness
of its sample paths. Power-exponential, Gaussian and Matérn correlation functions
are the most widely used ones in the literature.

In the power-exponential correlation structure, the (i, j)th element in the corre-
lation matrix is defined as follows:
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)T

and smoothness
parameters p1, . . . , pd , which lie between 0 and 2, with 0 giving the most rough
results and 2 giving the most smooth. If we take pk = 2 for all k = 1, . . . , d, then it
results in the popular Gaussian correlation function:
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The correlation functions of Matérn family is given by
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where v > 0 is a smoothness parameter, �(·) is the Gamma function and Kv(·) is the
modified Bessel function of order v. Two commonly used orders are v = 3/2 and
v = 5/2.

Different correlation functions mentioned above impose different characteristics
for function draws, allowing for different properties when modeling computer mod-
els. For example, when using the power-exponential function, all sample paths are
infinitely differentiable when pk = 2. For the Matérn correlation function, when we
have d = 1, all sample paths are �v� − 1 differentiable. Hence, v is viewed as a
smoothness parameter.

In the literature, two important assumptions are often imposed on the ordinary GP
model to effectively analyze computer experiment. One assumption is that the GP
is separable [9], which means finite-dimensional distributions can determine sample
path properties of function draws which are usually infinite-dimensional. The sec-
ond important assumption is that the model is stationary. Consider {x1, . . . , xn} ∈ D
and any h ∈ �d , then a GP model is said to be stationary if the random vectors
(Y (x1), . . . ,Y (xn)) and (Y (x1 + h), . . . ,Y (xn + h)) follow the same distribution.
This means that both these random vectors should have the same mean and covari-
ance.

The second assumption is restrictive, and we may need more flexibility while
modeling computer experiments. One popular approach is to extend the above ordi-
naryGPmodel to incorporate a global trend function for themean part. This extended
model is known as Universal Kriging which has the form:

y(x) = μ(x) + Z(x), (5)

with μ(x) = f(x)Tβ = ∑m
s=1 βs fs(x), where f is a m-dimensional known function

and β = (β1, . . . ,βm)T is a vector of unknown parameters. The idea is to rely on
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functions in f(x) to de-trend the process and thenmodel any residual variation as zero
mean stationary GP. Taking constant mean f(x) ≡ 1 results in the ordinary GPmodel
discussed above. The stationary correlation functions discussed above in Eqs. (2) and
(4) can also be applied here, that is,

Cov (Z(x + h), Z(x)) = σ2�(h),

where correlation function �(h) is a positive semidefinite function with �(0) = 1
and �(h) = �(−h).

2.2 Estimation and Uncertainty Quantification

In this section, we present equations used for predicting and quantifying uncertainty
on y(x) given observed responses y = (y(x1), . . . , y(xn))T . The question we are
trying to answer is: given examples of function in pairs (x1, y(x1)), . . . , (xn, y(xn)),
what random function realizations could explain or could have generated those
observed values? In other words, we want to calculate the conditional distribution
(Y (x1), . . . ,Y (xn)) |{(x1, y(x1)), . . . , (xn, y(xn))}.

Beforewecalculate thepredictive distribution,weneed to address the keyquestion
of how the parameters β,σ2 and θ are estimated from the data (xi , y(xi ))ni=1. The
most popular approach for parameter estimation is maximum likelihood estimation,
and the log-likelihood function under the above assumed GP model can be written
as

l
(
β,σ2,θ

) = −1

2

[
n logσ2 + log det�θ + 1

σ2
(y − Fβ)�−1

θ (y − Fβ)

]
, (6)

where det�θ is the determinant of the matrix �θ = [
�(xi, xj)

]n n

i=1 j=1 and F =
[ fs(xi)]n m

i=1 s=1. Hence, the MLEs for (β,σ2,θ) are the parameter estimates that
maximize the above log-likelihood function. ML estimates of (β,σ2) for fixed value
of θ can be easily obtained as follows:

β̂θ = (
FT�−1

θ F
)−1

FT�−1
θ y (7)

and

σ̂2
θ = 1

n

(
y − Fβ̂θ

)T
�−1

θ

(
y − Fβ̂θ

)
. (8)

Substituting these ML estimates back into Eq. (6), we get the profile likelihood
function as follows:
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l
(
β̂, σ̂2,θ
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]
, (9)

where the MLE of θ is one that maximizes the above function in Eq. (9). This
optimization problem does not enjoy a closed-form solution, so numerical methods,
e.g. quasi-Newton algorithms [40] are used for solving the problem.

Once we have estimates of parameters, we can calculate the conditional distri-

bution as mentioned above. Let
(
β̂, σ̂2, θ̂

)
denote the ML estimates of unknown

parameters for the given GP model. Then for a new input x∗ ∈ �d , the mean and
variance of random variable Y (x∗|y) are as follows:

ŷ
(
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)
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(
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1 − rT

θ̂

(
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θ̂
rθ̂

(
x∗)

)
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where the covariance vector rθ̂ (x∗) = [
�θ̂ (x∗, x1) ,�θ̂ (x∗, x2) , . . . , �θ̂ (x∗, xn)

]T
.

When some observed data points are very close to each other, the covariance
matrix �θ̂ may become nearly singular, making it difficult to obtain a stable inverse
matrix �−1

θ̂
. This is a common issue for GP models, when the run and/or factor sizes

are large. One way to deal with this problem is to add a positive scalar λ, called the
nugget parameter, to the diagonal elements in �θ̂, i.e. replacing �θ with �θ + λI,
where I is an identity matrix. Adding λ is analogous to adding the ridge parameter
in ridge regression, which helps in moving the smallest eigenvalue of �θ away from
zero, thus stabilizing the calculation of its inverse.

For large data sizes, the estimation of GP models can be very time-consuming,
mainly due to thematrix inverse calculationof orderO(n3). Todealwith this problem,
[21] proposed a localizeGP (LaGP) approach.Based on a local subset of the data, they
provide a family of local sequential design schemes that defines the support points
of a GP predictor. The idea is to make sure that for a given choice of covariance
structure, the data points far from the target location x∗ will have little effect on
the prediction. Hence, it is not unwise to calculate the inverse of the full covariance
matrix, as the elements corresponding to “far away” points will contribute very little
to predicting y(x∗). Interested readers may refer to [21] for further details.

The notion of calibration and sensitivity analysis is important in the context of
physical and computer experiments. In practice, we only observe response yField
instead of observing real physical response yReal . And, we use the above computer
models to approximate yReal as yModel . Now, as we saw in the earlier sections apart
from input variables, computer models also use some more parameters known as
calibration parameters to fine-tune the model. Covariance parameters θ are one such
example of calibration parameters. A Bayesian framework was proposed by [28] to
address this as follows:
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yReal(x) = yModel(x,θ) + b(x)

yField(x) = yModel(x,θ) + b(x) + ε,

where b(x) is a bias and ε is the normal error. Reference [28] used Bayesian methods
to estimate the bias correction function and unknown calibration parameter θ under
a GP prior. Iterative history matching algorithm as one proposed by [53] for calibrat-
ing a galaxy formation model called GALFORM is an alternative to this Bayesian
approach. Recently, [1] used this algorithm for calibrating hydrological time-series
models.

2.3 GP with Qualitative Inputs

The above-mentioned GP model is valid only with quantitative inputs, but there are
many situations in real life where inputs can be both quantitative and qualitative.
One straightforward way to adapt GP models with qualitative inputs is to construct
separate GP models for each level combination of the qualitative factors. Yet, when
there are many high-level qualitative factors, such an approach would require many
observations to fit a large number of GP models. In the current literature, many
integrated GP models for both quantitative and qualitative factors are proposed [22,
41, 50, 65, 66].

Reference [60] proposed a new method called EzGP to deal with such prob-
lems. Let the kth input of the computer emulator be wk = (

xTk , zTk
)T
, where xk =

(
xk1, . . . , xkp

)T
is the continuous part of input as mentioned in the previous sec-

tions and zk = (
zk1, . . . , zkq

)T ∈ N
q is the qualitative part of the input, where

k = 1, . . . , n. The EzGP method is inspired by the idea of Analysis of Variance
(ANOVA) where quantitative and qualitative inputs are jointly modeled as follows:

y(w) = μ + Zz(x), (12)

which suggests that for any given level combination of qualitative factors, y(w) is a
GP. Specifically, they considered the following additive model structure:

Zz(x) = Z0(x) + Zz(1) (x) + · · · + Zz(q) (x), (13)

where Z0 and Zz(h) for h = 1, . . . , q are independent GPs with mean zero and some
covariance functions.Here, Z0 plays the role of baseGPwhich takes only quantitative
inputs reflecting the intrinsic relation between y and x, and other GPs Zz(h) are the
adjustments made to the base GP to reflect the impact of each qualitative factor z(h)

for h = 1, . . . , q. The EzGP method can easily deal with heterogeneity in computer
modelswithmultiple qualitative factors. Twovariants inEzGPare proposed to fit data
with high dimensionality or large run sizes, which can achieve high computational
efficiency.
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3 Designs for Computer Experiments

Computer codes generate outputs in a deterministicmanner in computer experiments,
meaning the same input returns the same output (no random errors). Latin hypercube
designs (LHDs, [38]) are the most popular experimental designs in computer exper-
iments. An n runs and k factors LHD is an n × k matrix with each column being a
random permutation of numbers 1, . . . , n. LHDs do not have replicates in each one-
dimensional projection. There are various types of optimal LHDs for practical needs,
including space-filling LHDs, maximum projection LHDs and orthogonal LHDs.

When we have little or no information about the response surface, it is desirable
to have design points as scattered out as possible in the design space for better explo-
ration. Despite LHDs having a uniform one-dimensional projection property, random
LHDs may have poor space-filling properties over the entire design space. Figure4
is an illustrative example with two LHD designs. The LHD in the left panel is con-
centrated almost entirely on the diagonal, which clearly does not explore the input
space sufficiently. The design points in the right panel are scattered out over the entire
design space, so this design may provide more reliable information. The maximin
distance criterion [25] is a widely used metric for measuring the space-filling prop-
erty of LHDs. It aims to maximize the minimum distances between design points.
LetX denote an LHDmatrix, where the Lq -distance between two runs xi and x j ofX
is given by dq(xi , x j ) = {∑m

k=1 |xik − x jk |q
}1/q

, where q is an integer. Two popular
choices are q = 1 (i.e. the Manhattan distance) and q = 2 (i.e. the Euclidean dis-
tance). The maximin Lq -distance design has the maximized minimum Lq -distance,
i.e. maxmin dq(xi , x j ), where 1 ≤ i < j ≤ n. Reference [24, 39] further proposed
a scalar value to evaluate the maximin distance criterion:
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Fig. 4 Latin hypercube designs for size n = 5 and k = 2
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φp =
{ n−1∑

i=1

n∑

j=i+1

dq(xi , x j )
−p

}1/p

, (14)

where p is a tuning parameter. As p → ∞, the φp criterion in Eq. (14) is asymptot-
ically equivalent to the Maximin distance criterion, and p = 15 is usually sufficient
in practice. The LHDs that minimize the φp criterion are called the maximin distance
LHDs.

In the literature, both algebraic constructions [56, 67] and search algorithms [3,
24, 27, 31, 32, 39] are proposed to constructmaximin distance LHDs.Algebraic con-
structions usually require very little computational cost to generate optimal LHDs,
which are very attractive for large design sizes. Yet, they are only available for cer-
tain design sizes. Search algorithms can generate optimal designs of flexible sizes,
but they often require more computation resources to identify optimal LHDs. As
there are (n!)k−1 possible LHDs with n runs and k factors, search algorithms could
become very costly when n and k are large. Here, wewill briefly survey some popular
construction methods; see [55] for a survey.

Specifically, [56] proposed to generate maximin distance LHDs via good lat-
tice point (GLP) sets [67] and Williams transformation [59]. They proved that the
resulting designs of sizes n × (n − 1) (with n being any odd prime) and n × n (with
2n + 1 or n + 1 being odd prime) are optimal under the maximin L1-distance crite-
rion. The construction method starts by generating a GLP design, and then use the
Williams transformation [59] to improve a linear permuted GLP design. Reference
[51] proposed to construct orthogonal array-based LHDs (OALHDs) from existing
orthogonal arrays (OAs). The key idea of this construction is to deterministically
replace OA entries with a random permutation of LHD elements. OALHDs inherit
the properties of OAs and tend to have better space-filling properties compared to
random LHDs. Note that the design sizes of OALHDs rely on the existence of cor-
responding OAs.

Search algorithms should be used to generate optimal LHDswhen no construction
methods are available. Reference [39] proposed a simulated annealing (SA) algo-
rithm, which randomly exchanges elements to seek improvements over iterations to
identify global best LHDs. Following the work of [39] and [51], [31] proposed to
construct orthogonal array-based LHDs (OALHDs) using the SA algorithm. They
proposed to exchange elements that share the same original OA entry randomly.
Reference [27] proposed a multi-objective criterion and developed a modified SA
algorithm to generate optimal LHDs having good space-filling properties as well as
orthogonality. This algorithm can lead to many good designs, but it is often compu-
tationally heavy, since it calculates all average pairwise correlations and row-wise
distances at each iteration. Besides these SA-based algorithms, [32] proposed to use
a genetic algorithm (GA) for searching optimal designs, which focuses on global
best by exchanging random columns between global best and other candidate solu-
tions. In addition, [3] proposed a version of the particle swarm optimization (PSO)
algorithm by gradually reducing the Hamming distances between each particle and
its personal best (or the global best). Generally speaking, the PSO is recommended
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for small design sizes (n ≤ 7) and the GA has better performance for moderate and
large design sizes.

Uniform designs (UDs) [11, 13] are another popular type of space-filling designs.
There are various measurements of uniformity proposed in the literature, such as
the star L2-discrepancy [57], modified L2-discrepancy [14] and the centered L2-
discrepancy [15]. The search algorithmsmentioned above can be used for identifying
UDs.

Maximin distance LHDs have space-filling properties in the full-dimensional
space, but their two to k − 1-dimensional projectionsmay not be space-filling. Refer-
ence [26] proposed the maximum projection LHDs (MaxPro LHDs) which enhance
the space-filling properties in all possible dimensional projections. Analogous to
[39], [26] defined the maximum projection criterion as

min
X

ψ(X) =
{

1
(n
2

)
n−1∑

i=1

n∑

j=i+1

1

�k
l=1(xil − x jl)2

}1/k

. (15)

LHDs that minimize the ψ values are called MaxPro LHDs. Reference [26] pro-
posed an SA-based search algorithm to identify MaxPro LHDs.

Orthogonal LHDs (OLHDs) are another type of optimal LHDs which aim to
minimize the correlations between factors [16, 45, 48]. Twocorrelation-based criteria
are often used to measure designs’ orthogonality: the average absolute correlation
criterion and the maximum absolute correlation criterion [16], which are defined as

ave(|q|) = 2
∑k−1

i=1

∑k
j=i+1 |qi j |

k(k − 1)
and max |q| = max

i, j
|qi j |, (16)

where qi j is the correlation between the i th and j th columns in the design matrix.
Orthogonal designsmay not exist for all sizes. In practice, designswith small ave(|q|)
or max|q| are preferred.

In the literature, construction methods of OLHDs are widely explored. Specifi-
cally, [62] proposed a method to construct OLHDs with run sizes n = 2m + 1 and
factor sizes k = 2m − 2,wherem is any integer no less than 2.Reference [5] extended
the work of [62] to accommodate more factors. Reference [45] developed a method
based on factorial designs with group rotations for n = 22

m
and k = 2mt , where

m is any positive integer and t is the number of rotation groups. Reference [47]
improved their earlier work [46] to construct OLHDs with even more flexible run
sizes: n = r2c+1 or n = r2c+1 + 1 and k = 2c, where c and r are any two positive
integers. Reference [61] proposed to use generalized orthogonal designs to construct
OLHDs and nearly orthogonal LHDs (NOLHDs) with n = 2r+1 or n = 2r+1 + 1 and
k = 2r , where r is any positive integer. Reference [17] proposed to take advantage of
orthogonal matrices and their full fold-overs for constructing OLHDs with n = 2ak
runs and k factors, where k is the size of orthogonal matrix and a is any positive
integer. Reference [2] implemented the Williams transformation [59] to construct
OLHDs with odd prime run-size n and factor-size k ≤ n − 1. Reference [33] pro-



26 J. Jankar et al.

posed to couple OLHDs or NOLHDs with OAs to accommodate large numbers of
factors with fewer runs: n2 runs and 2 f p factors, where n and p are design sizes of
the OLHDs or NOLHDs and 2 f is the number of columns in the coupled OA.

4 Discussion

There are many instances in nature where it is either expensive or impossible to
conduct a physical experiment. For example, it is prohibitively difficult to conduct a
study for investigating the devastation caused by a nuclear explosion. Instances like
the formation of a galaxy or the formation of binary black holes cannot be studied
through physical experiments. Computer experiments can simulate such phenom-
ena with reasonable accuracy. Although such computer simulators are a lot more
desirable than real experiments, they are still computationally expensive. To deal
with this problem, scientists use surrogates (emulators) to facilitate the analysis and
optimization of complex systems. GPs are widely used as surrogates (or emulators).
Space-filling designs, such as LHDs, are often used to reap the benefits of utilizing
such surrogates effectively.

Several efficient packages in R are available for fitting the GP model and identi-
fying LHDs. Interested readers can explore different packages for fitting GP: Local
Approximate Gaussian Process Regression (laGP) by [19], DiceKriging (Kriging
Methods for Computer Experiments) by [42] and GP-fit (Gaussian Processes Mod-
eling) by [36]. For obtaining LHDs with flexible run sizes, packages like Latin
Hypercube Designs (LHD) by [54] and Maximin-Distance (Sliced) Latin Hyper-
cube Designs (SLHD) by [44] can be used.

Even though the computing power has increased dramatically over the last few
years, handling big data remains a challenging problem. There is an increasing body
of literature for computer experiments with large numbers of data points, but the
existing literature on large numbers of input variables is still meager. For details,
please refer to the review article by [35]. The problem of data reduction is an active
area of research among statisticians and computer scientists, and much progress
needs to be done in this area. Recent work on this includes techniques like kernel
handling [4] and support points [37].

Different Bayesian approaches for analyzing computer experiments have been
discussed in the literature, particularly in the context of uncertainty quantification,
but most of them are difficult to implement and time-consuming [18, 28]. To solve
this problem, we need more advanced techniques. Another topic of active research
is to incorporate qualitative input variables. Many practical applications have both
quantitative and qualitative inputs, e.g. the data center computer experiment [41]
and the study of high-performance computing systems [64]. However, traditional
GP modeling is designated for only quantitative inputs, since its covariance function
of responses is constructed under the continuous input space with proper distance
metrics. More effective techniques and algorithms need to be developed that can
accommodate qualitative inputs and one such recent work is [60].
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Finally, there is vast existing literature on continuous response, but there are many
instances where the response is binary or non-continuous. For example, binary black
hole formation [34] or computer experiments with binary time series have non-
Gaussian observations [49]. For handling high-dimensional input parameter space,
input variables with non-continuous characteristics and non-Gaussian observations,
new techniques and algorithms need to be developed.
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