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Precision Medicine

• (Statistical) precision medicine
• Data-driven decision support for treating patients in the presence of

heterogeneity (dynamic treatment regimes or DTRs)
• Treatment can include drug choice, administrative actions, dosing,

timing, potentially modifiable risk factors, and/or other potentially
beneficial actions to the patients

• Must be reproducible and generalizable (empirically and inferentially
valid)
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Operating Principles

• Observable Constituents:
• Tailoring variables (X)
• Choice of treatments and/or potentially modifiable risk factors (A)
• Vector of outcomes or utilities (R)
• Could be multiple (X,A,R) triples over time for each patient

• Dynamic Treatment Regime (DTR):
• Single decision: make a single recommendation for treatment
• Multiple decision: make a series of interdependent recommendations
• Continual monitoring: for diabetes, mHealth
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Heterogeneity

• Role of Heterogeneity in the data:
• Heterogeneity of patients is beneficial (essential) for good precision

medicine analysis so that estimated treatment rules are broadly
applicable

• Need heterogeneity of treatment assignment (either naturally or by
design) in the data so we can determine best treatment under a variety
of situations
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Outline of Overall Pipeline

• Dynamic Treatment Regime:
• π(X) gives recommended A to maximize R in future patients
• Regression: model R as a function of X and A (Q(X,A) = E[R|X,A]

is the “value”), with interaction between X and A being most
important

• Policy estimation: directly estimate π(X) without necessarily needing
Q(X,A) (e.g., outcome weighted learning)

• Prediction versus prescriptive decision support:
• Suppose R = f(X) +Ag(X) + e, where bigger R is better and

A = {0 or 1}
• We only care about g(x), since rule

π(X) = {1 if g(X) > 0, 0 otherwise} yields optimal decision
• A focus on prediction may yield information inefficiency through focus

on f(X) instead of g(X)
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The Multi-Decision Setting

• The multi-decision setting:
• Two or more opportunities for treatment decisions (i.e., cancer

treatment involving multiple lines of chemotherapy, other chronic
diseases, etc.).

• Interventions can affect patients in multiple ways
• Immediate effects (proximal)
• Delayed effects (distal): sometimes the best treatment is initially

harmful but sets the patient up for a better response to certain future
treatments
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Multi-Decision Setting, cont.

• The basic ingredients:
• The data: (X1, A1, R1, . . . , XT , AT , RT ), where

• X1 ∈ X1 denotes baseline information
• Xt ∈ Xt denotes interim information collected during treatment stages

t = 2, . . . , T
• At ∈ At denotes treatment and
• Rt denotes proximal outcome measured after treatment at stage t,
• for t = 1, . . . , T .

• Define H1 = X1 and Ht = (Ht−1, At−1, Rt−1, Xt) so that Ht is the
available patient history at time t before new action.

• The data used for analysis is now (H1, A1, R1, . . . ,HT , AT , RT ).
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DTR Estimation for the Multi-Decision Setting

The Bellman equation and Q-learning

• Qπ
k(h, a) =
E[Rk +Qπ

k+1(Hk+1, Ak+1 = πk+1(Hk+1)) | Hk = h,Ak = a],
k = K − 1,K − 2, ..., 1,

where π is a certain policy that maps
H ≡ (H1, ...,Hk) 7→ A ≡ (A1, ...,Ak).

• Q-learning recursively finds the optimal policy as
π∗
k(h) = argmaxa∈Ak

Qπ∗
k (h, a), k = K,K − 1, ..., 1.
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Q-learning for the Multi-Decision Setting

• Regress RT onto (HT , AT ) to obtain an estimate of
E[RT |HT = h,AT = a], denoted Q̂T (h, a).

• For each individual, compute R̂T = supa∈AT
Q̂T (HT , a).

• Proceeding backwards from t = T − 1 to t = 1, do the following:
• Regress Rt + R̂t+1 onto (Ht, At) to obtain an estimate of

E[Rt + R̂t+1|Ht = h,At = a], denoted Q̂t(h, a).
• For each individual, compute R̂t = supa∈At

Q̂t(Ht, a).

The estimated optimal dynamic treatment regime is then
π̂t(ht) = argmaxa∈At Q̂t(ht, a), for t = 1, . . . , T .

Cho, Holloway & Kosorok (UNC-CH BIOS) Nonparametric Reinforcement Learning for Survival OutcomesApril 3, 2023 8 / 31



Dynamic treatment regimes (DTR) for survival outcomes

Question: Can we find a set of dynamic rules that maximizes the survival
outcomes?
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Dynamic treatment regimes (DTR) for survival outcomes

Question: Can we find a set of dynamic rules that maximizes the survival
outcomes?

A potential solution: Q-learning.
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Dynamic treatment regimes (DTR) for survival outcomes

Question: Can we find a set of dynamic rules that maximizes the survival
outcomes?

A potential solution: Q-learning.

Challenges:

• Number of stages differ (failure or dropout before all planned visits).

• How to do backward recursion for survival data?
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DTR for survival outcomes – Literature

How was censoring handled in the literature?
Goldberg and Kosorok (2012)

• modified data without loss or addition of information
• The time increments (Rk = Tk) after censoring/failure are left as zero

• The history after censoring/failure is set as Hk = ∅

• The actions after censoring/failure are randomly drawn.

• Use Q-learning with the complete ‘pseudo’ data

• Censoring is handled by inverse probability of censoring weighting
(IPCW).
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DTR for survival outcomes – Literature

How was censoring handled in the literature?
Goldberg and Kosorok (2012)

• modified data without loss or addition of information
• The time increments (Rk = Tk) after censoring/failure are left as zero

• The history after censoring/failure is set as Hk = ∅

• The actions after censoring/failure are randomly drawn.

• Use Q-learning with the complete ‘pseudo’ data

• Censoring is handled by inverse probability of censoring weighting
(IPCW).

However, independent censoring was assumed.
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DTR for survival outcomes – Literature, continued

Several other relevant methods.

method |Ak| failure time policy class censoring criterion
Goldberg et al (2012) finite nonparametric flexible C ⊥ Tk E[T ]
Huang et al (2014) finite AFT linear CI E[T ]
Simoneau et al (2019) 2 AFT linear CI E[T ]
Jiang et al (2017) 2 PH linear CI S(t)

• |Ak|, the number of treatment arms at stage k.

• criterion, the target value being optimized.

• AFT, accelerated failure time; PH, proportional hazards; CI, conditional independence.

• E[T ], mean (truncated) survival time; S(t), survival probability at time t.
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DTR for survival outcomes – the proposed method

The proposed method.

• Nonparametric Q-function estimation (random forest).

• Censoring mechanism: covariate-conditionally independent.

• The outcome of interest = ϕ(S), some function of the survival
probability;
ϕ(S) can be the (truncated) mean survival time (E[T ∧ τ ]) or
survival probability at a certain time t (S(t)).

• Backward recursion ⇒ Slightly more general than Q-learning
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DTR for survival outcomes - Notation

• K treatment stages
(Ak ∈ Ak, k = 1, 2, ...,K).

• (Tk, Uk) are the times to failure
and the next treatment at Stage
k.

• Vk = Tk ∧ Uk.

• γk = 1(Tk ≤ Uk).

• Lk = “the remaining life” after
start of Stage k.

• Bk = time elapsed before k.

• Lk can be recursively written as,

Lk = Vk + (1− γk)Lk+1 for k < K − 1.

• L∗
k = the remaining life, were the optimal treatments given in later

stages (k′ > k).
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DTR for survival outcomes - Notation, continued

• Xk = min(Tk, Uk︸ ︷︷ ︸
∧=Vk

, C −Bk)

is the observed stage length.

• δk = 1(Vk ≤ Xk).
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DTR for survival outcomes - Overview of the estimator

• Backward recursion: Start from stage K,K − 1, ..., 1.

• For stage k,
• Estimate Sk (the “cumulative” survival curves): Ŝk(t | Hk, Ak = a)

• Find π̂k (the stage k decision rule):
π̂k(h) = argmaxa ϕ(Ŝk(...|Hk = h, a))

• Augmentation: Add the previous stage length to the optimized curve
when γk−1 = 0. Xk−1 + L∗

k where L∗
k ∼ Ŝπ̂k

k .

• The final rule: π̂ = (π̂1, π̂2, ..., π̂K)⊤.
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DTR for survival outcomes - some details

The terminal stage estimator (k = K)

• SK(t|HK , AK): the ‘terminal stage’ survivor function of LK(= TK).

• Estimated using random survival forest.

• The optimal ITR estimator for stage K is,

π̂K(hK) = arg max
a∈AK

ϕ(Ŝk(t−Bk|HK = hK , AK = a)).
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DTR for survival outcomes - illustration
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DTR for survival outcomes - The estimator, continued

For earlier stages. Consider stage k < K.

• stage length Xk at k is augmented by Ŝ∗
k+1.

This is done by using Ŝ∗
k+1(t−Xk|Hk, Ak) for each individual.

(For those censored during stage k, no augmentation is needed.)

• Now the survival distribution of Lk is estimated using the
stochastically augmented intervals {Ŝ∗

k+1(t−Xk,i|Hk,i, Ak,i)}i.
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DTR for survival outcomes - Generalized random forests

• Generalized random survival forests are used.
Modified splitting rules, Modified Kaplan-Meier at terminal nodes

• Properties: uniform consistency under certain regularity conditions.

• Simulations validate theory, is effective in example application.
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DTR for survival outcomes - Theoretical results

Theorem

Assuming the conditions that follow, the value V of the estimated optimal
dynamic treatment regime, π̂, is consistent for the truth. I.e.,

|V(π̂)− V(π∗)| →P 0,

as n → ∞, where the value (V(π)) is either the restricted mean survival
time (E[Tπ ∧ τ ]) or the survival probability at a certain time (Sπ(t0)).
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DTR for survival outcomes - Theoretical results,
assumptions

Assumptions for each stage k:

1 Stable unit treatment value assumption SUTVA

2 Ak ⊥ T a
k | Hk, ∀a ∈ Ak sequential ignorability

3 Pr(Ak = a | Hk = h) > L1 ∀a, h, ∃L1 > 0. positivity

4 Pr(Uk < Tk ∧ Ck|h) > M, ∀h ∈ Hk, ∃M > 0. completion

5 |Sk(t | h1)− Sk(t | h1)| ≤ LS∥h1 − h2∥, Lipschitz continuity
|Gk(t | h1)−Gk(t | h1)| ≤ LG∥h1 − h2∥,
∀h1,h2,∃0 < LS , LG < ∞.

6 1/ζ ≤ fHk
(h) ≤ ζ weak dependence

7 nmin → ∞ with logn log logn
nmin

→ ∞ terminal node size

8 Regular and random-split trees less greedy splitting
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DTR outline of proof

• We use error bounding methods given in Murphy (2005) and
Goldberg and Kosorok (2012) to bound the DTR error by the uniform
accuracy of the nonparametric survival estimator at each 1 ≤ k ≤ K.

• Specifically, we show that

V(π∗)− V(π̂) ≤
K∑
k=1

ck(ϕ)

×
√

sup
hk,ak,t∈[0,τ ]

∣∣∣Ŝk (t |hk, ak )− Sk (t |hk, ak )
∣∣∣,

where ck(ϕ) are constants that depend on the reward function ϕ.

• We then establish the needed uniform consistency and convergence
rates.
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Uniform consistency of survival estimators - Theoretical
results

Theorem

Suppose the assumptions hold. Let Ŝ = (Ŝ1, ..., Ŝ2, ..., ŜK) be the
sequence of the generalized random survival forest estimators of
S = (S1, ..., Sk, ..., SK) such that the kth stage random survival forest is
built based on Ŝk+1 for k = 1, 2, ...,K − 1. Then,

sup
t∈[0,τ ],h∈Hk,k∈{1,2,...,K}

|Ŝk(t | h)− Sk(t | h)| → 0,

in probability as n → ∞.
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Survival consistency outline of proof

• Results follow from uniform consistency of each Ŝk, beginning with
k = K and going backwards to k = 1.

• We use Z-estimator consistency based on identifiably of the
estimating equation (i.e., showing that if the expected Z-function,
evaluated at θn, goes to zero uniformly over the index, then this
forces ∥θn − θ0∥ → 0) combined with uniform consistency of the
empirical Z-function (see, e.g., Theorem 2.10 of Kosorok, 2008).

• We use VC-dimension bounded kernel representations of the random
forests based on axis-aligned rectangles to obtain consistency of the
empirical Z-function.
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Uniform convergence rate of survival estimators -
Theoretical results

Theorem

Suppose the assumptions hold plus a few additional assumptions. Then,
for any k = 1, 2, ...,K, there exists an 1 ≤ n0 < ∞ such that for all
n > n0 the following holds with probability ≥ 1− 3(K−k+1)√

n
:

sup
t≤τ,hk

|Ŝk(t;hk)− Sk(t;hk)|

≤
K∑
l=k

11

c1

√
log( n

nmin
){log(dlnmin) + 3 log log(n)}
nmin log((1− α)−1)

+ζLS

{
2nmin

n

} log((1−α)−1)

log(α−1)

0.991φ
dl

,

where the constants come from the assumptions.
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Uniform convergence rate of survival estimators -
Theoretical results, cont.

Theorem

In the context of the previous theorem, nmin and the the other tuning
parameters can be chosen so that, for some η > 0,

sup
t≤τ,hk

|Ŝk(t;hk)− Sk(t;hk)| = OP (n
−η),

and
V(π∗)− V(π̂) ≤ OP (n

−η/2).

Thus the convergences rates are polynomial in n.
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Simulation results

from Cho, Holloway and Kosorok (2020)
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Leukemia clinical trial results

• We applied these methods to an acute myeloid leukemia clinical trial
with survival as an outcome (Wahed & Thall, 2013; Xu et al, 2016).

• 210 patients were randomized to frontline treatment (4 possibilities)
followed by salvage treatment (2 classes) adaptively chosen by
clinicians based on patient status.
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Leukemia clinical trial results, cont.

from Cho, Holloway and Kosorok (2020)
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DTR for survival outcomes - Discussion

• Clinicians appear to be making treatment selection effectively.

• Composite criterion
• Optimize S(t) first and, if tied, use E(T ) as the second criterion.

• Non-Markov assumption: History matters.
However, the disease dynamics need to be stationary within a
treatment stage.
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