Nonparametric Reinforcement Learning for Survival Outcomes

Hunyong Cho, Shannon T. Holloway, and Michael R. Kosorok*

University of North Carolina at Chapel Hill and North Carolina State University

April 3, 2023

- (Statistical) precision medicine
 - Data-driven decision support for treating patients in the presence of heterogeneity (dynamic treatment regimes or DTRs)
 - Treatment can include drug choice, administrative actions, dosing, timing, potentially modifiable risk factors, and/or other potentially beneficial actions to the patients
 - Must be reproducible and generalizable (empirically and inferentially valid)

- Observable Constituents:
 - Tailoring variables (X)
 - Choice of treatments and/or potentially modifiable risk factors (A)
 - Vector of outcomes or utilities (R)
 - Could be multiple (X, A, R) triples over time for each patient
- Dynamic Treatment Regime (DTR):
 - Single decision: make a single recommendation for treatment
 - Multiple decision: make a series of interdependent recommendations
 - Continual monitoring: for diabetes, mHealth

- Role of Heterogeneity in the data:
 - Heterogeneity of patients is beneficial (essential) for good precision medicine analysis so that estimated treatment rules are broadly applicable
 - Need heterogeneity of treatment assignment (either naturally or by design) in the data so we can determine best treatment under a variety of situations

Dynamic Treatment Regime:

- $\pi(X)$ gives recommended A to maximize R in future patients
- Regression: model R as a function of X and A (Q(X, A) = E[R|X, A] is the "value"), with interaction between X and A being most important
- Policy estimation: directly estimate $\pi(X)$ without necessarily needing Q(X, A) (e.g., outcome weighted learning)
- Prediction versus prescriptive decision support:
 - Suppose R = f(X) + Ag(X) + e, where bigger R is better and $A = \{0 \text{ or } 1\}$
 - We only care about g(x), since rule $\pi(X) = \{1 \text{ if } g(X) > 0, 0 \text{ otherwise} \}$ yields optimal decision
 - A focus on prediction may yield information inefficiency through focus on f(X) instead of g(X)

- The multi-decision setting:
 - Two or more opportunities for treatment decisions (i.e., cancer treatment involving multiple lines of chemotherapy, other chronic diseases, etc.).
 - Interventions can affect patients in multiple ways
 - Immediate effects (proximal)
 - Delayed effects (distal): sometimes the best treatment is initially harmful but sets the patient up for a better response to certain future treatments

• The basic ingredients:

- The data: $(X_1, A_1, R_1, \ldots, X_T, A_T, R_T)$, where
 - $X_1 \in \mathcal{X}_1$ denotes baseline information
 - $X_t \in \mathcal{X}_t$ denotes interim information collected during treatment stages $t = 2, \dots, T$
 - $A_t \in \mathcal{A}_t$ denotes treatment and
 - R_t denotes proximal outcome measured after treatment at stage t,
 - for t = 1, ..., T.
- Define $H_1 = X_1$ and $H_t = (H_{t-1}, A_{t-1}, R_{t-1}, X_t)$ so that H_t is the available patient history at time t before new action.
- The data used for analysis is now $(H_1, A_1, R_1, \ldots, H_T, A_T, R_T)$.

The Bellman equation and Q-learning

•
$$Q_k^{\pi}(h, a) = E[R_k + Q_{k+1}^{\pi}(H_{k+1}, A_{k+1} = \pi_{k+1}(H_{k+1})) \mid H_k = h, A_k = a],$$

 $k = K - 1, K - 2, ..., 1,$

where π is a certain policy that maps $\mathcal{H} \equiv (\mathcal{H}_1, ..., \mathcal{H}_k) \mapsto \mathcal{A} \equiv (\mathcal{A}_1, ..., \mathcal{A}_k).$ The Bellman equation and Q-learning

•
$$Q_k^{\pi}(h, a) = E[R_k + Q_{k+1}^{\pi}(H_{k+1}, A_{k+1} = \pi_{k+1}(H_{k+1})) | H_k = h, A_k = a],$$

 $k = K - 1, K - 2, ..., 1,$

where π is a certain policy that maps $\mathcal{H} \equiv (\mathcal{H}_1, ..., \mathcal{H}_k) \mapsto \mathcal{A} \equiv (\mathcal{A}_1, ..., \mathcal{A}_k).$

• Q-learning recursively finds the optimal policy as $\pi_k^*(h) = \arg \max_{a \in \mathcal{A}_k} Q_k^{\pi^*}(h, a), \qquad \qquad k = K, K-1, ..., 1.$

- Regress R_T onto (H_T, A_T) to obtain an estimate of $E[R_T|H_T = h, A_T = a]$, denoted $\hat{Q}_T(h, a)$.
- For each individual, compute $\hat{R}_T = \sup_{a \in \mathcal{A}_T} \hat{Q}_T(H_T, a)$.
- Proceeding backwards from t = T 1 to t = 1, do the following:
 - Regress $R_t + \hat{R}_{t+1}$ onto (H_t, A_t) to obtain an estimate of $E[R_t + \hat{R}_{t+1}|H_t = h, A_t = a]$, denoted $\hat{Q}_t(h, a)$.
 - For each individual, compute $\hat{R}_t = \sup_{a \in \mathcal{A}_t} \hat{Q}_t(H_t, a)$.

The estimated optimal dynamic treatment regime is then $\hat{\pi}_t(h_t) = \arg \max_{a \in \mathcal{A}_t} \hat{Q}_t(h_t, a)$, for $t = 1, \dots, T$.

Question: Can we find a set of dynamic rules that maximizes the survival outcomes?

Question: Can we find a set of dynamic rules that maximizes the survival outcomes?

A potential solution: Q-learning.

Question: Can we find a set of dynamic rules that maximizes the survival outcomes?

A potential solution: Q-learning.

Question: Can we find a set of dynamic rules that maximizes the survival outcomes?

A potential solution: Q-learning.

Question: Can we find a set of dynamic rules that maximizes the survival outcomes?

A potential solution: Q-learning.

Challenges:

- Number of stages differ (failure or dropout before all planned visits).
- How to do backward recursion for survival data?

- modified data without loss or addition of information
 - The time increments $(R_k = T_k)$ after censoring/failure are left as zero
 - The history after censoring/failure is set as $H_k = \emptyset$
 - The actions after censoring/failure are randomly drawn.

- modified data without loss or addition of information
 - The time increments $(R_k = T_k)$ after censoring/failure are left as zero
 - The history after censoring/failure is set as $H_k = \emptyset$
 - The actions after censoring/failure are randomly drawn.
- Use Q-learning with the complete 'pseudo' data

- modified data without loss or addition of information
 - The time increments $(R_k = T_k)$ after censoring/failure are left as zero
 - The history after censoring/failure is set as $H_k = \emptyset$
 - The actions after censoring/failure are randomly drawn.
- Use Q-learning with the complete 'pseudo' data
- Censoring is handled by inverse probability of censoring weighting (IPCW).

- modified data without loss or addition of information
 - The time increments $(R_k = T_k)$ after censoring/failure are left as zero
 - The history after censoring/failure is set as $H_k = \emptyset$
 - The actions after censoring/failure are randomly drawn.
- Use Q-learning with the complete 'pseudo' data
- Censoring is handled by inverse probability of censoring weighting (IPCW).

However, *independent censoring* was assumed.

Several other relevant methods.

method	$ \mathcal{A}_k $	failure time	policy class	censoring	criterion
Goldberg et al (2012)	finite	nonparametric	flexible	$C \perp T_k$	E[T]
Huang et al (2014)	finite	AFT	linear	CI	E[T]
Simoneau et al (2019)	2	AFT	linear	CI	E[T]
Jiang et al (2017)	2	PH	linear	CI	S(t)

- $|\mathcal{A}_k|$, the number of treatment arms at stage k.
- criterion, the target value being optimized.
- AFT, accelerated failure time; PH, proportional hazards; CI, conditional independence.
- E[T], mean (truncated) survival time; S(t), survival probability at time t.

Several other relevant methods.

method	$ \mathcal{A}_k $	failure time	policy class	censoring	criterion
Goldberg et al (2012)	finite	nonparametric	flexible	$C \perp T_k$	E[T]
Huang et al (2014)	finite	AFT	linear	CI	E[T]
Simoneau et al (2019)	2	AFT	linear	CI	E[T]
Jiang et al (2017)	2	PH	linear	CI	S(t)
new	finite	nonparametric	flexible	CI	E[T], S(t)

 $|\mathcal{A}_k|$, the number of treatment arms at stage k.

- criterion, the target value being optimized.
- AFT, accelerated failure time; PH, proportional hazards; CI, conditional independence.
- E[T], mean (truncated) survival time; S(t), survival probability at time t.

The proposed method.

- Nonparametric Q-function estimation (random forest).
- Censoring mechanism: covariate-conditionally independent.
- The outcome of interest $= \phi(S)$, some function of the survival probability; $\phi(S)$ can be the (truncated) mean survival time $(E[T \land \tau])$ or survival probability at a certain time t (S(t)).

The proposed method.

- Nonparametric Q-function estimation (random forest).
- Censoring mechanism: covariate-conditionally independent.
- The outcome of interest $= \phi(S)$, some function of the survival probability; $\phi(S)$ can be the (truncated) mean survival time $(E[T \land \tau])$ or survival probability at a certain time t (S(t)).
- Backward recursion \Rightarrow Slightly more general than Q-learning

DTR for survival outcomes - Notation

- K treatment stages $(A_k \in \mathcal{A}_k, \ k = 1, 2, ..., K).$
- (T_k, U_k) are the times to failure and the next treatment at Stage k.

•
$$V_k = T_k \wedge U_k$$
.

•
$$\gamma_k = 1(T_k \le U_k).$$

- L_k = "the remaining life" after start of Stage k.
- $B_k = \text{time elapsed before } k$.

DTR for survival outcomes - Notation

- K treatment stages $(A_k \in \mathcal{A}_k, \ k = 1, 2, ..., K).$
- (T_k, U_k) are the times to failure and the next treatment at Stage k.

•
$$V_k = T_k \wedge U_k$$
.

•
$$\gamma_k = 1(T_k \le U_k).$$

- L_k = "the remaining life" after start of Stage k.
- $B_k = \text{time elapsed before } k$.

L_k can be recursively written as,

$$L_k = V_k + (1 - \gamma_k)L_{k+1}$$
 for $k < K - 1$.

DTR for survival outcomes - Notation

- K treatment stages $(A_k \in \mathcal{A}_k, \ k = 1, 2, ..., K).$
- (T_k, U_k) are the times to failure and the next treatment at Stage k.

•
$$V_k = T_k \wedge U_k$$
.

•
$$\gamma_k = 1(T_k \le U_k).$$

- L_k = "the remaining life" after start of Stage k.
- $B_k = \text{time elapsed before } k$.

L_k can be recursively written as,

$$L_k = V_k + (1 - \gamma_k)L_{k+1}$$
 for $k < K - 1$.

L^{*}_k = the remaining life, were the optimal treatments given in later stages (k' > k).

DTR for survival outcomes - Notation, continued

•
$$X_k = \min(\underbrace{T_k, U_k}_{\wedge = V_k}, C - B_k)$$

is the observed stage length.
• $\delta_k = 1(V_k \le X_k).$

Cho, Holloway & Kosorok (UNC-CH BIOS) Nonparametric Reinforcement Learning for S

April 3 2023

DTR for survival outcomes - Notation, continued

• $X_k = \min(\underbrace{T_k, U_k}_{\wedge = V_k}, C - B_k)$ is the observed stage length. • $\delta_k = 1(V_k \le X_k).$

- Backward recursion: Start from stage K, K 1, ..., 1.
- For stage k,
 - Estimate S_k (the "cumulative" survival curves): $\hat{S}_k(t \mid H_k, A_k = a)$
 - Find $\hat{\pi}_k$ (the stage k decision rule): $\hat{\pi}_k(h) = \arg \max_a \phi(\hat{S}_k(...|H_k = h, a))$
 - Augmentation: Add the previous stage length to the optimized curve when $\gamma_{k-1} = 0$. $X_{k-1} + L_k^*$ where $L_k^* \sim \hat{S}_k^{\hat{\pi}_k}$.
- The final rule: $\hat{\boldsymbol{\pi}} = (\hat{\pi}_1, \hat{\pi}_2, ..., \hat{\pi}_K)^\top.$

The terminal stage estimator (k = K)

- $S_K(t|H_K, A_K)$: the 'terminal stage' survivor function of $L_K(=T_K)$.
- Estimated using random survival forest.
- The optimal ITR estimator for stage K is,

 $\hat{\pi}_K(h_K) = \arg \max_{a \in \mathcal{A}_K} \phi(\hat{S}_k(t - B_k | H_K = h_K, A_K = a)).$

April 3, 2023

April 3, 2023

Cho, Holloway & Kosorok (UNC-CH BIOS) Nonparametric Reinforcement Learning for S

7/31

For earlier stages. Consider stage k < K.

- stage length X_k at k is augmented by \hat{S}^*_{k+1} . This is done by using $\hat{S}^*_{k+1}(t - X_k | H_k, A_k)$ for each individual. (For those censored during stage k, no augmentation is needed.)
- Now the survival distribution of L_k is estimated using the stochastically augmented intervals $\{\hat{S}_{k+1}^*(t X_{k,i} | H_{k,i}, A_{k,i})\}_i$.

DTR for survival outcomes - Generalized random forests

- Generalized random survival forests are used.
 Modified splitting rules, Modified Kaplan-Meier at terminal nodes
- Properties: uniform consistency under certain regularity conditions.
- Simulations validate theory, is effective in example application.

Theorem

Assuming the conditions that follow, the value \mathcal{V} of the estimated optimal dynamic treatment regime, $\hat{\pi}$, is consistent for the truth. I.e.,

$$|\mathcal{V}(\hat{\boldsymbol{\pi}}) - \mathcal{V}(\boldsymbol{\pi}_*)| \to_P 0,$$

as $n \to \infty$, where the value $(\mathcal{V}(\pi))$ is either the restricted mean survival time $(E[T^{\pi} \wedge \tau])$ or the survival probability at a certain time $(S^{\pi}(t_0))$.

DTR for survival outcomes - Theoretical results, assumptions

Assumptions for each stage k:

April 3, 2

21 /

DTR outline of proof

- We use error bounding methods given in Murphy (2005) and Goldberg and Kosorok (2012) to bound the DTR error by the uniform accuracy of the nonparametric survival estimator at each 1 ≤ k ≤ K.
- Specifically, we show that

$$\mathcal{V}(\pi_*) - \mathcal{V}(\hat{\pi}) \leq \sum_{k=1}^{K} c_k(\phi)$$
$$\times \sqrt{\sup_{\boldsymbol{h}_k, a_k, t \in [0, \tau]} \left| \hat{S}_k(t | \boldsymbol{h}_k, a_k) - S_k(t | \boldsymbol{h}_k, a_k) \right|},$$

where $c_k(\phi)$ are constants that depend on the reward function ϕ .

• We then establish the needed uniform consistency and convergence rates.

Uniform consistency of survival estimators - Theoretical results

Theorem

Suppose the assumptions hold. Let $\hat{S} = (\hat{S}_1, ..., \hat{S}_2, ..., \hat{S}_K)$ be the sequence of the generalized random survival forest estimators of $S = (S_1, ..., S_k, ..., S_K)$ such that the kth stage random survival forest is built based on \hat{S}_{k+1} for k = 1, 2, ..., K - 1. Then,

$$\sup_{t \in [0,\tau], \boldsymbol{h} \in \mathcal{H}_k, k \in \{1,2,\dots,K\}} |\hat{S}_k(t \mid \boldsymbol{h}) - S_k(t \mid \boldsymbol{h})| \to 0,$$

in probability as $n \to \infty$.

- Results follow from uniform consistency of each \hat{S}_k , beginning with k = K and going backwards to k = 1.
- We use Z-estimator consistency based on identifiably of the estimating equation (i.e., showing that if the expected Z-function, evaluated at θ_n , goes to zero uniformly over the index, then this forces $\|\theta_n \theta_0\| \rightarrow 0$) combined with uniform consistency of the empirical Z-function (see, e.g., Theorem 2.10 of Kosorok, 2008).
- We use VC-dimension bounded kernel representations of the random forests based on axis-aligned rectangles to obtain consistency of the empirical Z-function.

Uniform convergence rate of survival estimators -Theoretical results

Theorem

Suppose the assumptions hold plus a few additional assumptions. Then, for any k = 1, 2, ..., K, there exists an $1 \le n_0 < \infty$ such that for all $n > n_0$ the following holds with probability $\ge 1 - \frac{3(K-k+1)}{\sqrt{n}}$:

$$\begin{split} \sup_{t \le \tau, \boldsymbol{h}_{k}} &|\hat{S}_{k}(t; \boldsymbol{h}_{k}) - S_{k}(t; \boldsymbol{h}_{k})| \\ \le & \sum_{l=k}^{K} \frac{11}{c_{1}} \sqrt{\frac{\log(\frac{n}{n_{\min}}) \{\log(d_{l}n_{\min}) + 3\log\log(n)\}}{n_{\min}\log((1-\alpha)^{-1})}} \\ &+ \zeta L_{S} \left\{ \frac{2n_{\min}}{n} \right\}^{\frac{\log((1-\alpha)^{-1})}{\log(\alpha^{-1})} \frac{0.991\varphi}{d_{l}}}, \end{split}$$

where the constants come from the assumptions.

Cho, Holloway & Kosorok (UNC-CH BIOS) Nonparametric Reinforcement Learning for S

Uniform convergence rate of survival estimators -Theoretical results, cont.

Theorem

In the context of the previous theorem, n_{\min} and the the other tuning parameters can be chosen so that, for some $\eta > 0$,

$$\sup_{t \leq \tau, \boldsymbol{h}_k} |\hat{S}_k(t; \boldsymbol{h}_k) - S_k(t; \boldsymbol{h}_k)| = O_P(n^{-\eta}),$$

and

$$\mathcal{V}(\pi_*) - \mathcal{V}(\hat{\pi}) \le O_P(n^{-\eta/2}).$$

Thus the convergences rates are polynomial in n.

Simulation results

from Cho, Holloway and Kosorok (2020)

April 3 2023

- We applied these methods to an acute myeloid leukemia clinical trial with survival as an outcome (Wahed & Thall, 2013; Xu et al, 2016).
- 210 patients were randomized to frontline treatment (4 possibilities) followed by salvage treatment (2 classes) adaptively chosen by clinicians based on patient status.

Leukemia clinical trial results, cont.

from Cho, Holloway and Kosorok (2020)

April 3 2023

- Clinicians appear to be making treatment selection effectively.
- Composite criterion
 - Optimize S(t) first and, if tied, use E(T) as the second criterion.
- Non-Markov assumption: History matters. However, the disease dynamics need to be stationary within a treatment stage.

DTR for survival outcomes–Collaboration, status, and Acknowledgement

- We thank Dr. Donglin Zeng for the discussion of the composite criterion.
- Data credits to Drs. Peter F. Thall, Abdus S. Wahed, and Yanxun Xu (the leukemia data).
- Partial support by grant P01 CA142538 from the National Cancer Institute.
- In press with *Biometrika*. Available on arXiv.
- R package dtrSurv on CRAN.

Precision Health and Artificial Intelligence Research