
An Introduction to R Graphics
Part I—Base Graphics

Dan Hall, Director of the SCC

Table of Contents

Introduction

Base Graphics
Graphics Devices
Graphical Parameters

Plot Types and Plotting Functions
The plot() Function
Bar Charts
Histograms
Boxplots
Labelling Points
Profile Plots for Longitudinal Data
Adding Fitted Lines/Curves to a Plot
Scatterplot Matrices
Multiple Plots per Page

Resources for Graphics in R

2/34

Introduction
Having powerful and flexible systems for graphics is one of R’s biggest
strengths.

• Base Graphics. Contained in the graphics package distributed in base R.

• Grid graphics. grid package is distributed in base R.
• Contains low-level graphics functions.
• Useful as a platform for developing and implementing higher-level graphics
functions and systems.

• Lattice Graphics. lattice package also distributed in base R.
• Mimics and extends trellis graphics from S and S-PLUS.
• Characteristic feature is plots with multiple panels.
• Built on grid.

• ggplot2 Graphics. ggplot2 package available on CRAN.
• Based on Leland Wilkinson’s ideas articulated in his book, The Grammar

of Graphics.
• Sophisticated and powerful system. Not too hard to learn.
• Built on grid.

3/34

Introduction
Having powerful and flexible systems for graphics is one of R’s biggest
strengths.

• Base Graphics. Contained in the graphics package distributed in base R.

• Grid graphics. grid package is distributed in base R.
• Contains low-level graphics functions.
• Useful as a platform for developing and implementing higher-level graphics
functions and systems.

• Lattice Graphics. lattice package also distributed in base R.
• Mimics and extends trellis graphics from S and S-PLUS.
• Characteristic feature is plots with multiple panels.
• Built on grid.

• ggplot2 Graphics. ggplot2 package available on CRAN.
• Based on Leland Wilkinson’s ideas articulated in his book, The Grammar

of Graphics.
• Sophisticated and powerful system. Not too hard to learn.
• Built on grid.

3/34

Introduction
Having powerful and flexible systems for graphics is one of R’s biggest
strengths.

• Base Graphics. Contained in the graphics package distributed in base R.

• Grid graphics. grid package is distributed in base R.
• Contains low-level graphics functions.
• Useful as a platform for developing and implementing higher-level graphics
functions and systems.

• Lattice Graphics. lattice package also distributed in base R.
• Mimics and extends trellis graphics from S and S-PLUS.
• Characteristic feature is plots with multiple panels.
• Built on grid.

• ggplot2 Graphics. ggplot2 package available on CRAN.
• Based on Leland Wilkinson’s ideas articulated in his book, The Grammar

of Graphics.
• Sophisticated and powerful system. Not too hard to learn.
• Built on grid.

3/34

Introduction
Having powerful and flexible systems for graphics is one of R’s biggest
strengths.

• Base Graphics. Contained in the graphics package distributed in base R.

• Grid graphics. grid package is distributed in base R.
• Contains low-level graphics functions.
• Useful as a platform for developing and implementing higher-level graphics
functions and systems.

• Lattice Graphics. lattice package also distributed in base R.
• Mimics and extends trellis graphics from S and S-PLUS.
• Characteristic feature is plots with multiple panels.
• Built on grid.

• ggplot2 Graphics. ggplot2 package available on CRAN.
• Based on Leland Wilkinson’s ideas articulated in his book, The Grammar

of Graphics.
• Sophisticated and powerful system. Not too hard to learn.
• Built on grid.

3/34

Introduction
Having powerful and flexible systems for graphics is one of R’s biggest
strengths.

• Base Graphics. Contained in the graphics package distributed in base R.

• Grid graphics. grid package is distributed in base R.
• Contains low-level graphics functions.
• Useful as a platform for developing and implementing higher-level graphics
functions and systems.

• Lattice Graphics. lattice package also distributed in base R.
• Mimics and extends trellis graphics from S and S-PLUS.
• Characteristic feature is plots with multiple panels.
• Built on grid.

• ggplot2 Graphics. ggplot2 package available on CRAN.
• Based on Leland Wilkinson’s ideas articulated in his book, The Grammar

of Graphics.
• Sophisticated and powerful system. Not too hard to learn.
• Built on grid.

3/34

Introduction
Having powerful and flexible systems for graphics is one of R’s biggest
strengths.

• Base Graphics. Contained in the graphics package distributed in base R.

• Grid graphics. grid package is distributed in base R.
• Contains low-level graphics functions.
• Useful as a platform for developing and implementing higher-level graphics
functions and systems.

• Lattice Graphics. lattice package also distributed in base R.
• Mimics and extends trellis graphics from S and S-PLUS.
• Characteristic feature is plots with multiple panels.
• Built on grid.

• ggplot2 Graphics. ggplot2 package available on CRAN.
• Based on Leland Wilkinson’s ideas articulated in his book, The Grammar

of Graphics.
• Sophisticated and powerful system. Not too hard to learn.
• Built on grid.

3/34

Introduction
Having powerful and flexible systems for graphics is one of R’s biggest
strengths.

• Base Graphics. Contained in the graphics package distributed in base R.

• Grid graphics. grid package is distributed in base R.
• Contains low-level graphics functions.
• Useful as a platform for developing and implementing higher-level graphics
functions and systems.

• Lattice Graphics. lattice package also distributed in base R.
• Mimics and extends trellis graphics from S and S-PLUS.
• Characteristic feature is plots with multiple panels.
• Built on grid.

• ggplot2 Graphics. ggplot2 package available on CRAN.
• Based on Leland Wilkinson’s ideas articulated in his book, The Grammar

of Graphics.
• Sophisticated and powerful system. Not too hard to learn.
• Built on grid.

3/34

Introduction
Having powerful and flexible systems for graphics is one of R’s biggest
strengths.

• Base Graphics. Contained in the graphics package distributed in base R.

• Grid graphics. grid package is distributed in base R.
• Contains low-level graphics functions.
• Useful as a platform for developing and implementing higher-level graphics
functions and systems.

• Lattice Graphics. lattice package also distributed in base R.
• Mimics and extends trellis graphics from S and S-PLUS.
• Characteristic feature is plots with multiple panels.
• Built on grid.

• ggplot2 Graphics. ggplot2 package available on CRAN.
• Based on Leland Wilkinson’s ideas articulated in his book, The Grammar

of Graphics.
• Sophisticated and powerful system. Not too hard to learn.
• Built on grid.

3/34

Introduction
Having powerful and flexible systems for graphics is one of R’s biggest
strengths.

• Base Graphics. Contained in the graphics package distributed in base R.

• Grid graphics. grid package is distributed in base R.
• Contains low-level graphics functions.
• Useful as a platform for developing and implementing higher-level graphics
functions and systems.

• Lattice Graphics. lattice package also distributed in base R.
• Mimics and extends trellis graphics from S and S-PLUS.
• Characteristic feature is plots with multiple panels.
• Built on grid.

• ggplot2 Graphics. ggplot2 package available on CRAN.
• Based on Leland Wilkinson’s ideas articulated in his book, The Grammar

of Graphics.
• Sophisticated and powerful system. Not too hard to learn.
• Built on grid.

3/34

Introduction
Having powerful and flexible systems for graphics is one of R’s biggest
strengths.

• Base Graphics. Contained in the graphics package distributed in base R.

• Grid graphics. grid package is distributed in base R.
• Contains low-level graphics functions.
• Useful as a platform for developing and implementing higher-level graphics
functions and systems.

• Lattice Graphics. lattice package also distributed in base R.
• Mimics and extends trellis graphics from S and S-PLUS.
• Characteristic feature is plots with multiple panels.
• Built on grid.

• ggplot2 Graphics. ggplot2 package available on CRAN.
• Based on Leland Wilkinson’s ideas articulated in his book, The Grammar

of Graphics.
• Sophisticated and powerful system. Not too hard to learn.
• Built on grid.

3/34

Introduction
Having powerful and flexible systems for graphics is one of R’s biggest
strengths.

• Base Graphics. Contained in the graphics package distributed in base R.

• Grid graphics. grid package is distributed in base R.
• Contains low-level graphics functions.
• Useful as a platform for developing and implementing higher-level graphics
functions and systems.

• Lattice Graphics. lattice package also distributed in base R.
• Mimics and extends trellis graphics from S and S-PLUS.
• Characteristic feature is plots with multiple panels.
• Built on grid.

• ggplot2 Graphics. ggplot2 package available on CRAN.
• Based on Leland Wilkinson’s ideas articulated in his book, The Grammar

of Graphics.
• Sophisticated and powerful system. Not too hard to learn.
• Built on grid.

3/34

Introduction
Having powerful and flexible systems for graphics is one of R’s biggest
strengths.

• Base Graphics. Contained in the graphics package distributed in base R.

• Grid graphics. grid package is distributed in base R.
• Contains low-level graphics functions.
• Useful as a platform for developing and implementing higher-level graphics
functions and systems.

• Lattice Graphics. lattice package also distributed in base R.
• Mimics and extends trellis graphics from S and S-PLUS.
• Characteristic feature is plots with multiple panels.
• Built on grid.

• ggplot2 Graphics. ggplot2 package available on CRAN.
• Based on Leland Wilkinson’s ideas articulated in his book, The Grammar

of Graphics.
• Sophisticated and powerful system. Not too hard to learn.
• Built on grid.

3/34

Base Graphics
• High level functions—Produce a new complete plot on the current

graphics device.
• plot(): generic function capable of a wide variety of plot types.
• boxplot(): single and side-by-side boxplots.
• hist(): histograms.
• qqplot(), qqnorm(), qqline(): quantile-quantile plots.
• dotchart(), stripchart(): dot plots.
• image(), contour(), persp(): 3d plots.
• pairs(): scatter plot matrices.

• Low level functions—Add features to an existing plot.
• lines(), points(), symbols(), segments(), arrows(): add various
features. Most have syntax similar to plot().

• abline(), curve(): add lines or curves from output of a model or at
reference locations.

• title(), legend(): add a title or legend.
• axis(): adds an axis with fine control of its appearance.
• text(), mtext(): add text within the plotting region or in the margins.

4/34

Base Graphics
• High level functions—Produce a new complete plot on the current

graphics device.
• plot(): generic function capable of a wide variety of plot types.
• boxplot(): single and side-by-side boxplots.
• hist(): histograms.
• qqplot(), qqnorm(), qqline(): quantile-quantile plots.
• dotchart(), stripchart(): dot plots.
• image(), contour(), persp(): 3d plots.
• pairs(): scatter plot matrices.

• Low level functions—Add features to an existing plot.
• lines(), points(), symbols(), segments(), arrows(): add various
features. Most have syntax similar to plot().

• abline(), curve(): add lines or curves from output of a model or at
reference locations.

• title(), legend(): add a title or legend.
• axis(): adds an axis with fine control of its appearance.
• text(), mtext(): add text within the plotting region or in the margins.

4/34

Base Graphics
• High level functions—Produce a new complete plot on the current

graphics device.
• plot(): generic function capable of a wide variety of plot types.
• boxplot(): single and side-by-side boxplots.
• hist(): histograms.
• qqplot(), qqnorm(), qqline(): quantile-quantile plots.
• dotchart(), stripchart(): dot plots.
• image(), contour(), persp(): 3d plots.
• pairs(): scatter plot matrices.

• Low level functions—Add features to an existing plot.
• lines(), points(), symbols(), segments(), arrows(): add various
features. Most have syntax similar to plot().

• abline(), curve(): add lines or curves from output of a model or at
reference locations.

• title(), legend(): add a title or legend.
• axis(): adds an axis with fine control of its appearance.
• text(), mtext(): add text within the plotting region or in the margins.

4/34

Base Graphics
• High level functions—Produce a new complete plot on the current

graphics device.
• plot(): generic function capable of a wide variety of plot types.
• boxplot(): single and side-by-side boxplots.
• hist(): histograms.
• qqplot(), qqnorm(), qqline(): quantile-quantile plots.
• dotchart(), stripchart(): dot plots.
• image(), contour(), persp(): 3d plots.
• pairs(): scatter plot matrices.

• Low level functions—Add features to an existing plot.
• lines(), points(), symbols(), segments(), arrows(): add various
features. Most have syntax similar to plot().

• abline(), curve(): add lines or curves from output of a model or at
reference locations.

• title(), legend(): add a title or legend.
• axis(): adds an axis with fine control of its appearance.
• text(), mtext(): add text within the plotting region or in the margins.

4/34

Base Graphics
• High level functions—Produce a new complete plot on the current

graphics device.
• plot(): generic function capable of a wide variety of plot types.
• boxplot(): single and side-by-side boxplots.
• hist(): histograms.
• qqplot(), qqnorm(), qqline(): quantile-quantile plots.
• dotchart(), stripchart(): dot plots.
• image(), contour(), persp(): 3d plots.
• pairs(): scatter plot matrices.

• Low level functions—Add features to an existing plot.
• lines(), points(), symbols(), segments(), arrows(): add various
features. Most have syntax similar to plot().

• abline(), curve(): add lines or curves from output of a model or at
reference locations.

• title(), legend(): add a title or legend.
• axis(): adds an axis with fine control of its appearance.
• text(), mtext(): add text within the plotting region or in the margins.

4/34

Base Graphics
• High level functions—Produce a new complete plot on the current

graphics device.
• plot(): generic function capable of a wide variety of plot types.
• boxplot(): single and side-by-side boxplots.
• hist(): histograms.
• qqplot(), qqnorm(), qqline(): quantile-quantile plots.
• dotchart(), stripchart(): dot plots.
• image(), contour(), persp(): 3d plots.
• pairs(): scatter plot matrices.

• Low level functions—Add features to an existing plot.
• lines(), points(), symbols(), segments(), arrows(): add various
features. Most have syntax similar to plot().

• abline(), curve(): add lines or curves from output of a model or at
reference locations.

• title(), legend(): add a title or legend.
• axis(): adds an axis with fine control of its appearance.
• text(), mtext(): add text within the plotting region or in the margins.

4/34

Base Graphics
• High level functions—Produce a new complete plot on the current

graphics device.
• plot(): generic function capable of a wide variety of plot types.
• boxplot(): single and side-by-side boxplots.
• hist(): histograms.
• qqplot(), qqnorm(), qqline(): quantile-quantile plots.
• dotchart(), stripchart(): dot plots.
• image(), contour(), persp(): 3d plots.
• pairs(): scatter plot matrices.

• Low level functions—Add features to an existing plot.
• lines(), points(), symbols(), segments(), arrows(): add various
features. Most have syntax similar to plot().

• abline(), curve(): add lines or curves from output of a model or at
reference locations.

• title(), legend(): add a title or legend.
• axis(): adds an axis with fine control of its appearance.
• text(), mtext(): add text within the plotting region or in the margins.

4/34

Base Graphics
• High level functions—Produce a new complete plot on the current

graphics device.
• plot(): generic function capable of a wide variety of plot types.
• boxplot(): single and side-by-side boxplots.
• hist(): histograms.
• qqplot(), qqnorm(), qqline(): quantile-quantile plots.
• dotchart(), stripchart(): dot plots.
• image(), contour(), persp(): 3d plots.
• pairs(): scatter plot matrices.

• Low level functions—Add features to an existing plot.
• lines(), points(), symbols(), segments(), arrows(): add various
features. Most have syntax similar to plot().

• abline(), curve(): add lines or curves from output of a model or at
reference locations.

• title(), legend(): add a title or legend.
• axis(): adds an axis with fine control of its appearance.
• text(), mtext(): add text within the plotting region or in the margins.

4/34

Base Graphics
• High level functions—Produce a new complete plot on the current

graphics device.
• plot(): generic function capable of a wide variety of plot types.
• boxplot(): single and side-by-side boxplots.
• hist(): histograms.
• qqplot(), qqnorm(), qqline(): quantile-quantile plots.
• dotchart(), stripchart(): dot plots.
• image(), contour(), persp(): 3d plots.
• pairs(): scatter plot matrices.

• Low level functions—Add features to an existing plot.
• lines(), points(), symbols(), segments(), arrows(): add various
features. Most have syntax similar to plot().

• abline(), curve(): add lines or curves from output of a model or at
reference locations.

• title(), legend(): add a title or legend.
• axis(): adds an axis with fine control of its appearance.
• text(), mtext(): add text within the plotting region or in the margins.

4/34

Base Graphics
• High level functions—Produce a new complete plot on the current

graphics device.
• plot(): generic function capable of a wide variety of plot types.
• boxplot(): single and side-by-side boxplots.
• hist(): histograms.
• qqplot(), qqnorm(), qqline(): quantile-quantile plots.
• dotchart(), stripchart(): dot plots.
• image(), contour(), persp(): 3d plots.
• pairs(): scatter plot matrices.

• Low level functions—Add features to an existing plot.
• lines(), points(), symbols(), segments(), arrows(): add various
features. Most have syntax similar to plot().

• abline(), curve(): add lines or curves from output of a model or at
reference locations.

• title(), legend(): add a title or legend.
• axis(): adds an axis with fine control of its appearance.
• text(), mtext(): add text within the plotting region or in the margins.

4/34

Base Graphics
• High level functions—Produce a new complete plot on the current

graphics device.
• plot(): generic function capable of a wide variety of plot types.
• boxplot(): single and side-by-side boxplots.
• hist(): histograms.
• qqplot(), qqnorm(), qqline(): quantile-quantile plots.
• dotchart(), stripchart(): dot plots.
• image(), contour(), persp(): 3d plots.
• pairs(): scatter plot matrices.

• Low level functions—Add features to an existing plot.
• lines(), points(), symbols(), segments(), arrows(): add various
features. Most have syntax similar to plot().

• abline(), curve(): add lines or curves from output of a model or at
reference locations.

• title(), legend(): add a title or legend.
• axis(): adds an axis with fine control of its appearance.
• text(), mtext(): add text within the plotting region or in the margins.

4/34

Base Graphics
• High level functions—Produce a new complete plot on the current

graphics device.
• plot(): generic function capable of a wide variety of plot types.
• boxplot(): single and side-by-side boxplots.
• hist(): histograms.
• qqplot(), qqnorm(), qqline(): quantile-quantile plots.
• dotchart(), stripchart(): dot plots.
• image(), contour(), persp(): 3d plots.
• pairs(): scatter plot matrices.

• Low level functions—Add features to an existing plot.
• lines(), points(), symbols(), segments(), arrows(): add various
features. Most have syntax similar to plot().

• abline(), curve(): add lines or curves from output of a model or at
reference locations.

• title(), legend(): add a title or legend.
• axis(): adds an axis with fine control of its appearance.
• text(), mtext(): add text within the plotting region or in the margins.

4/34

Base Graphics
• High level functions—Produce a new complete plot on the current

graphics device.
• plot(): generic function capable of a wide variety of plot types.
• boxplot(): single and side-by-side boxplots.
• hist(): histograms.
• qqplot(), qqnorm(), qqline(): quantile-quantile plots.
• dotchart(), stripchart(): dot plots.
• image(), contour(), persp(): 3d plots.
• pairs(): scatter plot matrices.

• Low level functions—Add features to an existing plot.
• lines(), points(), symbols(), segments(), arrows(): add various
features. Most have syntax similar to plot().

• abline(), curve(): add lines or curves from output of a model or at
reference locations.

• title(), legend(): add a title or legend.
• axis(): adds an axis with fine control of its appearance.
• text(), mtext(): add text within the plotting region or in the margins.

4/34

Base Graphics
• High level functions—Produce a new complete plot on the current

graphics device.
• plot(): generic function capable of a wide variety of plot types.
• boxplot(): single and side-by-side boxplots.
• hist(): histograms.
• qqplot(), qqnorm(), qqline(): quantile-quantile plots.
• dotchart(), stripchart(): dot plots.
• image(), contour(), persp(): 3d plots.
• pairs(): scatter plot matrices.

• Low level functions—Add features to an existing plot.
• lines(), points(), symbols(), segments(), arrows(): add various
features. Most have syntax similar to plot().

• abline(), curve(): add lines or curves from output of a model or at
reference locations.

• title(), legend(): add a title or legend.
• axis(): adds an axis with fine control of its appearance.
• text(), mtext(): add text within the plotting region or in the margins.

4/34

Graphics Devices

• Plots are sent to a graphics device, typically a window or file.
• Screen device functions:

• Mac-OS: quartz(). Also allows output to files of different formats.
• Unix/Linux: x11().
• Windows OS: windows() (or x11() or X11()).

I Use windows(record=TRUE) to record the plots so you can page through
them.

• In RStudio, built-in device is RStudioGD. Plots can be copied and pasted
or saved to files of different formats from it.

• There are also file devices such as pdf and postscript.
• Multiple devices can be open simultaneously, but only one is the current

device.
• Switching devices, turning them off, etc. with functions such as dev.off(),

dev.cur(), dev.next(), etc.
• Each device has its own graphical parameters. Setting parameters (e.g.,
with par()) affects those of the current device.

5/34

Graphics Devices

• Plots are sent to a graphics device, typically a window or file.
• Screen device functions:

• Mac-OS: quartz(). Also allows output to files of different formats.
• Unix/Linux: x11().
• Windows OS: windows() (or x11() or X11()).

I Use windows(record=TRUE) to record the plots so you can page through
them.

• In RStudio, built-in device is RStudioGD. Plots can be copied and pasted
or saved to files of different formats from it.

• There are also file devices such as pdf and postscript.
• Multiple devices can be open simultaneously, but only one is the current

device.
• Switching devices, turning them off, etc. with functions such as dev.off(),

dev.cur(), dev.next(), etc.
• Each device has its own graphical parameters. Setting parameters (e.g.,
with par()) affects those of the current device.

5/34

Graphics Devices

• Plots are sent to a graphics device, typically a window or file.
• Screen device functions:

• Mac-OS: quartz(). Also allows output to files of different formats.
• Unix/Linux: x11().
• Windows OS: windows() (or x11() or X11()).

I Use windows(record=TRUE) to record the plots so you can page through
them.

• In RStudio, built-in device is RStudioGD. Plots can be copied and pasted
or saved to files of different formats from it.

• There are also file devices such as pdf and postscript.
• Multiple devices can be open simultaneously, but only one is the current

device.
• Switching devices, turning them off, etc. with functions such as dev.off(),

dev.cur(), dev.next(), etc.
• Each device has its own graphical parameters. Setting parameters (e.g.,
with par()) affects those of the current device.

5/34

Graphics Devices

• Plots are sent to a graphics device, typically a window or file.
• Screen device functions:

• Mac-OS: quartz(). Also allows output to files of different formats.
• Unix/Linux: x11().
• Windows OS: windows() (or x11() or X11()).

I Use windows(record=TRUE) to record the plots so you can page through
them.

• In RStudio, built-in device is RStudioGD. Plots can be copied and pasted
or saved to files of different formats from it.

• There are also file devices such as pdf and postscript.
• Multiple devices can be open simultaneously, but only one is the current

device.
• Switching devices, turning them off, etc. with functions such as dev.off(),

dev.cur(), dev.next(), etc.
• Each device has its own graphical parameters. Setting parameters (e.g.,
with par()) affects those of the current device.

5/34

Graphics Devices

• Plots are sent to a graphics device, typically a window or file.
• Screen device functions:

• Mac-OS: quartz(). Also allows output to files of different formats.
• Unix/Linux: x11().
• Windows OS: windows() (or x11() or X11()).

I Use windows(record=TRUE) to record the plots so you can page through
them.

• In RStudio, built-in device is RStudioGD. Plots can be copied and pasted
or saved to files of different formats from it.

• There are also file devices such as pdf and postscript.
• Multiple devices can be open simultaneously, but only one is the current

device.
• Switching devices, turning them off, etc. with functions such as dev.off(),

dev.cur(), dev.next(), etc.
• Each device has its own graphical parameters. Setting parameters (e.g.,
with par()) affects those of the current device.

5/34

Graphics Devices

• Plots are sent to a graphics device, typically a window or file.
• Screen device functions:

• Mac-OS: quartz(). Also allows output to files of different formats.
• Unix/Linux: x11().
• Windows OS: windows() (or x11() or X11()).

I Use windows(record=TRUE) to record the plots so you can page through
them.

• In RStudio, built-in device is RStudioGD. Plots can be copied and pasted
or saved to files of different formats from it.

• There are also file devices such as pdf and postscript.
• Multiple devices can be open simultaneously, but only one is the current

device.
• Switching devices, turning them off, etc. with functions such as dev.off(),

dev.cur(), dev.next(), etc.
• Each device has its own graphical parameters. Setting parameters (e.g.,
with par()) affects those of the current device.

5/34

Graphics Devices

• Plots are sent to a graphics device, typically a window or file.
• Screen device functions:

• Mac-OS: quartz(). Also allows output to files of different formats.
• Unix/Linux: x11().
• Windows OS: windows() (or x11() or X11()).

I Use windows(record=TRUE) to record the plots so you can page through
them.

• In RStudio, built-in device is RStudioGD. Plots can be copied and pasted
or saved to files of different formats from it.

• There are also file devices such as pdf and postscript.
• Multiple devices can be open simultaneously, but only one is the current

device.
• Switching devices, turning them off, etc. with functions such as dev.off(),

dev.cur(), dev.next(), etc.
• Each device has its own graphical parameters. Setting parameters (e.g.,
with par()) affects those of the current device.

5/34

Graphics Devices

• Plots are sent to a graphics device, typically a window or file.
• Screen device functions:

• Mac-OS: quartz(). Also allows output to files of different formats.
• Unix/Linux: x11().
• Windows OS: windows() (or x11() or X11()).

I Use windows(record=TRUE) to record the plots so you can page through
them.

• In RStudio, built-in device is RStudioGD. Plots can be copied and pasted
or saved to files of different formats from it.

• There are also file devices such as pdf and postscript.
• Multiple devices can be open simultaneously, but only one is the current

device.
• Switching devices, turning them off, etc. with functions such as dev.off(),

dev.cur(), dev.next(), etc.
• Each device has its own graphical parameters. Setting parameters (e.g.,
with par()) affects those of the current device.

5/34

Graphics Devices

• Plots are sent to a graphics device, typically a window or file.
• Screen device functions:

• Mac-OS: quartz(). Also allows output to files of different formats.
• Unix/Linux: x11().
• Windows OS: windows() (or x11() or X11()).

I Use windows(record=TRUE) to record the plots so you can page through
them.

• In RStudio, built-in device is RStudioGD. Plots can be copied and pasted
or saved to files of different formats from it.

• There are also file devices such as pdf and postscript.
• Multiple devices can be open simultaneously, but only one is the current

device.
• Switching devices, turning them off, etc. with functions such as dev.off(),

dev.cur(), dev.next(), etc.
• Each device has its own graphical parameters. Setting parameters (e.g.,
with par()) affects those of the current device.

5/34

Graphics Devices

• Plots are sent to a graphics device, typically a window or file.
• Screen device functions:

• Mac-OS: quartz(). Also allows output to files of different formats.
• Unix/Linux: x11().
• Windows OS: windows() (or x11() or X11()).

I Use windows(record=TRUE) to record the plots so you can page through
them.

• In RStudio, built-in device is RStudioGD. Plots can be copied and pasted
or saved to files of different formats from it.

• There are also file devices such as pdf and postscript.
• Multiple devices can be open simultaneously, but only one is the current

device.
• Switching devices, turning them off, etc. with functions such as dev.off(),

dev.cur(), dev.next(), etc.
• Each device has its own graphical parameters. Setting parameters (e.g.,
with par()) affects those of the current device.

5/34

Graphics Devices

• Plots are sent to a graphics device, typically a window or file.
• Screen device functions:

• Mac-OS: quartz(). Also allows output to files of different formats.
• Unix/Linux: x11().
• Windows OS: windows() (or x11() or X11()).

I Use windows(record=TRUE) to record the plots so you can page through
them.

• In RStudio, built-in device is RStudioGD. Plots can be copied and pasted
or saved to files of different formats from it.

• There are also file devices such as pdf and postscript.
• Multiple devices can be open simultaneously, but only one is the current

device.
• Switching devices, turning them off, etc. with functions such as dev.off(),

dev.cur(), dev.next(), etc.
• Each device has its own graphical parameters. Setting parameters (e.g.,
with par()) affects those of the current device.

5/34

Graphical Parameters

Many aspects of a plot are controlled by a large number of graphical
parameters.

• These parameters can be queried or reset with par().
• See ?par for a list of graphical parameters.
• The command par("param") queries the value of parameter param.
• E.g., below we set the col and lty parameters, add a dotted red horizontal
line at 0, and then reset the parameters to their previous values.

par(c("col","lty")) # query the current values ("black" and "solid")
oldParms <- par(col="red",lty="dotted") # set to new values and save the old ones
par(c("col","lty")) # ("red" and "dotted")
abline(h=0) # line will be dotted and red
par(oldParms) # reset to the original values
par(c("col","lty")) # ("black" and "solid")

6/34

Graphical Parameters

Many aspects of a plot are controlled by a large number of graphical
parameters.

• These parameters can be queried or reset with par().
• See ?par for a list of graphical parameters.
• The command par("param") queries the value of parameter param.
• E.g., below we set the col and lty parameters, add a dotted red horizontal
line at 0, and then reset the parameters to their previous values.

par(c("col","lty")) # query the current values ("black" and "solid")
oldParms <- par(col="red",lty="dotted") # set to new values and save the old ones
par(c("col","lty")) # ("red" and "dotted")
abline(h=0) # line will be dotted and red
par(oldParms) # reset to the original values
par(c("col","lty")) # ("black" and "solid")

6/34

Graphical Parameters

Many aspects of a plot are controlled by a large number of graphical
parameters.

• These parameters can be queried or reset with par().
• See ?par for a list of graphical parameters.
• The command par("param") queries the value of parameter param.
• E.g., below we set the col and lty parameters, add a dotted red horizontal
line at 0, and then reset the parameters to their previous values.

par(c("col","lty")) # query the current values ("black" and "solid")
oldParms <- par(col="red",lty="dotted") # set to new values and save the old ones
par(c("col","lty")) # ("red" and "dotted")
abline(h=0) # line will be dotted and red
par(oldParms) # reset to the original values
par(c("col","lty")) # ("black" and "solid")

6/34

Graphical Parameters

Many aspects of a plot are controlled by a large number of graphical
parameters.

• These parameters can be queried or reset with par().
• See ?par for a list of graphical parameters.
• The command par("param") queries the value of parameter param.
• E.g., below we set the col and lty parameters, add a dotted red horizontal
line at 0, and then reset the parameters to their previous values.

par(c("col","lty")) # query the current values ("black" and "solid")
oldParms <- par(col="red",lty="dotted") # set to new values and save the old ones
par(c("col","lty")) # ("red" and "dotted")
abline(h=0) # line will be dotted and red
par(oldParms) # reset to the original values
par(c("col","lty")) # ("black" and "solid")

6/34

Graphical Parameters

• Graphical parameters can be changed with par() and the new value will
persist.

• Most plotting functions also accept graphical parameters optionally.
• These settings will be temporary to the function being executed. E.g.:

plot(residuals(m1)~fitted(m1),col="black",pch="x")
abline(h=0,lty="dotted",col="red")

7/34

Graphical Parameters

Some important graphical parameters:

col: the plotting color
lty: the line type
lwd: the line width
pch: the point marker
pty: plotting region shape
main, sub: title, subtitle
new: wipe/retain previous plot

mfrow/mfcol: plots/page
ask: hit return for next plot?
cex: text expansion factor
mar/mai: margin dimensions
oma/omi: outer margin dimensions
xlim/ylim: axis limits
xlab/ylab: axis labels

• Click here for a handy cheatsheet on graphical parameters.

8/34

https://www.gastonsanchez.com/r-graphical-parameters-cheatsheet.pdf

Graphical Parameters
col, lty, pch can take numeric values or character strings.

• Colors 1–8 for col and some of the 657 color names that R knows:

palette() # default mapping of colors 1-8

[1] "black" "red" "green3" "blue" "cyan" "magenta" "yellow"
[8] "gray"

cl <- colors(); length(cl)

[1] 657

cl[1:12]

[1] "white" "aliceblue" "antiquewhite" "antiquewhite1"
[5] "antiquewhite2" "antiquewhite3" "antiquewhite4" "aquamarine"
[9] "aquamarine1" "aquamarine2" "aquamarine3" "aquamarine4"

• In R, colors can also be specified with hexadecimal codes representing
concentrations of red, green and blue (#rrggbb).

• See this cheatsheet for an explanation, all color names, and more on color
in R.

9/34

https://www.nceas.ucsb.edu/~frazier/RSpatialGuides/colorPaletteCheatsheet.pdf

Graphical Parameters
• Color and plotting symbol types 1–8 for col and pch and the
corresponding color names:

Colors and plotting symbols by number

black red green3 blue cyan magenta yellow gray

1 2 3 4 5 6 7 8

• Line types 1–8 for lty and the corresponding names:

solid

dashed

dotted

dotdash

longdash

twodash

10/34

Graphical Parameters
• More choices for pch (using col=“red” and bg=“gold”):

plot symbols : points (... pch = *, cex = 1)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

**
.

++

oo

OO

00

11/34

The plot() Function

• R is an object-oriented language and plot() is a generic function. That
means it looks at its argument, and determines what to do with it based
on its class.

• E.g., plot(Nile) checks to see that Nile is of class ts (a time series object)
and passes the job on to the plot.ts() function.

• E.g., if tab is a contingency table object (class table) then plot(tab)
passes the job on to the plot.table() function, which creates a mosaic
plot.

• Thus, plot() can produce many different kinds of plots depending on
what argument(s) you pass it.

12/34

The plot() Function

• R is an object-oriented language and plot() is a generic function. That
means it looks at its argument, and determines what to do with it based
on its class.

• E.g., plot(Nile) checks to see that Nile is of class ts (a time series object)
and passes the job on to the plot.ts() function.

• E.g., if tab is a contingency table object (class table) then plot(tab)
passes the job on to the plot.table() function, which creates a mosaic
plot.

• Thus, plot() can produce many different kinds of plots depending on
what argument(s) you pass it.

12/34

The plot() Function

• R is an object-oriented language and plot() is a generic function. That
means it looks at its argument, and determines what to do with it based
on its class.

• E.g., plot(Nile) checks to see that Nile is of class ts (a time series object)
and passes the job on to the plot.ts() function.

• E.g., if tab is a contingency table object (class table) then plot(tab)
passes the job on to the plot.table() function, which creates a mosaic
plot.

• Thus, plot() can produce many different kinds of plots depending on
what argument(s) you pass it.

12/34

The plot() Function

• R is an object-oriented language and plot() is a generic function. That
means it looks at its argument, and determines what to do with it based
on its class.

• E.g., plot(Nile) checks to see that Nile is of class ts (a time series object)
and passes the job on to the plot.ts() function.

• E.g., if tab is a contingency table object (class table) then plot(tab)
passes the job on to the plot.table() function, which creates a mosaic
plot.

• Thus, plot() can produce many different kinds of plots depending on
what argument(s) you pass it.

12/34

The plot() Function—Examples

• The generic nature of plot().

Get some data sets:
source("https://tinyurl.com/une4s3g/getData_3.R"); data(Cars93,package="MASS")
plotting a factor gives a bar chart of freq distribution:
plot(Cars93$Type,main="Distribution of car types in 1993 CR data set",xlab="Type",ylab="Frequency")
plotting a table gives a mosaic plot:
plot(table(Cars93$Type,Cars93$Origin),main="Mosaic plot of joint dist'n of car type and origin")
plotting a data frame gives a matrix of pairwise plots (a scatterplot matrix in this case):
plot(cigData,main="Scatterplot matrix for cigarette data")

Compact Midsize Sporty Van

Distribution of car types in 1993 CR data set

Type

F
re

qu
en

cy

0
5

10
15

20

Mosaic plot of joint dist'n of car type and origin

Compact Large Midsize Small Sporty Van

U
S

A
no

n−
U

S
A

tar

0.
5

1.
5

0 10 20 30

5
15

0.5 1.5

nicotine

weight

0.8 1.0

5 15

0
15

30
0.

8
1.

0

CO

Scatterplot matrix for cigarette data

13/34

The plot() Function—Examples
Plotting y vs x:

• plot(y~x,data=myDFrame) and plot(myDFrame$x,myDFrame$y)
produce same result.

• Gives a scatterplot if x, y both continuous.
• Gives side-by-side boxplots if y is continuous and x is a factor.

plot(MPG.city ~ Weight,data=Cars93,main="Mileage vs weight") # a scatter plot
plot(Turn.circle~Type,data=Cars93,xlab="Type",ylab="Turning radius",

main="Side by side boxplots from the plot() function") # side-by side box plots

2000 2500 3000 3500 4000

15
20

25
30

35
40

45

Mileage vs weight

Weight

M
P

G
.c

ity

Compact Large Midsize Small Sporty Van

32
34

36
38

40
42

44

Side by side boxplots from the plot() function

Type

Tu
rn

in
g

ra
di

us

14/34

The plot() Function—Examples

• plot() takes a type= argument with several choices. Most important are
p=points, l=lines, b=both (see also type o), or n=neither are plotted.
Lines are useful for time series, but data should be sorted by the
x-variable.

• Here, are data on the average speed of Tour de France winners over time.

plot(speed~year,data=tdf,type="p") # just plot points. This is the default
plot(speed~year,data=tdf,type="l") # plot lines connecting the data values.
plot(speed~year,data=tdf,type="b") # plot both points and lines.

1950 1960 1970 1980 1990 2000

32
34

36
38

40

year

sp
ee

d

1950 1960 1970 1980 1990 2000

32
34

36
38

40

year

sp
ee

d

1950 1960 1970 1980 1990 2000

32
34

36
38

40

year

sp
ee

d

15/34

The plot() Function—Examples
• Plotting a function is easy with plot().
• Here we also see how to add a curve, a reference line, a legend, and how to
render math notation (type ?plotmath at console for more).

sinRoot <- function(x){ sin(sqrt(x))}; cosRoot <- function(x){ cos(sqrt(x))}
plot(sinRoot,0,50,ylab="f(x)",xlab="x") # plots a function between (in this case) 0 and 50
curve(cosRoot,0,50,add=TRUE,col="red") ; abline(h=0,col="blue",lty="dashed")
legend("bottomright",col=c("black","red"),lty=c(1,1),legend=c("sin[sqrt(x)]","cos[sqrt(x)]"))

try again with mathematical notation in legend
plot(sinRoot,0,50,ylab="f(x)",xlab="x") # plots a function between (in this case) 0 and 50
curve(cosRoot,0,50,add=TRUE,col="red") ; abline(h=0,col="blue",lty="dashed")
legend("bottomright",col=c("black","red"),lty=c(1,1),bty="n",

legend=c(expression(plain(sin)*sqrt(x)),expression(plain(cos)*sqrt(x))))

0 10 20 30 40 50

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

f(
x)

sin[sqrt(x)]
cos[sqrt(x)]

0 10 20 30 40 50

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

f(
x)

sin x
cos x

16/34

Bar charts with barplot()—Freq Distributions
• Bar charts are used both for plotting (joint) frequency distributions and

summary statistics for multiple groups.
• barplot() can do both. First, frequency distributions:

barplot(table(Cars93$Type),ylab="Frequency",xlab="Type")
title(main="Frequency distribution of car type (CR Cars Dataset)")

Now a two-way freq distribution with stacked bars:
carTab <- table(Cars93$Man.trans.avail,Cars93$Type)
barplot(carTab,legend.text=TRUE,col=2:3,xlab="Type")
title(main="Joint freq dist'n of car type by availability of man trans.")

Now a two-way freq distribution with clustered bars:
barplot(carTab,legend.text=TRUE,col=2:3,xlab="Type",ylab="Frequency",

args.legend=list(x="topleft",ncol=3),beside=TRUE)
title(main="Joint freq dist'n of car type by availability of man trans.")

Compact Large Midsize Small Sporty Van

Type

F
re

qu
en

cy

0
5

10
15

20

Frequency distribution of car type (CR Cars Dataset)

Compact Large Midsize Small Sporty Van

Yes
No

Type

0
5

10
15

20

Joint freq dist'n of car type by availability of man trans.

Compact Large Midsize Small Sporty Van

No Yes

Type

F
re

qu
en

cy

0
5

10
15

20

Joint freq dist'n of car type by availability of man trans.

17/34

Bar charts with barplot()—Group Statistics
• Example: mean city mileage by car type. Error bars are hard(ish) with

barplot() so use barplot2() from gplots package.

First compute the means for each car Type:
(mean.arr <- tapply(Cars93$MPG.city,Cars93$Type,mean))

Compact Large Midsize Small Sporty Van
22.68750 18.36364 19.54545 29.85714 21.78571 17.00000

Then plot them:
barplot(mean.arr, legend.text=FALSE, col=2:7, main="Mean city mileage by car type",

xlab="Type", ylab="City Mileage (mpg)")

To add error bars, must compute SEs:
se.arr <- tapply(Cars93$MPG.city,Cars93$Type,function(x) sqrt(var(x)/length(x)))
gplots::barplot2(mean.arr, legend.text=FALSE, col=2:7, ylim=c(0,35), plot.ci=TRUE, xlab="Type",

ci.l=mean.arr-1.96*se.arr, ci.u=mean.arr+1.96*se.arr, ci.width=0.3, ylab="City Mileage (mpg)")
title(main="Mean city MPG by car type with +/- 1.96SE bars")

Compact Large Midsize Small Sporty Van

Mean city mileage by car type

Type

C
ity

 M
ile

ag
e

(m
pg

)

0
5

10
15

20
25

Compact Large Midsize Small Sporty Van

Type

C
ity

 M
ile

ag
e

(m
pg

)

0
5

10
15

20
25

30
35

Mean city MPG by car type with +/− 1.96SE bars

18/34

Histograms with hist()

• Histograms can be plotted with hist(). Binning scheme matters (a lot)
and trial and error is necessary.

• Use density scale rather than counts to compare to a fitted density. Here
we overlay a normal and a kernel density estimate.

hist(bodyData$bicep_girth,xlab="Bicep Girth (cm)", main="Histogram of bicep girth from gym-goers")

Now use different bins, switch to a probability density scale, and overlay densities
hist(bodyData$bicep_girth,xlab="Bicep Girth (cm)",breaks=seq(from=22,to=43,by=1.5),

main="Histogram of bicep girth from gym-goers",freq=FALSE,ylim=c(0,.1),xlim=c(20,45))
curve(dnorm(x, mean=mean(bodyData$bicep_girth),sd=sd(bodyData$bicep_girth)),

col = 2, lty = 2, lwd = 3, add = TRUE)
lines(density(bodyData$bicep_girth), col = 4, lty = 4, lwd = 3)
legend("topright",lty=c(2,4),col=c(2,4),lwd=3,legend=c("Normal","Nonparametric"),bty="n")

Histogram of bicep girth from gym−goers

Bicep Girth (cm)

F
re

qu
en

cy

25 30 35 40

0
20

40
60

80

Histogram of bicep girth from gym−goers

Bicep Girth (cm)

D
en

si
ty

20 25 30 35 40 45

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Normal
Nonparametric

19/34

Boxplots with boxplot()

• Formula syntax in boxplot() is convenient for grouped boxplots, but
labels can get crowded.

• boxplot(y ~ f) for boxplots of y at each level of f or boxplot(y ~ f +
g) at each combination of f and g.

boxplot(MPG.city~Origin, data=Cars93, main="City mileage by origin", xlab="MPG", horizontal=T, col=2:3)
rug(Cars93$MPG.city[Cars93$Origin=="USA"],side=1,col=2); rug(Cars93$MPG.city[Cars93$Origin!="USA"],side=3,col=3)
boxplot(MPG.city~Type+Origin, data=Cars93, main="City mileage by type and origin", ylab="MPG")

fixing crowding of x-axis labels can be challenging
boxplot(MPG.city~Type+Origin,data=Cars93, main="City mileage by car type",

ylab="MPG", border=1:6, pars=list(axes=F, ylim=c(15,50)), xlab="Origin", at=c(1:6,9:14))
abline(v=7.5,lty=2); axis(2,at=seq(from=15,to=45,by=5))
axis(1,at=c(0,3.5,11.5,15), labels=c("",levels(Cars93$Origin),""))
legend("topleft", bty="n", col=1:6, legend=levels(Cars93$Type), cex=.70, ncol=2, lty=rep(1,6), lwd=3, title="Types")

U
S

A
no

n−
U

S
A

15 20 25 30 35 40 45

City mileage by origin

MPG

Compact.USA Small.USA Large.non−USA Van.non−USA

15
20

25
30

35
40

45

City mileage by type and origin

M
P

G

City mileage by car type

Origin

M
P

G

15
20

25
30

35
40

45

USA non−USA

Types

Compact
Large
Midsize

Small
Sporty
Van

20/34

Labelling Points

• Groups can be distinguished with graphical parameters. E.g., give col or
pch a vector of values of same length as the data.

• Labels for points can be done with text() function.

plot(MPG.highway~MPG.city, data=Cars93, pch= as.integer(Origin), col=as.integer(Origin),
xlab="City MPG",ylab="Highway MPG",main="Highway vs City MPG")

with(Cars93,text(x=MPG.city[MPG.city>45], y=MPG.highway[MPG.city>45], labels=Make[MPG.city>45], adj=c(1,1))) # adj offsets labels
legend(x=15, y=45, legend=c("Domestic","Foreign"), pch=1:2, col=1:2)
Many values overplotted. Better to jitter the points:
plot(jitter(MPG.highway,1.5) ~ jitter(MPG.city,1.5), data=Cars93, pch= as.integer(Origin), col=as.integer(Origin),

xlab="City MPG",ylab="Highway MPG",main="Highway vs City MPG (Jittered)")

15 20 25 30 35 40 45

20
25

30
35

40
45

50

Highway vs City MPG

City MPG

H
ig

hw
ay

 M
P

G

Geo Metro

Domestic
Foreign

15 20 25 30 35 40 45

20
25

30
35

40
45

50

Highway vs City MPG (Jittered)

City MPG

H
ig

hw
ay

 M
P

G

21/34

Profile Plots for Longitudinal Data
• Longitudinal studies involve data over time for multiple individuals,

possibly in different (treatment) groups.
• Task is much better handled by functions in lattice or ggplot2.

gall$trtfac <- factor(gall$trt,labels=c("Colechystokynin","Clanobutin","Control")); head(gall,3)

trt dogno min volume trtfac
1 1 1 0 17.70 Colechystokynin
2 1 1 10 10.35 Colechystokynin
3 1 1 20 10.78 Colechystokynin

for (i in levels(gall$trtfac)){
galli <- gall[gall$trtfac==i,]
plot(volume ~ min, data=gall, type="n", xlab="Minutes", ylab="Volume", main="Gall bladder volume over time")
mtext(i,side=3,line=0.5)
for (j in unique(galli$dogno)){

lines(galli$min[galli$dogno==j], galli$volume[galli$dogno==j], lty=j, pch=j, col=j, type="b") }}

0 20 40 60 80 100 120

10
15

20
25

30
35

40

Gall bladder volume over time

Minutes

V
ol

um
e

Colechystokynin

0 20 40 60 80 100 120

10
15

20
25

30
35

40

Gall bladder volume over time

Minutes

V
ol

um
e

Clanobutin

0 20 40 60 80 100 120

10
15

20
25

30
35

40

Gall bladder volume over time

Minutes

V
ol

um
e

Control

22/34

Profile Plots for Longitudinal Data
• The nlme package implements profile plots via the plot() function

applied to a groupedData object.
• The work is done by the xyplot() function of the lattice package.
• Later we’ll see how to use ggplot2 for this task.

library(nlme)
gall2 <- groupedData(volume~min|dogno,data=gall) # a data frame with a formula attached
plot(gall2,outer= ~trtfac,aspect="fill",key=FALSE)

min

vo
lu

m
e

10

20

30

40

0 20 40 60 80 100120

Colechystokynin

0 20 40 60 80 100120

Clanobutin

0 20 40 60 80 100120

Control

23/34

Adding Fitted Lines/Curves to a Plot

• Here we add a linear fit with 95% CI and PI and a lowess fitted curve.
• Important to add features in the proper order to avoid overplotting.

Create a plot of the data but omit the points initially by setting type="n":
plot(speed~year, data=tdf, type="n", ylim=c(30,45), main="Series Plot of Tour de France Average Speed over Time")

Fit a simple linear regression to get least squares fitted line, and 95% CI and PI limits
tdf.lm1 <- lm(speed~year,data=tdf)
tdf.lm1.pi <- predict(tdf.lm1, interval="prediction")
tdf.lm1.ci <- predict(tdf.lm1, interval="confidence")

Now add a 95% prediction interval with a shaded region to the plot:
polygon(c(tdf$year,rev(tdf$year)), c(tdf.lm1.ci[,2],rev(tdf.lm1.ci[,3])), border=NA, col=gray(.9))
Then add other features:
lines(speed ~ year, data=tdf, type="p") ; abline(tdf.lm1) # adds points and a straight line fit
lines(lowess(tdf$year,tdf$speed, f=1/3), col=2, lty=2) # adds a lowess fit
lines(tdf$year, tdf.lm1.pi[,2], lty=3, col=3); lines(tdf$year, tdf.lm1.pi[,3], lty=3, col=3) #PI limits
lines(tdf$year, tdf.lm1.ci[,2], lty=4, col=4); lines(tdf$year, tdf.lm1.ci[,3], lty=4, col=4) #CI limits
legend("topleft", c("Least Squares","Lowess Smoother","95% PI","95% CI"), col=1:4, lty=1:4, bty="n") # a legend
text(1990,33,expression(paste(hat(beta)[0]==-198.3,", ", hat(beta)[1]==0.119))) # parm estimates

24/34

Adding Fitted Lines/Curves to a Plot

• Results from the code on the previous slide:

1950 1960 1970 1980 1990 2000

30
35

40
45

Series Plot of Tour de France Average Speed over Time

year

sp
ee

d

Least Squares
Lowess Smoother
95% PI
95% CI

β̂0 = − 198.3, β̂1 = 0.119

25/34

Scatterplot Matrices

• The pairs() function produces scatterplot matrices. It is illustrated
below on some country-level data on life expectancy, access to healthcare,
and access to technology.

basic illustration of pairs():
pairs(~lifeExpect+popPerTV+popPerMD,data=tvData)
log scaling of axes:
pairs(~lifeExpect+popPerTV+popPerMD,data=tvData,log=2:3,

main="Log scale for popPerTV and popPerMD")

lifeExpect

0
20

0
40

0
60

0

55 60 65 70 75 80

0 100 300 500

popPerTV
55

65
75

0 10000 30000

0
10

00
0

30
00

0

popPerMD

lifeExpect

2
10

50
50

0

55 60 65 70 75 80

2 5 20 100 500

popPerTV

55
65

75

200 1000 5000 20000

20
0

20
00

20
00

0

popPerMD

Log scale for popPerTV and popPerMD

26/34

Scatterplot Matrices
• Can make better use of the space in a scatterplot matrix by using the

diagonal cells and the upper or lower triangle to display other information.
• Can be done with lower.panel, upper.panel, diag.panel arguments.
• The panel.cor() and panel.hist() functions used below are from the

pairs() help page; panel.smooth() is built-in.

tvData$logPopPerTV <- log(tvData$popPerTV); tvData$logPopPerMD <- log(tvData$popPerMD)
pairs(~lifeExpect+logPopPerTV+logPopPerMD, data=na.omit(tvData),

lower.panel=panel.smooth, upper.panel=panel.cor, diag.panel=panel.hist,
main="Variables from the TV Dataset\nplotted with pairs()")

lifeExpect

1
3

5

55 60 65 70 75 80

1 2 3 4 5 6

0.86
logPopPerTV

55
700.80

0.75

6 7 8 9 10

6
8

10logPopPerMD

Variables from the TV Dataset
plotted with pairs()

27/34

Multiple Plots per Page

• Placing multiple plots in an
R × C grid on a page can be
done with par(mfrow=c(R,C))
(see also mfcol).

• The page layout is displayed to
the right. For multiple
plots/page, usually must adjust
the margins (mar) and outer
margins (oma). This can be
tricky.

28/34

Multiple Plots per Page

• This example using mfrow shows
the need to adjust the margins.
The plot on the top is run
without the adjustments to mar
and oma on the third line of code.

bodyData$over34 <- factor(bodyData$age>34, labels=c("Young","Old"))
bodyData$sexAge <- factor(paste(bodyData$genderFac,bodyData$over34))
op <- par(mfrow=c(2,2),mar=c(2,2,2,2)+.1,oma=c(3,3,1.5,1))
for (lev in levels(bodyData$sexAge)){

plot(should_girth~waist_girth,data=bodyData,type="n",main=lev)
points(should_girth~waist_girth,data=bodyData[bodyData$sexAge==lev,])

}
title(main="Shoulder girth vs waist girth in different strata",outer=TRUE)
mtext("Should girth (cm)",side=2,outer=TRUE,line=1);
mtext("Waist girth (cm)",side=1,outer=TRUE,line=1)
par(op)

60 70 80 90 100

90
11

0

Female Old

waist_girth

sh
ou

ld
_g

ir
th

60 70 80 90 100

90
11

0

Female Young

waist_girth

sh
ou

ld
_g

ir
th

60 70 80 90 100

90
11

0

Male Old

waist_girth

sh
ou

ld
_g

ir
th

60 70 80 90 100

90
11

0

Male Young

waist_girth

sh
ou

ld
_g

ir
th

Shoulder girth vs waist girth in different strata

60 70 80 90 100

90
11

0
13

0

Female Old

waist_girth

sh
ou

ld
_g

ir
th

60 70 80 90 100

90
11

0
13

0

Female Young

waist_girth

sh
ou

ld
_g

ir
th

60 70 80 90 100

90
11

0
13

0

Male Old

waist_girth

sh
ou

ld
_g

ir
th

60 70 80 90 100

90
11

0
13

0

Male Young

waist_girth

sh
ou

ld
_g

ir
th

Shoulder girth vs waist girth in different strata

S
ho

ul
d

gi
rt

h
(c

m
)

Waist girth (cm)

29/34

Multiple Plots per Page

• A more flexible arrangement is possible with the command layout(mat)
where mat is a matrix specifying the desired arrangement.

(layoutMat <- rbind(c(1,1),c(2,3)))

[,1] [,2]
[1,] 1 1
[2,] 2 3

layout(layoutMat); op <- par(mar=c(2,2,2,2)+.1,oma=c(3,3,1.5,1))
plot(should_girth~waist_girth,data=bodyData,main="All subjects (males in red)",

col=as.integer(genderFac))
for (lev in levels(bodyData$genderFac)){

plot(should_girth~waist_girth,data=bodyData,type="n",main=lev)
points(should_girth~waist_girth,data=bodyData[bodyData$genderFac==lev,],

col=as.integer(genderFac)) }
title(main="Shoulder girth vs waist girth for men and women",outer=TRUE)
mtext("Should girth (cm)",side=2,outer=TRUE,line=1)
mtext("Waist girth (cm)",side=1,outer=TRUE,line=1); par(op)

60 70 80 90 100 110

90
11

0
13

0

All subjects (males in red)

waist_girth

sh
ou

ld
_g

ir
th

60 70 80 90 100

90
11

0
13

0

Female

waist_girth

sh
ou

ld
_g

ir
th

60 70 80 90 100

90
11

0
13

0

Male

waist_girth

sh
ou

ld
_g

ir
th

Shoulder girth vs waist girth for men and women

S
ho

ul
d

gi
rt

h
(c

m
)

Waist girth (cm)

30/34

Multiple Plots per Page

• Another example. Here the top plot takes 75% of the page.

(layoutMat <- rbind(matrix(1,nrow=3,ncol=2),c(2,2)))

[,1] [,2]
[1,] 1 1
[2,] 1 1
[3,] 1 1
[4,] 2 2

layout(layoutMat)
op <- par(mar=c(2,2,2,2)+.1,oma=c(1,1,1,1))
hist(cigData$tar,main="Tar content",xlim=c(0,30))
par(mar=c(4,2,1,2)+.1)
boxplot(cigData$tar,horizontal=TRUE,xlab="Tar",pars=list(bty="l"),

frame=FALSE,ylim=c(0,30)) # ylim becomes xlim when horiz=T
par(op)

Tar content

cigData$tar

F
re

qu
en

cy

0 5 10 15 20 25 30

0
2

4
6

8

0 5 10 15 20 25 30

Tar

31/34

Resources for Graphics in R

Friendly, M. (2018). Data Visualization in R, SCS Short Course.
http://www.datavis.ca/courses/RGraphics/

• Fantastic resource. Session 2 slides focus on Base Graphics. Session 1
slides point the way to many more important resources.

Tierney, L. (2019). STAT:4580 Data Visualizations and Data Technology.
Course Notes.

• Another great resource on data visualization methods and the tools to
implement them. Much content on R graphics systems, especially
ggplot2.

RStudio. Data Visualization with ggplot2:: Cheat Sheet. (All RStudio cheat
sheets in a single PDF at this link.)

32/34

http://www.datavis.ca/courses/RGraphics/
https://tinyurl.com/s6tjllq
https://tinyurl.com/vvpx78g

Thank You!

• If you need assistance with R or with selecting or implementing data
visualizations to better understand your data, contact the SCC!

• We can help!

www.stat.uga/consulting

33/34

https://stat.uga.edu/statistical-consulting-center-0

Finally. . .
• Holiday wishes, shamelessly stolen from the is.R() tumblr site:

library(ggplot2)
Turkey <- read.csv("http://pages.iu.edu/~cdesante/turkey.csv")
ggplot(data = Turkey) + geom_tile(aes(x = Happy, y = Thanksgiving, fill=Turkey.Colors,
width=1))+ scale_fill_identity() + theme_bw()

−20

−15

−10

−5

0 5 10

Happy

T
ha

nk
sg

iv
in

g

34/34

	
	Introduction
	Base Graphics
	Graphics Devices
	Graphical Parameters

	Plot Types and Plotting Functions
	The plot() Function
	Bar Charts
	Histograms
	Boxplots
	Labelling Points
	Profile Plots for Longitudinal Data
	Adding Fitted Lines/Curves to a Plot
	Scatterplot Matrices
	Multiple Plots per Page

	Resources for Graphics in R

