
An Introduction to R Graphics
Part II—ggplot2

Dan Hall, Director of the SCC

Table of Contents

Introduction

ggplot2 Basics

Aesthetics

geom Functions

Scales

Coordinate Systems

Facetting

Themes

Examples

Resources for Graphics in R

2/29

Introduction
Having powerful and flexible systems for graphics is one of R’s biggest
strengths.

• Base Graphics. Contained in the graphics package distributed in base R.

• Grid graphics. grid package is distributed in base R.
• Contains low-level graphics functions.
• Useful as a platform for developing and implementing higher-level graphics
functions and systems.

• Lattice Graphics. lattice package also distributed in base R.
• Mimics and extends trellis graphics from S and S-PLUS.
• Characteristic feature is plots with multiple panels.
• Built on grid.

• ggplot2 Graphics. ggplot2 package available on CRAN.
• Based on Leland Wilkinson’s ideas articulated in his book, The Grammar

of Graphics.
• Sophisticated and powerful system. Not too hard to learn.
• Built on grid.

3/29

Introduction
Having powerful and flexible systems for graphics is one of R’s biggest
strengths.

• Base Graphics. Contained in the graphics package distributed in base R.

• Grid graphics. grid package is distributed in base R.
• Contains low-level graphics functions.
• Useful as a platform for developing and implementing higher-level graphics
functions and systems.

• Lattice Graphics. lattice package also distributed in base R.
• Mimics and extends trellis graphics from S and S-PLUS.
• Characteristic feature is plots with multiple panels.
• Built on grid.

• ggplot2 Graphics. ggplot2 package available on CRAN.
• Based on Leland Wilkinson’s ideas articulated in his book, The Grammar

of Graphics.
• Sophisticated and powerful system. Not too hard to learn.
• Built on grid.

3/29

Introduction
Having powerful and flexible systems for graphics is one of R’s biggest
strengths.

• Base Graphics. Contained in the graphics package distributed in base R.

• Grid graphics. grid package is distributed in base R.
• Contains low-level graphics functions.
• Useful as a platform for developing and implementing higher-level graphics
functions and systems.

• Lattice Graphics. lattice package also distributed in base R.
• Mimics and extends trellis graphics from S and S-PLUS.
• Characteristic feature is plots with multiple panels.
• Built on grid.

• ggplot2 Graphics. ggplot2 package available on CRAN.
• Based on Leland Wilkinson’s ideas articulated in his book, The Grammar

of Graphics.
• Sophisticated and powerful system. Not too hard to learn.
• Built on grid.

3/29

Introduction
Having powerful and flexible systems for graphics is one of R’s biggest
strengths.

• Base Graphics. Contained in the graphics package distributed in base R.

• Grid graphics. grid package is distributed in base R.
• Contains low-level graphics functions.
• Useful as a platform for developing and implementing higher-level graphics
functions and systems.

• Lattice Graphics. lattice package also distributed in base R.
• Mimics and extends trellis graphics from S and S-PLUS.
• Characteristic feature is plots with multiple panels.
• Built on grid.

• ggplot2 Graphics. ggplot2 package available on CRAN.
• Based on Leland Wilkinson’s ideas articulated in his book, The Grammar

of Graphics.
• Sophisticated and powerful system. Not too hard to learn.
• Built on grid.

3/29

Introduction
Having powerful and flexible systems for graphics is one of R’s biggest
strengths.

• Base Graphics. Contained in the graphics package distributed in base R.

• Grid graphics. grid package is distributed in base R.
• Contains low-level graphics functions.
• Useful as a platform for developing and implementing higher-level graphics
functions and systems.

• Lattice Graphics. lattice package also distributed in base R.
• Mimics and extends trellis graphics from S and S-PLUS.
• Characteristic feature is plots with multiple panels.
• Built on grid.

• ggplot2 Graphics. ggplot2 package available on CRAN.
• Based on Leland Wilkinson’s ideas articulated in his book, The Grammar

of Graphics.
• Sophisticated and powerful system. Not too hard to learn.
• Built on grid.

3/29

Introduction
Having powerful and flexible systems for graphics is one of R’s biggest
strengths.

• Base Graphics. Contained in the graphics package distributed in base R.

• Grid graphics. grid package is distributed in base R.
• Contains low-level graphics functions.
• Useful as a platform for developing and implementing higher-level graphics
functions and systems.

• Lattice Graphics. lattice package also distributed in base R.
• Mimics and extends trellis graphics from S and S-PLUS.
• Characteristic feature is plots with multiple panels.
• Built on grid.

• ggplot2 Graphics. ggplot2 package available on CRAN.
• Based on Leland Wilkinson’s ideas articulated in his book, The Grammar

of Graphics.
• Sophisticated and powerful system. Not too hard to learn.
• Built on grid.

3/29

Introduction
Having powerful and flexible systems for graphics is one of R’s biggest
strengths.

• Base Graphics. Contained in the graphics package distributed in base R.

• Grid graphics. grid package is distributed in base R.
• Contains low-level graphics functions.
• Useful as a platform for developing and implementing higher-level graphics
functions and systems.

• Lattice Graphics. lattice package also distributed in base R.
• Mimics and extends trellis graphics from S and S-PLUS.
• Characteristic feature is plots with multiple panels.
• Built on grid.

• ggplot2 Graphics. ggplot2 package available on CRAN.
• Based on Leland Wilkinson’s ideas articulated in his book, The Grammar

of Graphics.
• Sophisticated and powerful system. Not too hard to learn.
• Built on grid.

3/29

Introduction
Having powerful and flexible systems for graphics is one of R’s biggest
strengths.

• Base Graphics. Contained in the graphics package distributed in base R.

• Grid graphics. grid package is distributed in base R.
• Contains low-level graphics functions.
• Useful as a platform for developing and implementing higher-level graphics
functions and systems.

• Lattice Graphics. lattice package also distributed in base R.
• Mimics and extends trellis graphics from S and S-PLUS.
• Characteristic feature is plots with multiple panels.
• Built on grid.

• ggplot2 Graphics. ggplot2 package available on CRAN.
• Based on Leland Wilkinson’s ideas articulated in his book, The Grammar

of Graphics.
• Sophisticated and powerful system. Not too hard to learn.
• Built on grid.

3/29

Introduction
Having powerful and flexible systems for graphics is one of R’s biggest
strengths.

• Base Graphics. Contained in the graphics package distributed in base R.

• Grid graphics. grid package is distributed in base R.
• Contains low-level graphics functions.
• Useful as a platform for developing and implementing higher-level graphics
functions and systems.

• Lattice Graphics. lattice package also distributed in base R.
• Mimics and extends trellis graphics from S and S-PLUS.
• Characteristic feature is plots with multiple panels.
• Built on grid.

• ggplot2 Graphics. ggplot2 package available on CRAN.
• Based on Leland Wilkinson’s ideas articulated in his book, The Grammar

of Graphics.
• Sophisticated and powerful system. Not too hard to learn.
• Built on grid.

3/29

Introduction
Having powerful and flexible systems for graphics is one of R’s biggest
strengths.

• Base Graphics. Contained in the graphics package distributed in base R.

• Grid graphics. grid package is distributed in base R.
• Contains low-level graphics functions.
• Useful as a platform for developing and implementing higher-level graphics
functions and systems.

• Lattice Graphics. lattice package also distributed in base R.
• Mimics and extends trellis graphics from S and S-PLUS.
• Characteristic feature is plots with multiple panels.
• Built on grid.

• ggplot2 Graphics. ggplot2 package available on CRAN.
• Based on Leland Wilkinson’s ideas articulated in his book, The Grammar

of Graphics.
• Sophisticated and powerful system. Not too hard to learn.
• Built on grid.

3/29

Introduction
Having powerful and flexible systems for graphics is one of R’s biggest
strengths.

• Base Graphics. Contained in the graphics package distributed in base R.

• Grid graphics. grid package is distributed in base R.
• Contains low-level graphics functions.
• Useful as a platform for developing and implementing higher-level graphics
functions and systems.

• Lattice Graphics. lattice package also distributed in base R.
• Mimics and extends trellis graphics from S and S-PLUS.
• Characteristic feature is plots with multiple panels.
• Built on grid.

• ggplot2 Graphics. ggplot2 package available on CRAN.
• Based on Leland Wilkinson’s ideas articulated in his book, The Grammar

of Graphics.
• Sophisticated and powerful system. Not too hard to learn.
• Built on grid.

3/29

Introduction
Having powerful and flexible systems for graphics is one of R’s biggest
strengths.

• Base Graphics. Contained in the graphics package distributed in base R.

• Grid graphics. grid package is distributed in base R.
• Contains low-level graphics functions.
• Useful as a platform for developing and implementing higher-level graphics
functions and systems.

• Lattice Graphics. lattice package also distributed in base R.
• Mimics and extends trellis graphics from S and S-PLUS.
• Characteristic feature is plots with multiple panels.
• Built on grid.

• ggplot2 Graphics. ggplot2 package available on CRAN.
• Based on Leland Wilkinson’s ideas articulated in his book, The Grammar

of Graphics.
• Sophisticated and powerful system. Not too hard to learn.
• Built on grid.

3/29

ggplot2 Basics

• Idea is that there are several different components that come together to
produce a plot.

• These can be thought about and specified independently.
• Breaking a plot down into these components provides structure—a

system—to the task of visualizing data.
• Arguably, this makes coding plots easier and more intuitive. Less arguably,

it makes the software more flexible and powerful than other systems such
as base graphics and lattice.

• ggplot2 also takes care of some details automatically (like legends) and
has nice defaults. These features simplify the task of coding a plot.

4/29

ggplot2 Basics

• Idea is that there are several different components that come together to
produce a plot.

• These can be thought about and specified independently.
• Breaking a plot down into these components provides structure—a

system—to the task of visualizing data.
• Arguably, this makes coding plots easier and more intuitive. Less arguably,

it makes the software more flexible and powerful than other systems such
as base graphics and lattice.

• ggplot2 also takes care of some details automatically (like legends) and
has nice defaults. These features simplify the task of coding a plot.

4/29

ggplot2 Basics

• Idea is that there are several different components that come together to
produce a plot.

• These can be thought about and specified independently.
• Breaking a plot down into these components provides structure—a

system—to the task of visualizing data.
• Arguably, this makes coding plots easier and more intuitive. Less arguably,

it makes the software more flexible and powerful than other systems such
as base graphics and lattice.

• ggplot2 also takes care of some details automatically (like legends) and
has nice defaults. These features simplify the task of coding a plot.

4/29

ggplot2 Basics

• Idea is that there are several different components that come together to
produce a plot.

• These can be thought about and specified independently.
• Breaking a plot down into these components provides structure—a

system—to the task of visualizing data.
• Arguably, this makes coding plots easier and more intuitive. Less arguably,

it makes the software more flexible and powerful than other systems such
as base graphics and lattice.

• ggplot2 also takes care of some details automatically (like legends) and
has nice defaults. These features simplify the task of coding a plot.

4/29

ggplot2 Basics

• Idea is that there are several different components that come together to
produce a plot.

• These can be thought about and specified independently.
• Breaking a plot down into these components provides structure—a

system—to the task of visualizing data.
• Arguably, this makes coding plots easier and more intuitive. Less arguably,

it makes the software more flexible and powerful than other systems such
as base graphics and lattice.

• ggplot2 also takes care of some details automatically (like legends) and
has nice defaults. These features simplify the task of coding a plot.

4/29

ggplot2 Basics
• There are at least eight components that can be manipulated separately in

ggplot2, but we start with the three most important:
• A data frame;
• One or more geometrical representations (geom);
• A mapping of the data to aesthetic (aes) features of the geom.

load ggplot2 and get some data:
require(ggplot2); data(Cars93,package="MASS"); source("https://tinyurl.com/une4s3g/getData_3.R")
Now create a simple plot:
ggplot(tdf, mapping=aes(x=year,y=speed)) + geom_point()

32.5

35.0

37.5

40.0

1960 1980 2000

year

sp
ee

d

5/29

ggplot2 Basics
• There are at least eight components that can be manipulated separately in

ggplot2, but we start with the three most important:
• A data frame;
• One or more geometrical representations (geom);
• A mapping of the data to aesthetic (aes) features of the geom.

load ggplot2 and get some data:
require(ggplot2); data(Cars93,package="MASS"); source("https://tinyurl.com/une4s3g/getData_3.R")
Now create a simple plot:
ggplot(tdf, mapping=aes(x=year,y=speed)) + geom_point()

32.5

35.0

37.5

40.0

1960 1980 2000

year

sp
ee

d

5/29

ggplot2 Basics
• There are at least eight components that can be manipulated separately in

ggplot2, but we start with the three most important:
• A data frame;
• One or more geometrical representations (geom);
• A mapping of the data to aesthetic (aes) features of the geom.

load ggplot2 and get some data:
require(ggplot2); data(Cars93,package="MASS"); source("https://tinyurl.com/une4s3g/getData_3.R")
Now create a simple plot:
ggplot(tdf, mapping=aes(x=year,y=speed)) + geom_point()

32.5

35.0

37.5

40.0

1960 1980 2000

year

sp
ee

d

5/29

ggplot2 Basics
• There are at least eight components that can be manipulated separately in

ggplot2, but we start with the three most important:
• A data frame;
• One or more geometrical representations (geom);
• A mapping of the data to aesthetic (aes) features of the geom.

load ggplot2 and get some data:
require(ggplot2); data(Cars93,package="MASS"); source("https://tinyurl.com/une4s3g/getData_3.R")
Now create a simple plot:
ggplot(tdf, mapping=aes(x=year,y=speed)) + geom_point()

32.5

35.0

37.5

40.0

1960 1980 2000

year

sp
ee

d

5/29

ggplot2 Basics
• Let’s re-draw the plot step-by-step and we’ll add fitted curves.
• Notice ‘ggplot() just draws axes where aes() identifies the x and y
variables.

• Additional features are added (literally, with a + operator).
• There are many geom functions.

• geom_point() adds points. geom_smooth() adds a lowess curve (the
default) and a least squares fit.

• The x and y variables are inherited from the call to ggplot().

p1 <- ggplot(tdf, mapping=aes(x=year,y=speed)); p1
p2 <- p1 + geom_point(); p2
p3 <- p2 + geom_smooth(method=lm) + geom_smooth(color="red", linetype="dashed", se=FALSE); p3

32.5

35.0

37.5

40.0

1960 1980 2000

year

sp
ee

d

32.5

35.0

37.5

40.0

1960 1980 2000

year

sp
ee

d

32.5

35.0

37.5

40.0

1960 1980 2000

year

sp
ee

d

6/29

Aesthetics
• Aesthetic mappings always involve data. They determine how data

influences the features of the plot.
• In many plots a single aesthetic mapping will be made in the initial call to
‘ggplot(). Subsequent functions (such as geom functions) inherit the
mapping by default, but can also have their own aes() mappings to
accomplish certain effects.

ggplot(tdf, mapping=aes(x=year,y=speed,color=winner_ctry)) + geom_point()
ggplot(fred, mapping=aes(x=Time,y=Cals)) +

geom_point(mapping=aes(color=calib)) + geom_smooth(method=lm,se=FALSE)
ggplot(fred, mapping=aes(x=Time,y=Cals,color=calib)) +

geom_point() + geom_smooth(method=lm,se=FALSE)

32.5

35.0

37.5

40.0

1960 1980 2000

year

sp
ee

d

winner_ctry

Belgium

Denmark

France

Germany

Holland

Ireland

Italy

Luxembourg

Spain

Switzerland

USA 1000

2000

3000

01:00:00 02:00:00 03:00:00

Time

C
al

s

calib

orig

recalib

1000

2000

3000

01:00:00 02:00:00 03:00:00

Time

C
al

s

calib

orig

recalib

7/29

Aesthetics

• There are several aesthetic features that can be mapped or set.
• Some roughly correspond to graphical parameters in base, but they differ

and graphical parameters are not used in ggplot2.
• colour (or color) and fill: Can take numbers or names with same values
as used in base graphics.

• linetype: Corresponds to and takes same values as lty in base graphics.
• size: Width in mm. Corresponds to lwd in base.
• linejoin and lineend: affect appearance of line joins (corners) and ends.
Hard to see these effects unless you’re using wide lines.

• shape: Controls plotting symbols. Corresponds to and takes same values as
pch in base graphics.

• family: Controls font. Choices are "sans", "serif", or "mono". Others
can be implemented via secondary packages.

• fontface: Controls font appearance. Choices are "plain", "bold",
"italic", "bold.italic".

• hjust, vjust: Control justification. Each take a number ∈ [0, 1] or a string
("top", "middle", "bottom", "left", "center", "right").

8/29

Mapping vs Setting Aesthetic Features
• Specifying a feature inside aes() maps the feature to a variable. To set
the feature to a constant value, use it outside aes().

• Bar charts are implemented with geom_bar().
• The 1st plot shows a univariate distribution, with fill set to a constant.
• In the 2nd and 3rd plots, it is mapped to show a joint distribution.
• Notice only x is specified in aes() for these plots.

ggplot(Cars93, aes(x=Type)) + geom_bar(fill="green3") # color and fill are set to constant values here (not in aes() function)
ggplot(Cars93, aes(x=Type,fill=Man.trans.avail)) + geom_bar() # stacked bars
Previous line gives same result as next one (comented out):
ggplot(Cars93, aes(x=Type)) + geom_bar(aes(fill=Man.trans.avail)) # stacked bars
ggplot(Cars93, aes(x=Type,fill=Man.trans.avail)) + geom_bar(position="dodge2") # clustered bars

0

5

10

15

20

Compact Large Midsize Small Sporty Van

Type

co
un

t

0

5

10

15

20

Compact Large Midsize Small Sporty Van

Type

co
un

t Man.trans.avail

No

Yes

0

5

10

15

20

Compact Large Midsize Small Sporty Van

Type

co
un

t Man.trans.avail

No

Yes

9/29

geom Functions

• There are many functions that add geometric features (layers) to a plot.
• The ones below are part of ggplot2. Others are available in secondary

packages.

geom_abline geom_density_2d geom_linerange geom_rug
geom_area geom_density2d geom_map geom_segment
geom_bar geom_dotplot geom_path geom_sf

geom_bin2d geom_errorbar geom_point geom_sf_label
geom_blank geom_errorbarh geom_pointrange geom_sf_text

geom_boxplot geom_freqpoly geom_polygon geom_smooth
geom_col geom_hex geom_qq geom_spoke

geom_contour geom_histogram geom_qq_line geom_step
geom_count geom_hline geom_quantile geom_text

geom_crossbar geom_jitter geom_raster geom_tile
geom_curve geom_label geom_rect geom_violin

geom_density geom_line geom_ribbon geom_vline

10/29

geom Functions
• geoms will use the data set specified in the ggplot() function or can use a
different data set.

frame <- ggplot(tdf, aes(x=year,y=speed)) +
xlab("Year") + ylab("Avg speed for winner (km)") + ggtitle("Average Speed in the TdF")

frame + geom_point() + geom_smooth(method="lm") + geom_smooth(se=FALSE,color="red")

Here we add more features using geoms that use data from other data frames:
tdf.lm1.pi <- predict(lm(speed~year,data=tdf), interval="prediction") #don't worry about warning
pi.df <- data.frame(year=tdf$year, l.plim=tdf.lm1.pi[,2], u.plim=tdf.lm1.pi[,3])
txt.df <- data.frame(x=1990, y=32.5, txt = "list(hat(beta)[0]==-198.3,hat(beta)[1]==0.119)")
frame + geom_ribbon(data=pi.df, mapping=aes(x=year,ymin=l.plim,ymax=u.plim),

inherit.aes=F, fill="lightcyan", alpha=.5) + # alpha controls transparancy
geom_point() + geom_smooth(method="lm") + geom_smooth(se=FALSE,color="red") +
geom_text(data=txt.df,mapping=aes(x,y,label=txt),parse=T) # can avoid making txt.df with annotate() fn commented out below

annotate(geom="text", x=1990, y=32.5, label = "list(hat(beta)[0]==-198.3,hat(beta)[1]==0.119)",parse=T)

32.5

35.0

37.5

40.0

1960 1980 2000

Year

Av
g

sp
ee

d
for

 w
inn

er
 (k

m
)

Average Speed in the TdF

β̂0 = − 198.3, β̂1 = 0.119

30.0

32.5

35.0

37.5

40.0

42.5

1960 1980 2000

Year

Av
g

sp
ee

d
for

 w
inn

er
 (k

m
)

Average Speed in the TdF

11/29

Modifying Axes and Scales
• In the previous example I used ggtitle() for a title and xlab() and

ylab() for axis labels.
• A more general function, labs(), can add title, subtitle, figure caption, and
labels for aesthetics, which are useful because they appear in the legend.

• There are xlim() and ylim() functions to control the ranges of the axes.
• Functions like xlab() and xlim() are convenient, but can be replaced by

a scale function.

ggplot(tdf, mapping=aes(year, speed, color=winner_ctry)) + geom_point() + labs(color="Winner's Nationality",title="Avg Speed in the TdF") +
scale_x_continuous(name="Year", limits=c(1940,2010), breaks=seq(1940,2010,by=10), labels=as.character(seq(1940,2010,by=10))) +
scale_y_continuous("Avg Speed (km/h)", sec.axis=sec_axis(~.*.6214,name="Avg Speed (m/h)"))

32.5

35.0

37.5

40.0

20

21

22

23

24

25

1940 1950 1960 1970 1980 1990 2000 2010

Year

Av
g

Sp
ee

d
(k

m
/h

) Avg Speed (m
/h)

Winner's Nationality

Belgium

Denmark

France

Germany

Holland

Ireland

Italy

Luxembourg

Spain

Switzerland

USA

Avg Speed in the TdF

12/29

Scales

• As mentioned previously, ggplot2 builds plots by combining components
that can be manipulated separately. Scales are one of these components.

• The plot components are
• data frames,
• geometrical representations,
• aesthetic mappings,
• scales,
• statistics from the data to be mapped,
• position adjustments,
• a coordinate system,
• a faceting scheme.

• In addition, the overall appearance and some specific features are
controlled by a theme.

13/29

Scales
• Scales are functions that control the mapping from data to an aesthetic.

• Every aesthetic has one; default scales are used but can be
overridden/modified by using a scale function or functions like xlab() and
xlim().

ggplot(tdf, mapping=aes(year, speed, color=distance)) + geom_point(shape=19,size=2) + ggtitle("Avg Speed in the TdF") +
scale_x_continuous(name="Year", limits=c(1940,2010), breaks=seq(1940,2010,by=10), labels=as.character(seq(1940,2010,by=10))) +
scale_y_continuous("Avg Speed (km/h)", sec.axis=sec_axis(~.*.6214,name="Avg Speed (m/h)")) +
scale_color_gradient("Length of Race (km)",low="Plum1",high="purple4")

ggplot(tvData, mapping=aes(x=popPerMD,y=lifeExpect)) + geom_point() +
labs(title="Life expectancy vs log population per doctor",y="Life expectancy (yrs)") +
scale_x_log10("Population/doctor (log10 scale)")

32.5

35.0

37.5

40.0

20

21

22

23

24

25

1940 1950 1960 1970 1980 1990 2000 2010

Year

Av
g

Sp
ee

d
(k

m
/h

) Avg Speed (m
/h) 3600

4000

4400

4800

Length of Race (km)

Avg Speed in the TdF

60

70

80

300 1000 3000 10000 30000

Population/doctor (log10 scale)

Lif
e

ex
pe

cta
nc

y (
yr

s)

Life expectancy vs log population per doctor

14/29

Scales
• Below we see the default scale for a variable of class "Date" (left).
• Next we modify that scale with the scale_x_date() function (middle).
• Finally, legends are generated only for mapped aesthetic features, so if we
want to identify different geoms we have to map their aesthetics and create
a suitable scale for those mappings (right).

fred1 <- ggplot(fred, mapping=aes(x=date,y=AvgSpd)) + geom_point() + geom_smooth(se=F,color="blue") +
labs(title="Fred's bike rides in 2013: Avg speed/ride over time",y="Speed (m/h)",x="Date"); fred1

fred2 <- fred1 + scale_x_date(date_labels="%m/%d",date_breaks="6 weeks",limits=as.Date(c("2013-01-01","2013-12-31"))); fred2

fred2 + geom_smooth(se=F,mapping=aes(color="blue")) + geom_smooth(method="lm",se=F,mapping=aes(color="red")) +
scale_colour_identity(name="Lines", breaks=c("red","blue"), labels=c("Linear","Loess"), guide="legend")

16

18

20

Jan 2013 Apr 2013 Jul 2013 Oct 2013 Jan 2014

Date

S
pe

ed
 (

m
/h

)

Fred's bike rides in 2013: Avg speed/ride over time

16

18

20

01/21 03/04 04/15 05/27 07/08 08/19 09/30 11/11 12/23

Date

S
pe

ed
 (

m
/h

)

Fred's bike rides in 2013: Avg speed/ride over time

16

18

20

01/21 03/04 04/15 05/27 07/08 08/19 09/30 11/11 12/23

Date

S
pe

ed
 (

m
/h

)

Lines

Linear

Loess

Fred's bike rides in 2013: Avg speed/ride over time

15/29

Coordinate Systems

• The default and most common coordinate system is implemented in the
coord_cartesian() function.

• That is, in all our plots so far, there has been an implicit
+coord_cartesian() added to our code.

• Other useful coordinate functions are
• coord_fixed(), coord_equal(): implement fixed aspect ratio Cartesion
coordinates.

• coord_flip(): reverses the x and y variables.
• coord_map(): for maps.
• coord_polar(): polar coordinates.
• coord_trans(): implements transformed Cartesian coordinates.

16/29

Coordinate Systems—Examples

• Examples of coord_flip() and coord_polar():

ggplot(Cars93, aes(x=Type)) + geom_bar(fill="green3") + coord_flip()

g <- ggplot(Cars93, aes(x="", fill=Type)) + geom_bar(width=1,position="fill") +
scale_x_discrete(NULL, expand = c(0, 0)) + scale_y_continuous(NULL, expand = c(0, 0)); g

g + coord_polar(theta="y",start=0)

Compact

Large

Midsize

Small

Sporty

Van

0 5 10 15 20

count

Ty
pe

0.00

0.25

0.50

0.75

1.00

Type

Compact

Large

Midsize

Small

Sporty

Van

0.25

0.50

0.75

0.00/1.00

Type

Compact

Large

Midsize

Small

Sporty

Van

17/29

Coordinate Systems—Examples
• Examples of coord_equal() and coord_map(). Note that the aspect
ratio in these presentation slides is distorted.

fs <- UsingR::father.son # Pearson's father-son height data
fs1 <- ggplot(fs,aes(x=fheight,y=sheight)) + geom_point() + geom_abline(slope=1,intercept=0,color="red") +

labs(x="Father's Height (in)",y="Son's Height (in)",title="Pearson's father-son height data"); fs1
fs1 + coord_equal()

Example from help page for map_data() function from ggplot2 package:
states <- map_data("state"); arrests <- USArrests
names(arrests) <- tolower(names(arrests)); arrests$region <- tolower(rownames(USArrests))
choro <- merge(states, arrests, sort = FALSE, by = "region"); choro <- choro[order(choro$order),]
ggplot(choro, aes(long, lat)) + geom_polygon(aes(group = group, fill = assault)) +

coord_map("albers", lat0 = 45.5, lat1 = 29.5) + ggtitle("Assault Arrest Rates by State, 1973")

60

65

70

75

60 65 70 75

Father's Height (in)

S
on

's
 H

ei
gh

t (
in

)

Pearson's father−son height data

60

65

70

75

60 65 70 75

Father's Height (in)

S
on

's
 H

ei
gh

t (
in

)

Pearson's father−son height data

25

30

35

40

45

50

−120 −100 −80

long

la
t

100

200

300

assault

Assault Arrest Rates by State, 1973

18/29

Facetting
• Facetting shows conditional relationships in paneled plots.

• facet_wrap() builds plots at the level(s) of the conditioning variable(s) and
adds them row-wise (dir=h) or column-wise (dir=v) to an array of plots.

• With facet_grid(), plots in the grid are conditioned on a row value and a
column value. These can each be values of a single variable or of
combinations of variables.

gall$dogFac <- factor(gall$dogno); gall$trtfac <- factor(gall$trt,labels=c("Colechystokynin","Clanobutin","Control"))
ggplot(gall, aes(min,volume,group=dogFac,color=dogFac)) + geom_line() + geom_point() +

xlab("Minutes") + ylab("Volume") + ggtitle("Gall bladder volumes over time after treatment") + facet_wrap(~trtfac, ncol = 3)

bodyDat$over34 <- factor(as.numeric(bodyDat$age>34),labels=c("Young","Old"))
ggplot(bodyDat,aes(x=waist_girth,y=should_girth)) + ggtitle("Shoulder girth vs waist girth in age/sex strata") +

ylab("Shoulder girth (cm)") + xlab("Waist girth (cm)") + geom_point() + facet_grid(genderFac~over34)

Colechystokynin Clanobutin Control

0 25 50 75 100 1250 25 50 75 100 1250 25 50 75 100 125

10

20

30

40

Minutes

Vo
lum

e

dogFac

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Gall bladder volumes over time after treatment

Young Old

Fem
ale

M
ale

60 80 100 60 80 100

90

100

110

120

130

90

100

110

120

130

Waist girth (cm)

Sh
ou

lde
r g

irt
h

(c
m

)

Shoulder girth vs waist girth in age/sex strata

19/29

Themes
• The overall appearance of a plot is controlled by a theme. Themes control

background color, font size and color, legend position, and much more.
• There are several complete themes in ggplot2 with more in ggthemes.

• The default theme is theme_grey(), but switching themes is easy by using
other theme functions.

• Alternatively, change specific elements in the current theme with theme().

bp <- ggplot(Cars93) + geom_boxplot(aes(x = Origin, y = MPG.city, fill = Origin)) +
ggtitle("City mileage by origin") + ylab("City mileage (mpg)") + coord_flip() +
geom_rug(data=Cars93[Cars93$Origin!="USA",],mapping=aes(x=NULL,y=MPG.city,color=Origin), sides="t") +
geom_rug(data=Cars93[Cars93$Origin=="USA",],mapping=aes(x=NULL,y=MPG.city,color=Origin), sides="b") +
scale_colour_discrete(drop=FALSE) ; bp

bp + theme_bw()
bp + ggthemes::theme_few() + theme(legend.position="bottom", plot.title=element_text(family="serif",color="green3",hjust=.5))

USA

non−USA

20 30 40

City mileage (mpg)

O
rig

in

Origin

USA

non−USA

City mileage by origin

USA

non−USA

20 30 40

City mileage (mpg)

O
rig

in

Origin

USA

non−USA

City mileage by origin

USA

non−USA

20 30 40
City mileage (mpg)

O
rig

in

Origin USA non−USA

City mileage by origin

20/29

Examples—Bar Plots Showing Statistics by Group
• We’ve seen examples of bar plots showing (joint) distributions. For that
we used geom_bar().

• Here we use geom_col() for bar plots showing statistics by group (with
error bars).

mean.arr <- tapply(Cars93$MPG.city,Cars93$Type,mean); se.arr <- tapply(Cars93$MPG.city,Cars93$Type,function(x) sqrt(var(x)/length(x)))
df <- data.frame(Type=names(mean.arr),mn=mean.arr,se=se.arr)
p1 <- ggplot(df, aes(Type,mn,ymin = mean.arr-1.96*se.arr, ymax = mean.arr+1.96*se.arr)) +

geom_col(fill="blue") + labs(title="Mean city mileage by car type",x="Type",y="City Mileage (mpg)")
p1 + geom_linerange(color="red",size=.8) # one style of error bar
p1 + geom_errorbar(color="red",width=.3,size=.8) # another style of error bar
A better choice is to omit the bars entirely:
ggplot(df, aes(Type,mn,ymin = mean.arr-1.96*se.arr, ymax = mean.arr+1.96*se.arr)) +

labs(title="Mean city mileage by car type",x="Type",y="City Mileage (mpg)") + geom_pointrange(color="red",size=.8)

0

10

20

30

Compact Large Midsize Small Sporty Van

Type

C
ity

 M
ile

ag
e

(m
pg

)

Mean city mileage by car type

0

10

20

30

Compact Large Midsize Small Sporty Van

Type

C
ity

 M
ile

ag
e

(m
pg

)

Mean city mileage by car type

20

25

30

Compact Large Midsize Small Sporty Van

Type

C
ity

 M
ile

ag
e

(m
pg

)

Mean city mileage by car type

21/29

Examples—Histograms
• By default, geom_histogram() uses too many bins so always choose a

binning scheme with one or more of the arguments binwidth, bins,
center, boundary, breaks, and closed.

ggplot(bodyDat, aes(bicep_girth)) + geom_histogram(binwidth=2,color="cadetblue4",fill="cadetblue1") +
xlab("Bicep Girth (cm)") + ylab("Count") + ggtitle("Histogram of bicep girth from gym-goers")

ggplot(bodyDat, aes(x = bicep_girth)) +
geom_histogram(aes(y =..density..),binwidth=2,color="cadetblue4",fill="cadetblue1") +
xlab("Bicep Girth (cm)") + ylab("Density") + ggtitle("Histogram of bicep girth from gym-goers") +
stat_function(aes(color="blue"),fun = dnorm,

args = list(mean = mean(bodyDat$bicep_girth), sd = sd(bodyDat$bicep_girth))) +
geom_density(aes(color="red"),adjust=.8) + # adjust value multiplies the default bandwidth
scale_colour_identity(name="Density", breaks=c("red","blue"), labels=c("Kernel","Normal"), guide="legend")

0

20

40

60

80

20 25 30 35 40

Bicep Girth (cm)

Co
un

t

Histogram of bicep girth from gym−goers

0.000

0.025

0.050

0.075

20 25 30 35 40

Bicep Girth (cm)

De
ns

ity Density

Kernel

Normal

Histogram of bicep girth from gym−goers

22/29

Examples—Histograms vs Frequency Polygons

• Recall that the bicep data are from men and women. Best to examine
distribution by sex.

ggplot(bodyDat, aes(bicep_girth,fill=genderFac)) + geom_histogram(binwidth=2,color="darkmagenta") +
xlab("Bicep Girth (cm)") + ylab("Count") + ggtitle("Histogram of bicep girth from gym-goers") +
facet_wrap(~genderFac, ncol = 1)

Now use frequency polygon instead of histogram
fp1 <- ggplot(bodyDat, aes(bicep_girth,color=genderFac)) + geom_freqpoly(binwidth=2) +

xlab("Bicep Girth (cm)") + ylab("Count") + ggtitle("Frequency polygon of bicep girth from gym-goers")
fp1 + facet_wrap(~genderFac, ncol = 1)
No need to use panels. Polygons look good when superimposed in the same panel
fp1

Male

Female

20 25 30 35 40

0

20

40

60

0

20

40

60

Bicep Girth (cm)

C
ou

nt

genderFac

Female

Male

Histogram of bicep girth from gym−goers

Male

Female

20 25 30 35 40 45

0

20

40

60

0

20

40

60

Bicep Girth (cm)

C
ou

nt

genderFac

Female

Male

Frequency polygon of bicep girth from gym−goers

0

20

40

60

20 25 30 35 40 45

Bicep Girth (cm)

C
ou

nt

genderFac

Female

Male

Frequency polygon of bicep girth from gym−goers

23/29

Examples—Scatterplots with Jittering and Labels
• To avoid overplotting it is useful to jitter the points.
• Points can be labeled with geom_text(). Need to adjust position of labels
slightly. Adjustment can be done (and often must be done) in multiple
ways.

ggplot(Cars93, aes(x=MPG.city,y=MPG.highway,color=Origin)) + geom_point() + ggtitle("Highway vs city mileage")
ggplot(Cars93, aes(x=MPG.city,y=MPG.highway,color=Origin)) +

geom_jitter() + labs(x="City Mileage (mpg)",y="Highway Mileage (mpg)", title="Highway vs city mileage (jittered)") +
geom_text(aes(label = Make),show.legend=F, data=Cars93[Cars93$MPG.city>45,], vjust = "inward", hjust = "inward") +
geom_text(aes(label = Make),show.legend=F, data=Cars93[Cars93$MPG.highway>40 & Cars93$MPG.city<45,],

nudge_y = -1)

20

30

40

50

20 30 40

MPG.city

M
PG

.h
igh

wa
y

Origin

USA

non−USA

Highway vs city mileage

Geo Metro

Honda Civic

Pontiac LeMans

Suzuki Swift

20

30

40

50

20 30 40

City Mileage (mpg)

Hi
gh

wa
y M

ile
ag

e
(m

pg
)

Origin

USA

non−USA

Highway vs city mileage (jittered)

24/29

Examples—Plot Matrices
• The GGally package offers the ggpairs() function for plotting pairwise

plot matrices.
• This yields scatter plot matrices when all variables are continuous (left

and middle), but it works with variables of mixed scales (right).

require(GGally); ggpairs(na.omit(tvData), c("popPerTV","popPerMD","lifeExpect"))
Default uses nonparametric densities on the diagonal and Pearson cors in upper tri, but these can be altered:
ggpairs(na.omit(tvData), columns=c("popPerTV","popPerMD","lifeExpect"),

upper=list(continuous=wrap("cor",method="spearman")), diag=list(continuous=wrap("barDiag",bins=10)))
Example from the ggpairs() help page involving the tips data set from reshape package.
data(tips, package = "reshape")
ggpairs(tips[,c("total_bill", "sex", "smoker", "tip")], columnLabels = c("Total Bill", "Sex", "Smoker", "Tip"),

upper = list(continuous = "density", combo = "box_no_facet"),
lower = list(continuous = "points", combo = "dot_no_facet"))

Corr:

0.62

Corr:

−0.606

Corr:

−0.587

popPerTV popPerMD lifeExpect

popP
erT

V
popP

erM
D

lifeE
xpect

0 200 400 600 0 100002000030000 60 70 80

0.00

0.01

0.02

0.03

0

10000

20000

30000

60

70

80

Corr:

0.759

Corr:

−0.876

Corr:

−0.773

popPerTV popPerMD lifeExpect

popP
erT

V
popP

erM
D

lifeE
xpect

0 200 400 600 0 100002000030000 50 60 70 80

0

10

20

30

0

10000

20000

30000

60

70

80

Total Bill Sex Smoker Tip

Total B
ill

S
ex

S
m

oker
T

ip

10 20 30 40 50 Female Male No Yes 2.5 5.0 7.5 10.0

0.00

0.02

0.04

Male

Female

Yes

No

2.5

5.0

7.5

10.0

25/29

Examples—Multiple Plots per Page
• Multiple plots/page is implemented in several tools including plot_grid()

of the cowplot package and ggmatrix() of the GGally package.
• Here’s an example using plot_grid() in which alignment is important.

tar.nic.scatter <- ggplot(data=cigData, aes(x=tar,y=nicotine)) + geom_point() + theme_classic() +
scale_x_continuous("",breaks=seq(0,30,by=5),limits=c(0,30)) + scale_y_continuous("Nicotine",breaks=seq(0,2.25,by=.25),limits=c(0,2.25))

tar.box <- ggplot(aes(y = tar), data = cigData) + geom_boxplot(fill = "lightblue") + theme_classic() + coord_flip() +
scale_y_continuous("Tar",breaks=seq(0, 30, by=5),limits=c(0,30)) + scale_x_continuous(name=NULL,breaks=NULL)

nic.box <- ggplot(aes(y = nicotine), data = cigData) + geom_boxplot(fill = "lightblue") + theme_classic() +
scale_y_continuous(name=NULL,breaks=seq(from=0, to=2.25, by=.25),limits=c(0,2.25)) + scale_x_continuous(name=NULL,breaks=NULL)

cowplot::plot_grid(tar.nic.scatter, nic.box, tar.box, align = "hv", ncol=2, nrow = 2, rel_widths = c(4, 1)/5, rel_heights = c(4, 1)/5)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

0 5 10 15 20 25 30

N
ic

ot
in

e

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

0 5 10 15 20 25 30

Tar 26/29

Resources for Graphics in R

• Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis, Second
Edition. Springer.

• Available through UGA Libraries for free.
• Friendly, M. (2018). Data Visualization in R, SCS Short Course.

http://www.datavis.ca/courses/RGraphics/
• The Session 4 slides focus on ggplot2.

• Tierney, L. (2019). STAT:4580 Data Visualizations and Data Technology.
Course Notes.

• RStudio. Data Visualization with ggplot2:: Cheat Sheet. (All RStudio
cheat sheets in a single PDF at this link.)

• ggplot2 home page https://ggplot2.tidyverse.org/reference/

27/29

http://www.datavis.ca/courses/RGraphics/
https://tinyurl.com/s6tjllq
https://tinyurl.com/vvpx78g
https://ggplot2.tidyverse.org/reference/

Thank You!

• If you need assistance with R or with selecting or implementing data
visualizations to better understand your data, contact the SCC!

• We can help!

www.stat.uga/consulting

28/29

https://stat.uga.edu/statistical-consulting-center-0

Finally. . .
• Holiday wishes, rendered with ggplot2 and shamelessly stolen from the

Standard error blog http://t-redactyl.io/:

Merry Christmas!

29/29

http://t-redactyl.io/

	
	Introduction
	ggplot2 Basics
	Aesthetics
	geom Functions
	Scales
	Coordinate Systems
	Facetting
	Themes
	Examples
	Resources for Graphics in R

