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a b s t r a c t

In modern pharmaceutical studies, treatments may include several drugs added sequen-
tially, and the drugs’ order-of-addition can have significant impacts on their efficacy. In
practice, experiments enumerating all possible drug sequences are often not affordable,
and appropriate statistical models which can accurately predict all cases using only
a small number of experimental trials are required. A novel mapping-based universal
Kriging (MUK) model and its simplified variant are proposed for analyzing such order-
of-addition experiments with blocking. They can provide accurate predictions and have
robust performances under various experimental designs. The MUK model can also
incorporate available domain knowledge to enhance its interpretation. The superiority
of the proposed methods is illustrated via a real five-drug experiment on lymphoma and
two simulation examples.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

In pharmaceutical sciences, there are quite a few studies on the order-of-addition effects where the sequence of
rranging drug components plays a significant role to affect the response. In an experiment analyzing protein function
ithin an in-vitro transport system (Preuss et al., 2009), the sequence of actions for two components was found to be
ignificant on the response. In another drug combination experiment on oral cancer (Ding et al., 2015), the authors showed
hat the sequence of adding three drugs (bortezomib, camptothecin, and doxorubicin) played a vital role in ensuring the
fficacy of treatments. We can also see the order-of-addition effects in many other scientific disciplines, such as chemical
cience (Fuleki and Francis, 1968), political science (Miller and Krosnick, 1998), bio-chemistry (Shinohara and Ogawa,
998), food science (Jourdain et al., 2009), nutritional science (Karim et al., 2000), manufacturing (Cheng and Wang, 2000)
nd behavioral science (Dupagne et al., 1999).
To show the characteristics of order-of-addition experiments, we illustrate an example in Yang et al. (2020) where

hree anti-tumor drugs, denoted as A, B and C, were added into cell cultures either sequentially or simultaneously. There
re in total 6 possible sequences for arranging the three drugs which were added one by one every six hours. The responses
ere the percentages of tumor inhibition measured 12 h after the addition of last drug. The researchers found that adding
rugs following the sequence B → C → A would achieve the best response among all possible arrangements including

the case of all drugs added together. Such an order-of-addition experiment is different from a crossover trial (Jones and
Kenward, 2014). The former only measures the endpoint response after all drugs are added, and the drug effects are
believed to be dependent on their orders of addition. While, the latter measures the response after adding each drug
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3 responses per run in this example), and each drug has a fixed effect which may carry over to the next period but does
ot depend on its order of addition.
In drug combination studies, some researchers would judiciously decide the drug sequences (without doing any

xperiment) based on the drug mechanisms and the corresponding pathway information of diseases, which may
ot be possible in many cases where the mechanisms are unknown (Ding et al., 2015). Thus, the order-of-addition
xperiments are often needed. There are k! possible sequences for arranging k drugs, and an experiment enumerating
ll of them may not be affordable in practice (Yang et al., 2020). Appropriate statistical models are needed for accurately
redicting the outcomes of all sequences using only a small number of runs. The current literature on modeling order-of-
ddition experiments is limited, and only two types of linear models are proposed: the pair-wise ordering (PWO) model
Van Nostrand, 1995; Voelkel, 2019; Mee, 2020) and the component-position (CP) model (Yang et al., 2020). Linear models
ave their advantages in modeling order-of-addition problems, such as clear interpretations. Yet, their prediction accuracy
ay not always be satisfactory; see Sections 4 and 5 for examples.
Originally from geosciences, Kriging models, aka. Gaussian process models, have been used as a core tool for modeling

hysical and computer experiments (Krige, 1951; Sacks et al., 1989; Fang et al., 2005; Kleijnen, 2009; Ginsbourger et al.,
009). Specifically, in a drug combination experiment on lung cancer, the researchers showed that Kriging model can
rovide more accurate predictions than some popular linear and non-linear models (Xiao et al., 2019). The Kriging methods
re widely accepted as accurate surrogates for measuring complex response surfaces, and can provide reliable uncertainty
uantification (Williams and Rasmussen, 2006; Sullivan, 2015). Standard Kriging models can only take quantitative inputs,
nd some recent research extend their applications to both quantitative and qualitative inputs (Qian et al., 2008; Deng
t al., 2017; Zhang et al., 2020).
In this paper, we propose to apply the universal Kriging (UK) method for modeling a new type of inputs: the order-of-

ddition inputs. We further develop a novel mapping-based universal Kriging (MUK) model to improve the predictions and
nhance the interpretations. The MUK model can incorporate available domain knowledge into its model structure and
s flexible enough to address various practical concerns. Compared to the existing methods, the proposed Kriging models
ay have the following three advantages. First, they can provide accurate predictions in some real data analysis. Second,

hey can work for various experimental designs and have robust performances. Third, they are parsimonious. When many
rugs are involved, the proposed models have much less parameters and thus require much less runs compared to the
xisting methods introduced in Section 2.
The remainder of this paper is organized as follows. In Section 2, we review current methods for modeling order-of-

ddition experiments. In Section 3, we first introduce the application of the UK model, then develop the MUK model,
nd finally illustrate the model estimations. In Section 4 we present a real data analysis on lymphoma treatment and in
ection 5 we include two simulation studies to show the superiority of the proposed methods. Section 6 concludes and
iscusses some future research.

. Existing methods

In the current literature, two classes of linear models are proposed for order-of-addition problems: the pair-wise
rdering (PWO) model (Van Nostrand, 1995; Voelkel, 2019; Mee, 2020) and the component-position (CP) model (Yang
t al., 2020); see Lin and Peng (2019) for a review. In this section, we introduce their generalized versions as benchmark
ethods, which can take blocking into account.
Consider a drug order-of-addition experiment with n runs, k drugs and m blocks. For simplicity, we illustrate the case

f m = 2 here, and it is straightforward to generalize the methods for m > 2. Denote each run in the experiment as
i = (ai, bi) where ai = (ai,1, . . . , ai,k) is a vector containing the drug sequence and bi ∈ {0, 1} is the block level. If drugs
re added sequentially, ai will be a permutation of numbers from 1 to k. The PWO model adopts the precedence patterns
etween all pairs of drugs to represent the features of a drug sequence. Explicitly, let S be the set of all pairs (p, q) for
≤ p < q ≤ k, and for each (p, q) ∈ S, define the PWO indicator as:

zp,q(a) =

{
1 if p precedes q in the sequence a,

−1 if q precedes p in the sequence a.

s an illustration, for k = 3 and a = (C, A, B) = (3, 1, 2), we have S = {(1, 2), (1, 3), (2, 3)}, then z1,2(a) = 1, z1,3(a) = −1
nd z2,3(a) = −1.
The main-PWO model (Van Nostrand, 1995; Voelkel, 2019) which considers main effects of PWO indicators is defin-

d as

y(wi) = β0 + β1bi +
∑

(p,q)∈S

zp,q(ai)βp,q + ϵi, (1)

here β0, β1 and βp,q are coefficients to be estimated via the least squares method. The residual ϵi follows the standard
ssumptions of linear models.
To capture two-factor interactions of PWO indicators, Mee (2020) proposed the triplet-PWO model, which is defin-

d as

y(wi) = β0 + β1bi +
∑

zp,q(ai)βp,q +

∑ [
β

(1)
l,p,qzl,p(ai)zl,q(ai) + β

(2)
l,p,qzl,p(ai)zp,q(ai)

]
+ ϵi, (2)
(p,q)∈S (l,p,q)∈S′

2
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here S ′ is the set of all tuplets (l, p, q) for 1 ≤ l < p < q ≤ k, and β
(1)
l,p,q and β

(2)
l,p,q are coefficients for interaction effects.

Another class of linear models is the component-position (CP) model (Yang et al., 2020), which is defined as

yi = β0 + β1bi +
k−1∑
j=1

k−1∑
c=1

x(j)i,cβj,c + ϵi, (3)

where x(j)i,c equals to 1 if ai,j = c and 0 otherwise. In other words, x(j)i,c is an indicator of whether drug c is used in the ith
run and jth position. Simply speaking, the CP method is a multivariate linear regression treating each position as a factor
with k levels.

3. Mapping-based universal Kriging models for order-of-addition experiments

3.1. Universal Kriging for order-of-addition experiments

Consider a drug order-of-addition experiment with n runs, k drugs and m blocks. Denote the ith (i = 1, . . . , n) run
as wi = (oi, bi) where oi = (oi,1, . . . , oi,k) is an order vector and bi ∈ {0, . . . ,m − 1} is a block level. The order vector oi
contains the order-indexes of the elements in the sequence vector ai defined in Section 2. As an illustration, if drugs are
added following the sequence C → A → B (i.e. ai = (C, A, B) = (3, 1, 2)), the vector containing the order-indexes for
drugs A, B and C is oi = (2, 3, 1).

Due to the existence of random errors, e.g., measurement errors, in drug experiments, we propose the following
universal Kriging (UK) model for order-of-addition inputs:

y(wi) = µ(bi) + Z(oi) + ϵi. (4)

The trend part µ(bi) = BT
i β is a linear model for block levels, where Bi is the dummy coding for the block level bi

and β = (β1, . . . , βm)T is a vector of coefficients. In Eq. (4), Z(oi) is a Gaussian process with zero mean and stationary
covariance function. The random error term ϵi ∼ N(0, τ 2

i ) and is stochastically independent of Z(oi). When assuming
homogeneous variances, we have τ 2

1 = · · · = τ 2
n = τ 2. The covariance function φ for the Gaussian process Z(oi) is defined

as:

φ(oi, oj) = cov(Z(oi), Z(oj)) = σ 2
k∏

l=1

K (hl; θl), (5)

where σ 2 is the variance parameter and K (· ; θl) is a chosen kernel function with a positive correlation parameter θl
(l = 1, . . . , k).

Following Eqs. (4) and (5), the UK model adopts the distance measure hl = |oi,l − oj,l|/k in K (hl; θl) for the lth drug’s
order-of-addition, where oi,l and oj,l are the lth elements in order vectors oi and oj, respectively. Note that hl is within
0–1 range. There are two popular types of kernel functions:

Gaussian: K (hl; θl) = exp(−(θlhl)2/2),

Matérn(ν) : K (hl; θl) = exp(−
√
2νθlhl)

p!
(2p)!

p∑
i=0

(p + i)!
i!(p − i)!

(
√
8νθlhl)p−i,

where ν = p + 1/2, p is a positive integer, and θl is the correlation parameter which scales the correlation length. The
sample path of a Gaussian process with Gaussian kernel has derivatives at all orders, which may be too smooth in practice.
A recommended one for practitioners by Williams and Rasmussen (2006) is the Matérn family with parameter ν = 5/2:

K (hl; θl) =

(
1 +

√
5θlhl + 5(θlhl)2/3

)
exp

(
−

√
5θlhl

)
. (6)

The sample path of a Gaussian process under Eq. (6) is twice differentiable, thus being less smooth than that under the
Gaussian kernel. Another choice of Matérn kernel is to use parameter ν = 3/2, which will lead to even rougher path than
that with ν = 5/2. In this paper, we use Eq. (6) which offers a good balance of smoothness. We plot it with different
values of θ in Fig. 1(a). We can see that the correlation decreases as the distance h increases and larger θ corresponds to
aster decreasing rate.

Finally, based on Eqs. (4)–(6), the covariance between responses y(wi) and y(wj) in the UK model can be written as

Cov(y(wi), y(wj)) = σ 2
k∏

l=1

[(
1 +

√
5θlhl +

5(θlhl)2

3

)
exp

(
−

√
5θlhl

)]
+ τ 2δij, (7)

where hl = |oi,l − oj,l|/k, and δij = 1 if i = j and 0 otherwise. For appropriate model inference, the covariance matrix
C =

(
Cov(y(wi), y(wj))

)
n×n defined by Eq. (7) needs to be positive definite.
3
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Fig. 1. Examples of (a) Matérn 5/2 correlation functions and (b) cumulative beta mapping functions.

Theorem 1. For any set of inputs, the covariance matrix of outputs, i.e. C =
(
Cov(y(wi), y(wj))

)
n×n, induced by the covariance

unction in (7) with τ 2
̸= 0 under the UK model is positive definite.

Theorem 1 can be proved as follows. Since the Matérn kernel with ν = 5/2 is valid and the product of valid kernels
s also a valid kernel, the covariance matrix Φ =

(
φ(oi, oj)

)
n×n induced by Eq. (5) is positive semidefinite (Williams and

Rasmussen, 2006). When τ 2
̸= 0, the diagonal matrix (τ 2In) is positive definite. Since the covariance matrix C = Φ +τ 2In,

is positive definite, which completes the proof. In addition, when all order-of-addition inputs o are distinct (i.e., no
eplicates are included), the matrix Φ is positive definite. Thus, for any set of distinct order-of-addition inputs, regardless
f the τ 2 values, the covariance matrix C induced by (7) is positive definite.
In drug combination experiments, one key reason explaining the order-of-addition effects is the sophisticated interac-

ions among drugs. The Kriging models consider all ways of factors interact with each other and are widely used to model
omplex response surfaces (Gramacy, 2020, Ch. 5). Another possible reason explaining the order-of-addition effects is the
rugs’ time-effect, since different orders are essentially different timings for adding drugs. In the UK model, the orders
re viewed as numerical inputs, which fixes the distances among them. As an illustration, in a three-drug experiment,
he distance between the first and second orders (h = |2 − 1|/3 = 1/3) is always equal to that between the second and
hird orders (h = |3 − 2|/3 = 1/3) for every drug. A similar idea is discussed in Peng et al. (2019) from an experimental
esign perspective. In the Kriging methods, similarities between inputs are measured by their distances. Thus, the UK
odel does not consider different patterns of time-effects. Next, we propose a method to improve this.

.2. Mapping-based universal kriging for order-of-addition experiments

The MUK model relaxes the constraint in the UK model that all distances between orders are fixed, and adopts a
ata-driven approach of deciding the pairwise distances. In the MUK model, flexible mapping functions are used to take
ifferent patterns of time-effects into account.
The MUK model follows the same Eqs. (4)–(7) as the UK model, but defines a general distance measure hl =

gl(oi,l) − gl(oj,l)| in K (hl; θl) for the lth drug’s order-of-addition, where l = 1, . . . , k, i, j = 1, . . . , n, oi,l and oj,l are the lth
elements in the order vectors oi and oj, respectively. The mapping function gl(·) is specific to the lth drug, and different
rugs can have different mapping functions reflecting their specific patterns. Clearly, the UK model is a special case of
he MUK model via using a simple mapping function gl(oi,l) = (oi,l − c)/k where c ∈ (0, 1) is a constant. Various types
of mapping functions can be considered, e.g., polynomials and Sigmoid curves. Practitioners may choose a type following
the available domain knowledge of study.

As drug effects often appear to be cumulative over time, a useful mapping function in the MUK is the cumulative beta
function

gl(oi,l) =
1

B(αl, ζl)

∫ f (oi,l)

0
tαl−1(1 − t)ζl−1dt, (8)

where αl and ζl are parameters to be estimated via MLE and the normalizing constant B(αl, ζl) =
∫ 1
0 tαl−1(1 − t)ζl−1dt .

The function f (o ) = (o − 0.5)/k is used to standardize the experimental design (with levels o ∈ {1, . . . , k}) to 0–1
i,l i,l i,l

4
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ange. Some examples of cumulative beta functions with different parameters α and ζ are shown in Fig. 1(b), where the
istances between successive orders depend on parameters (α, ζ ). The MUK model addresses drugs’ different patterns on

timing (or positions) through parameters α and ζ via a data-driven approach.
Similarly, we can show that Theorem 1 also hold for the MUK model with the mapping function defined in Eq. (8).

Additionally, when all inputs o are distinct (i.e., no replicates are included), the covariance matrix of responses in the
MUK model is positive definite regardless of the τ 2 values.

When assuming known homogeneous variances (τ 2), the total number of parameters in the UK and MUK models are
k + m + 1 and 3k + m + 1, respectively. As a comparison, the numbers of parameters in the main-PWO, triplet-PWO
and CP models are k(k − 1)/2 + m, k(k − 1)(k − 2)/3 + k(k − 1)/2 + m and (k − 1)2 + m, respectively. In this paper,
e recommend practitioners using designs with run sizes no less than the numbers of parameters in the models. Clearly,
hen moderate or large numbers of drugs are involved, the UK and MUK models require much less runs compared to
he existing methods. Note that if practitioners follow the rule-of-thumb for choosing run size n = 10k (Loeppky et al.,
2009), both the UK and MUK models can fit well, but none of the existing methods will work for large k.

Compared to the UK model, the MUK model includes more parameters and thus requires more data. In practice, the
UK model generally performs better for small experiments. Yet, when enough data are available, the MUK model is often
preferred due to its better interpretation and flexibility.

3.3. Model estimation

When assuming known homogeneous variance τ 2, the MUK model contains parameters β = (βi)T1×m, σ
2, θ = (θj)T1×k,

α = (αl)T1×k and ζ = (ζl)T1×k. Its likelihood takes the form

L(β, σ 2, θ, α, ζ ) =
1

(2π )n/2|C |
1/2 exp

(
−

1
2
(y − Bβ)TC−1(y − Bβ)

)
, (9)

here y = (y1, . . . , yn)T is the response vector of n observed values, B = (B1, B2, . . . , Bn)T is an n × m matrix, Bi is
he column vector of dummy coding for block level bi, covariance matrix C = C(σ 2, θ, α, ζ ) is defined in Eq. (7) with
l = |gl(oi,l) − gl(oj,l)| and gl(·) defined in Eq. (8). The MLE of β has an analytical expression:

β̂ = (BTC−1B)−1BTC−1y. (10)

After dropping some constants and taking Eq. (10) into account, maximizing the log-likelihood is equivalent to solving
he following minimization problem:

[σ 2, θ, α, ζ ] = argmin log|C | + (y − Bβ̂)TC−1(y − Bβ̂). (11)

his minimization can be solved via standard optimization algorithms in R or MATLAB, which leads to the MLEs of
arameters σ 2, θ, α and ζ . In this paper, we adopt the ‘‘rgenoud’’ package in R (Mebane Jr. and Sekhon, 2011) which
ombines evolutionary search algorithms with derivative-based quasi-Newton methods. It adopts numerical gradients by
efault, which suffices for small or moderate experiment sizes. For large experiments, we derive the analytical gradients
or the MUK model to further speedup the estimations.

Based on Eqs. (10) and (11), for any parameter in C(σ 2, θ, α, ζ ), the expression of the analytical gradient is:
∂ f
∂•

= tr(C−1 ∂C
∂•

) − (y − Bβ̂)TC−1 ∂C
∂•

C−1(y − Bβ̂), (12)

here ∂C
∂•

=

(
∂φ(oi,oj)

∂•

)
n×n

is an n × n matrix. For any i, j = 1, . . . , n and l = 1, . . . , k, we can derive

∂φ(oi, oj)
∂σ 2 =

k∏
l=1

K (hl; θl) =

k∏
l=1

[
(1 +

√
5θlhl +

5(θlhl)2

3
) exp(−

√
5θlhl)

]
,

∂φ(oi, oj)
∂θl

= −
5θlh2

l σ
2

3
(1 +

√
5θlhl) exp(−

√
5θlhl)

∏
i=1,...,k,i̸=l

K (hi; θi).

ext, we consider the analytical gradients for the mapping parameters αl (or ζl in a similar way). Then, we can derive:
∂φ(oi, oj)

∂αl
= σ 2 ∂K (hl; θl)

∂αl

∏
i=1,...,k,i̸=l

K (hi; θi),

∂K (hl; θl)
∂αl

= c1(
√
5θl +

10θ2
l hl

3
) exp(−

√
5θlhl) + c2(1 +

√
5θlhl +

5(θlhl)2

3
),

here

c1 =
∂hl

=
gl(oi,l) − gl(oj,l) (

∂gl(oi,l)
−

∂gl(oj,l) ),

∂αl |gl(oi,l) − gl(oj,l)| ∂αl ∂αl

5



Q. Xiao and H. Xu Computational Statistics and Data Analysis 157 (2021) 107155

W
t

a

C
[

c
r

d
C
U

4

p
c
t
d
e
3
a
b
t

d
m
t
o

Table 1
Data for the five-drug order-of-addition experiment with blocking.
Bl Seq Y Bl Seq Y Bl Seq Y Bl Seq Y

1 DBACE 4.93 1 BCAED 23.85 2 DBCEA 5.53 2 BEACD 20.4
1 BACDE 13.63 1 DECBA 25.23 2 BADEC 7.72 2 ACBED 22.06
1 DABEC 15.57 1 ECBDA 25.62 2 ABDCE 10.96 2 CBEAD 22.35
1 DCEAB 18.47 1 CBDEA 26.08 2 BDCAE 12.09 2 CABDE 23.37
1 EDABC 19.5 1 EADCB 26.75 2 DAECB 13.84 2 DEBAC 23.4
1 ABEDC 20.23 1 BEDAC 28.38 2 ADEBC 16.25 2 EBADC 24.31
1 BDECA 21.47 1 CDBAE 29.43 2 AECDB 16.37 2 BCEDA 24.65
1 AEBCD 21.59 1 CEADB 30.52 2 DCABE 17.97 2 CDAEB 25.99
1 ACDBE 23.55 1 CAEBD 31.27 2 ECDAB 19.71 2 CEDBA 26.3
1 ADCEB 23.61 1 EBCAD 31.96 2 EDBCA 20.35 2 EACBD 26.49

c2 =

∂

(
exp(−

√
5θlhl)

)
∂αl

= −
√
5θl exp(−

√
5θlhl)c1.

hen using gl(·) defined in Eq. (8), the derivatives ∂gl(·)/∂αl in the incomplete Beta function can be easily solved using
he method in Boik and Robison-Cox (1998).

Finally, given all estimated parameters, the mean prediction and variance of the response at target input w∗ = (o∗, b∗)
re given by

ŷ(w∗) = BT
∗
β̂ + γ TC−1(y − Bβ̂),

s2(w∗) = σ 2
− γ TC−1γ + (BT

∗
− γ TC−1B)(BTC−1B)−1(BT

∗
− γ TC−1B)T ,

where γ is the covariance vector (φ(o∗, oi))n×1 for i = 1, . . . , n and B∗ is the dummy coding for b∗. Refer to Roustant et al.
(2012) for more details on the derivation of ŷ(w∗) and s2(w∗).

In practice, when background information is available, we can set the noise variance τ 2 according to the measurement
accuracy of the responses. Different choices of small τ 2 often do not affect the prediction much in practice (Xiao et al.,
2019). When there is no such prior knowledge, we can estimate τ 2 via MLE. In such cases, the covariance matrix becomes
1 = C(τ 2, σ 2, θ, α, ζ ) = (φ(oi, oj))n×n + τ 2In where In is an identity matrix of size n. Similarly as above, we are to solve
τ 2, σ 2, θ, α, ζ ] = argmin log|C1| + (y − Bβ̂)TC−1

1 (y − Bβ̂), where the MLE of β̂ = (BTC−1
1 B)−1BTC−1

1 y. This minimization
an be implemented by the same optimization algorithm as above. For the analytical gradients, Eq. (12) still applies after
eplacing matrix C with C1, where we have ∂C1/∂τ 2

= In.
In the current literature, all methods assume homogeneous noise variances for the order-of-addition experiments

(Van Nostrand, 1995; Voelkel, 2019; Mee, 2020; Yang et al., 2020; Lin and Peng, 2019; Zhao et al., 2020). Another
potential advantage of the proposed UK and MUK model is that they can also be generalized to deal with heterogeneous
variances for replicated designs. The variance of replicates for each sequence can be used as the unbiased estimate of
the heterogeneous variance, and the covariance matrix becomes C2 = C(σ 2, θ, α, ζ ) = (φ(oi, oj))n×n + V where V is a
iagonal matrix with the heterogeneous variances (τ̂ 2

1 , . . . , τ̂ 2
n ) as the diagonal elements. After replacing matrix C with

2, Eqs. (10) and (11) still apply, and the MLEs of parameters can be solved by the same optimization algorithm. As the
K model is a special case of the MUK model, it follows a similar estimation procedure.

. Case study: a five-drug order-of-addition experiment on lymphoma treatment

Lymphoma is cancer that begins in infection-fighting cells of the immune system. In a real order-of-addition ex-
eriment in vitro on lymphoma treatment (Mee, 2020; Yang et al., 2020; Wang et al., 2020), five FDA approved
hemotherapeutics for clinical trials were studied. Different from traditional drug combination experiments which
argeted on finding optimal drug doses, this study focused on identifying drugs’ order-of-addition impacts, where all
rug doses were fixed at appropriate levels. Raji cell, a human lymphoma cell line, was used as an in vitro model to
valuate various drug sequences. In each run of this experiment, drugs were added into the cell culture one by one every
h. The responses (Y ) were the percentages of cell inhibition (ranging from 0–100) which were measured 12 h after the
ddition of last drug. In this study, larger responses (Y ) are better. Table 1 shows the data consisting of 40 runs in two
locks, where ‘‘Bl’’ gives the block levels and ‘‘Seq’’ shows the drug sequences. Denote the design matrix consisting of all
hese 40 runs as Dfull.

First, we target on comparing the prediction accuracy of the proposed models and the existing methods with small
esigns. We split the full data in Table 1 into various training and test sets, and calculate three popular performance
easures: R1: the correlation between the actual and predicted responses of all observations, R2: the correlation between

he actual and predicted responses of observations in the test set, RMSE: the root mean square error of predicted responses
f observations in the test set. In pharmaceutical studies, correlation is a common way to visualize performances (Ning
6
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Table 2
Results of R1/R2(RMSE) for different models using the PWO D-efficient designs.

PWO UK MUK

12-run 0.66/0.55(7.34) 0.78/0.66(5.43) NA
16-run 0.69/0.55(6.17) 0.81/0.69(5.03) NA
20-run 0.70/0.50(6.38) 0.85/0.61(5.01) 0.87/0.68(4.76)
24-run 0.74/0.54(6.22) 0.88/0.54(4.88) 0.89/0.56(4.71)
28-run 0.75/0.76(5.29) 0.91/0.74(5.06) 0.92/0.79(4.61)
32-run 0.89/0.77(8.02) 0.93/0.73(5.31) 0.95/0.84(4.51)
36-run 0.97/0.76(4.36) 0.99/0.99(2.75) 0.99/0.95(2.90)

Note: The PWO is the triplet-PWO for the 32 and 36-run cases and the main-PWO for
smaller cases.

Table 3
Estimated parameters for the UK and MUK models in the five-drug experiment.
UK model:

Parameter β1 β2 σ 2 θ1 θ2 θ3 θ4 θ5
MLE 22.95 19.00 38.64 1.88 0.57 2.5 1.46 4.64

MUK model:

Parameter β1 β2 σ 2 θ1 θ2 θ3 θ4 θ5 α1
MLE 24.26 20.29 33.66 2.23 2.13 6.64 0.59 3.34 0.82
Parameter ζ1 α2 ζ2 α3 ζ3 α4 ζ4 α5 ζ5
MLE 2.35 1.94 4.56 0.9 4.82 4.10 4.88 1.53 3.75

et al., 2014), where larger correlations (approaching 1) represent more accurate predictions. In statistics, RMSE is a more
rigorous performance measure, which is defined as:

RMSE =

√ 1
nt

nt∑
i=1

(̂y(wi) − y(wi))2,

here ŷ(wi) and y(wi) are the predicted and actual responses of input wi, respectively, and nt is the number of observations
n the test set. Smaller RMSE represents more accurate predictions.

In Table 2, we compare the proposed UK and MUK models to the PWO models, where the results are listed in the form
f R1/R2(RMSE). As the main-PWO and triplet-PWO models include 12 and 32 parameters for this experiment, the PWO
odel in Table 2 is the triplet PWO for the 32 and 36-run cases and the main-PWO for the smaller cases. The UK and MUK
odels include 8 and 18 parameters, respectively. Thus, we mark ‘‘NA’’ for the MUK model in the 12 and 16-run cases in
able 2. For an n-run case here, we choose the most D-efficient n-run design (subset of Dfull) out of 10000 random ones
or the corresponding PWO model used. We fit the UK, MUK and PWO models with the training data selected by these
-efficient designs, and then evaluate their performances via R1, R2 and RMSE measures. According to the measurement
ccuracy in this real experiment, we set τ 2

= 1 in the UK and MUK models.
From Table 2, it is seen that the MUK model outperforms the PWO models for all cases in terms of all criteria, and

he UK model outperforms the PWO models except for the 28 and 32-run cases where the UK model gives better R1 and
MSE but worse R2 values. Compared to the PWO models, the UK and MUK models require less runs to achieve similar
rediction accuracy. When focusing on the RMSE measure, we can see that the UK and MUK models using the 20-run
esign can perform better than the PWO models using the designs with 32 runs or less.
We would like to remark that the optimal designs for the PWO models may not be optimal for the UK and MUK

odels. For Kriging-based models, space-filling designs can be better choices (Gramacy, 2020). Here, the UK and MUK
odels can perform very well when not using their optimal designs. Not surprisingly, if random designs are used rather

han D-efficient designs (for PWO models), the performances of PWO models may deteriorate dramatically, while the
roposed UK and MUK models suffer less. The CP model does not perform as well as the PWO models for this particular
xperiment (Mee, 2020), although one cannot make a generalization from this outcome. Please refer to the Supplementary
aterial for a detailed numerical study on the comparison of these models, including the CP model, with random designs.
Next, we consider the performances and interpretations for fitting the proposed models with the full data. Under the

0-run design Dfull, the UK and MUK models give the R1 = 1.00. The main-PWO and triplet-PWO give the R1 values of
.78 and 0.98, respectively. Note that there is no R2 or RMSE when using the full data as the training set. We show the
stimated parameters for the UK and MUK models in Table 3. The trend parameter for block 1 (β1) is larger than that for
lock 2 (β2) by roughly 4 under both models. This difference on blocks is consistent with the analysis presented in Mee
2020).

When five drugs are added sequentially, there are in total 5! = 120 possible sequences. Using the fitted UK and MUK
odels with parameters in Table 3, we can predict the responses for all 120 drug sequences. In Fig. 2, we show the results

n drug-order-effect plots. In such plots, the horizontal axis denotes the order at which a drug is added. The vertical axis
7
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Fig. 2. The drug-order-effect plots for the UK and MUK models (block 1).

Fig. 3. Plots of mapping functions for the five drugs.

enotes the mean response, and each dot denotes the mean response corresponding to the drug at a given order. For each
rug, the five dots corresponding to five orders are lined together. We use a horizontal line to represent the overall mean.
xcept for a difference of roughly 4 in overall means, the drug-order-effect plots for blocks 1 and 2 are the same. Thus,
e only show plots for block 1 in Fig. 2. The drug-order-effect plot can be interpreted similarly as the usual main-effect
lot. The general patterns in Fig. 2 are similar under both models. Roughly speaking, when the orders increase, effects of
rugs C and E decrease whereas effects of drugs A, B and D increase. The drug-order-effect plot can help explain desirable
equences with large responses. As an illustration, consider the order 1 in Fig. 2. It is clear that the two largest mean
esponses are from drugs C and E, which helps explain why the drug sequences with the largest three responses (in
ither block) in Table 1 start with either drug C or drug E.
The drug-order-effect plot is used for visualization and interpretation, but may not be sufficient for making decisions

n optimal sequences, as it does not capture interactions. We should directly identify desirable sequences from model
redictions. Given the robust performance of the MUK model in Table 2, we focus on the MUK fitted with all 40 runs
ere. With its estimated parameters in Table 3, the best ten drug sequences predicted from the MUK model include
ive observed ones in this experiment: EBCAD, CAEBD, CEADB, EACBD and CEDBA, and another five uncovered ones:
AEDB, EBCDA, EBACD, CEDAB and EABCD. Researchers may want to test these newly discovered sequences in follow-up
xperiments to confirm the optimal solution.
In Fig. 3, we show mapping functions gl(·) in the MUK model based on the estimated parameters in Table 3. Fig. 3 can

e informative given certain domain knowledge. As an illustration, we can see that the distances between consecutive
rders for drug C are decreasing. As the similarities between responses are measured by distances between inputs in
he proposed Kriging models, larger differences in cell inhibition are expected when drug C is used in the first three
rders compared to the last three orders. The shape of mapping function for each drug reflects its specific pattern, and
ne potential reason is their different time-course effects (Al-Sallami et al., 2009). For example, if drug C has significant
elayed effect (the effect appears delayed with respect to the concentration–time profile) and is added in the last several
rders, it is possible that the effect of drug C is not fully exerted before measuring the responses. This may be a reason
xplaining the shape of the curve for drug C. The pathological mechanism behind this is worth future studies when more
omain knowledge is available.
8



Q. Xiao and H. Xu Computational Statistics and Data Analysis 157 (2021) 107155

I
r
w
2
t

E
s
t
D
a
t
t

p
F
t
p
s
w
a
a

E
c
a
o
T

w
f
w

Table 4
Comparison of results (R1/R2) for different models in Example 1.

CP Main-PWO Triplet-PWO UK MUK

Case 1 1/1 0.89/0.89 0.86/0.84 0.98/0.98 0.99/0.99
Case 2 0.99/0.99 1/1 1/1 0.99/0.99 0.99/0.99
Case 3 0.72/0.70 0.73/0.72 1/1 0.92/0.90 0.91/0.90

Table 5
Comparison of results (RMSE) for different models in Example 1.

CP Main-PWO Triplet-PWO UK MUK

Case 1 0 2.57 3.22 1.14 0.64
Case 2 0.79 0 0 0.64 0.69
Case 3 4.58 4.43 0 2.82 2.92

5. Simulation studies

To further illustrate the accuracy and robustness of the proposed models, we discuss two simulations in this section.
n Example 1, we revisit the case study in Section 4 and assume the true model to be the CP, main-PWO and triplet-PWO,
espectively. We aim to evaluate the performances of other models under each of the assumed true ones. In Example 2,
e discuss a single machine scheduling problem (Emmons, 1969; Townsend, 1978; Allahverdi et al., 1999; Zhao et al.,
020) to compare the performances of different models under various optimal order-of-addition experimental designs in
he literature.

xample 1. For the 40-run and 5-drug order-of-addition experiment in Section 4, consider the following three cases of
imulations. In Case 1, we fit a CP model with the full data (Dfull) in Table 1, and assume it as the true model. Under this
rue model, we simulate the true responses for all 5! = 120 possible sequences. We use the true responses selected by
full as the new training data, and use the rest as the new test data. Then, we fit all models with the new training data,
nd use them to predict the responses of all 120 sequences. Finally, we measure models’ performances via comparing
heir predicted responses with the simulated true responses. Similarly, in Cases 2 and 3, we assume the main-PWO and
he triplet-PWO as the true models, respectively.

The assumed true model will be exactly accurate in each corresponding case, and we focus on comparing the
erformances of other models. We show the results in the form of R1/R2 in Table 4, and list the RMSEs in Table 5.
rom Tables 4 and 5, we can see that the proposed UK and MUK models perform better than other models (excluding
he assumed true ones) in all cases. Specifically, when the triplet-PWO is assumed to be the true model in Case 3, the
roposed UK and MUK models perform much better than the CP and main-PWO models in terms of all criteria, which
hows their superior capabilities to model interactions. Note that the main-PWO is a sub-model of the triplet-PWO. Thus,
hen assuming the main-PWO as the true model in Case 2, the triplet-PWO after step-wise selection will be exactly
ccurate in prediction, which should not be compared with other models. For all cases here, both the UK and MUK models
chieve R1 and R2 values higher than 90%, and thus they are accurate and robust surrogates for all true models.

xample 2. Consider a single machine scheduling problem (Emmons, 1969; Allahverdi et al., 1999; Zhao et al., 2020)
onsisting of 6 jobs, indexed by Jobs 1, . . . , 6. These jobs need to be processed on a single machine one after another,
nd Job i takes a fixed processing time xi. Denote the job-sequence on this single machine as α = (α1, . . . , α6) and its
rder-sequence as o = (o1, . . . , o6), where Job αi has the processing order oαi = i. The completion time of Job αi is
(αi) =

∑i
j=1 xαj . Now, consider the quadratic cost function of completion time by Townsend (1978), which is defined as

C(α) =

6∑
i=1

wiT 2(αi) + ϵ, (13)

here wi (i = 1, . . . , 6) are weights and the noise term ϵ ∼ N(0, τ 2). Here we randomly draw processing time xi
rom chi-squared distribution with 1 degree of freedom and randomly draw weight wi from uniform distribution
ithin range 0–1. Specifically, we set (x1, . . . , x6) = (0.27, 0.33, 0.065, 1.04, 2.51, 0.72) and (w1, . . . , wk) = (0.23, 0.97,

0.53, 0.33, 0.30, 0.48). We consider two scenarios for the true noise variance: (1) a moderate case of τ 2
= 1 and (2) a

large case of τ 2
= 10 (considering the range of the responses).

In this example, there are 6! = 720 possible sequences for arranging the six jobs which will lead to different responses
C(α). To generate the training data, we consider four optimal order-of-addition designs in the literature; they are OOFA24:
24-run order-of-addition orthogonal array by Voelkel (2019), COA30: 30-run component orthogonal array by Yang et al.
(2020), and MFD25 and MFD30: 25- and 30-run D-efficient designs for order-of-addition experiments by Chen et al. (2020),
respectively. For each corresponding case, we use the rest of sequences to form the test data. Note that the OOFA and MFD
9
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Table 6
Mean results of R1/R2(RMSE) for different models under various designs when the true
noise variance τ 2

= 1 in Example 2.
CP Main PWO UK MUK

OOFA24 0.91/0.91(4.08) 0.97/0.97(2.27) 0.99/0.99(1.84) 0.99/0.99(1.54)
MFD25 0.89/0.89(4.57) 0.94/0.94(3.11) 0.99/0.99(1.74) 0.98/0.98(1.96)
MFD30 0.76/0.76(8.54) 0.96/0.96(2.61) 0.99/0.99(1.61) 0.98/0.98(1.85)
COA30 0.98/0.98(1.97) 0.97/0.97(2.41) 0.99/0.99(1.87) 0.99/0.99(1.50)

Table 7
Mean results of R1/R2(RMSE) for different models under various designs when the true
noise variance τ 2

= 10 in Example 2.
CP Main PWO UK MUK

OOFA24 0.75/0.75(7.71) 0.94/0.94(3.33) 0.97/0.97(2.45) 0.94/0.94(3.12)
MFD25 0.73/0.73(8.61) 0.89/0.88(4.59) 0.97/0.97(2.50) 0.94/0.94(3.23)
MFD30 0.75/0.75(8.93) 0.91/0.91(4.00) 0.97/0.97(2.29) 0.95/0.95(2.98)
COA30 0.93/0.93(3.69) 0.94/0.94(3.42) 0.97/0.97(2.28) 0.96/0.96(2.75)

are developed for the PWO model and the COA is developed for the CP model. Suppose we do not have any background
knowledge on the noise variance τ 2 in this example. Thus, we use the MLE of τ 2 in the proposed UK and MUK models.

First, we study the case when there is a moderate true noise variance τ 2
= 1. In Table 6, we show the mean results of

0 replications in the form of ‘‘R1/R2(RMSE)’’ for the CP, main-PWO, UK and MUK models under various designs. It is seen
that the proposed UK and MUK models outperform the CP and main-PWO models in all cases. Specifically, they give R1
nd R2 values higher than 98% and RMSE values less than 2 under all designs here, which are very good performances in
ractice. The CP model works well when using its specific optimal design COA30, but performs badly when using design
FD30 of the same size. The main-PWO model performs well in all cases, but is still inferior to the UK and MUK models.
ote that the triplet-PWO model requires at least 56 runs in this simulation, and thus we fit it with the D-efficient 60-run
esign MFD60. Yet, its predictions are not satisfactory with the mean R1 = 0.85, R2 = 0.85 and RMSE = 5.61, which are
orse than those under the main-PWO model fitted with MFD30. Thus, we did not show it in the table.
Next, we look at the case when there is a large true noise variance τ 2

= 10, and we show the mean results of 50
eplications in Table 7. From Table 7, it is seen that the proposed UK and MUK models outperform the CP and main-PWO
odels in all cases. The CP model works best with its optimal design COA30, and the main-PWO model works best with

ts optimal design OOFA24. The triplet-PWO model with MFD60 gives the mean R1 = 0.73, R2 = 0.71 and RMSE = 8.72,
hich is again worse than the main-PWO model with MFD30. Compared to the results in Table 6, all results in Table 7
re worse. Large noise variances will cause challenges for all models. Compared to the UK model, the impact of large
oise variance to the MUK model is larger. Intuitively, as all Kriging-based methods incline to interpolate observations,
he UK and MUK models are more suitable for modeling experiments with small or moderate errors. For the cases with
ery large error variances, further investigations may be needed in practice.

. Conclusions and discussions

In traditional drug combination studies, researchers only focus on drug doses. In several recent drug experiments,
cientists discover the significant impacts of drugs’ order-of-addition on the efficacy of treatments. Yet, enumerations of
ll possible drug sequences are often not affordable. In this paper, we propose the UK and MUK models for analyzing
rugs’ order-of-addition experiments. Compared to existing methods, the proposed models can have stronger prediction
ower and are more robust under various experimental designs. They include less parameters, require less runs and can
ncorporate available domain knowledge to enhance interpretations. Their superiority is illustrated via a real case study
n lymphoma treatment and two follow-up simulation studies.
In the current literature, all methods assume homogeneous noise variances in the order-of-addition experiments

Van Nostrand, 1995; Voelkel, 2019; Mee, 2020; Yang et al., 2020; Lin and Peng, 2019). The proposed UK and MUK models
an be generalized to deal with heterogeneous variances in replicated experiments. Yet, how to enable the proposed
odels working with heterogeneous variances in single-replicate cases is challenging, as there will be more parameters

n the model than the number of runs. A potential way is to use the Bayesian approach (Berger et al., 2001; Gramacy,
007). For example, Gramacy (2020) discusses the form of the posterior under the noise variances following inverse
amma distributions with different hyper-parameters. For such cases, meaningful inference priors need to be identified.
his will be our future research.
In this paper, we adopt the cumulative beta mapping function for the in vitro experiment where drug effects often

ppear to be cumulative over time. An important topic for future research is to study the choices of mapping functions for
arious kinds of experiments under their specific domain knowledge. In addition, desirable designs may further improve
he performances of the proposed UK and MUK models. Space-filling designs (Zhou and Xu, 2014; Chen et al., 2014, 2015,

019) are shown to be desirable based on the theoretical prediction variance properties for Kriging models (Silvestrini

10
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t al., 2013). An interesting future work will be how to construct efficient designs for Kriging-based models dealing with
rder-of-addition problems.
In modern statistics and pharmaceutical studies, sequential experiments, aka. active learning, are found to be more

ffective in identifying optimal solutions compared to traditional non-adaptive experiments (Christen and Sansó, 2011;
artroff et al., 2013). The use of UK and MUK models can easily allow reliable uncertainty quantification (Williams and
asmussen, 2006) for data with order-of-addition inputs, and consequently enable exploration in sequential experiments
Bartroff et al., 2013; Scarpa et al., 2007). It will be another interesting topic for the future research.
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