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Abstract In both physical and computer experiments, U-type designs, including
Latin hypercube designs, are commonly used. Two major approaches to evaluating
U-type designs are orthogonality and space-filling criteria. Level permutations and
level expansions are powerful tools for generating good U-type designs under the
above criteria in the literature. In this paper, we systematically study the theoreti-
cal properties of U-type designs before and after level permutations and expansions.
We establish the relationships between the initial designs’ generalized word-length
patterns (GWLP) and the generated designs’ orthogonal and space-filling properties.
Our findings generalize the existing results and provide theoretical justifications for
the current level permutation and expansion algorithms.
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1 Introduction

U-type designs, aka. balanced designs, are commonly used in experiments, which
include orthogonal arrays (Hedayat et al., 1999), Latin hypercube designs (McKay
et al., 1979) and balanced fractional factorial designs (Tang et al., 2012). They are

Yaping Wang, Yabo Yuan
KLATASDS-MOE, School of Statistics, East China Normal University, Shanghai, 200062, China
E-mail: ypwang@fem.ecnu.edu.cn, yaboyuanyabo@163.com

Fei Wang
LMAM, School of Mathematical Sciences and Center for Statistical Science, Peking University, Beijing,
100871, China
E-mail: wangfeizz@pku.edu.cn

Qian Xiao (Corresponding Author)
Department of Statistics, University of Georgia, Athens, Georgia, 30602, U.S.A.
E-mail: qx69137@uga.edu



2 Yaping Wang et al.

factorial designs where every level appears equally often for each factor. Specifically,
Latin hypercube designs (LHDs) have the level sizes equal to the run sizes. LHDs
are widely used in modern industrial and computer experiments due to their uniform
one-dimensional projection properties (Fang et al., 2006; Bingham et al., 2009; Zhou
and Xu, 2014).

Various optimality criteria have been proposed for the optimization and construc-
tion of U-type designs, with two major aims: orthogonality and space-filling. Or-
thogonal designs minimize the associations among factors and space-filling designs
minimize the similarities among runs. Specifically, the orthogonality criterion seeks
to optimize designs by minimizing the average squared correlations or the maximum
absolute correlations between factors (Owen, 1994; Tang, 1998; Ye, 1998). Orthogo-
nal designs whose column-wise correlations are all zero are directly useful in fitting
data using main effect linear models, because they allow uncorrelated estimates of
linear main effects (Lin et al., 2009; Lin and Tang, 2015). Orthogonality is also theo-
retically connected with space-filling properties (Wang et al., 2020). Space-filling de-
signs, especially space-filling LHDs, are appealing for computer experiments whose
outputs are deterministic (Fang et al., 2006; Santner et al., 2018; Xiao and Xu, 2018).
Space-filling U-type designs with multiple levels are also found useful in some phar-
maceutical experiments (Xiao and Xu, 2018; Xiao et al., 2019). Space-filling designs
are robust to model misspecification and can decrease the bias of fitted models (Gra-
macy, 2020). To measure designs’ space-filling properties, two popular criteria are
the maximin distance (Johnson et al., 1990; Morris and Mitchell, 1995) and unifor-
mity (Fang, 1980; Hickernell, 1998). The maximin distance criterion seeks to spread
out the design points evenly over the entire design region via maximizing the smallest
distance between any pair of points. The uniformity criterion aims to scatter points as
uniformly as possible in the design space by minimizing certain discrepancy metric.

Constructing orthogonal or space-filling U-type designs with moderate or large
sizes is often challenging (Hedayat et al., 1999; Lin and Tang, 2015; Wang et al.,
2018a). Since the candidate spaces of U-type designs grow exponentially fast with
the design sizes, searching over the whole spaces can be inefficient for identifying
large optimal designs. Thus, theoretical results are often needed to guide the search
algorithm only searching over some promising sub-spaces. Motivated by this idea,
researchers focused on searching over the candidate U-type designs that can be gen-
erated by level permutations and level expansions. Tang et al. (2012), Tang and Xu
(2013), and Xu et al. (2014) proposed to use level permutations to construct uni-
form U-type designs. Zhou and Xu (2014) generalized the level permutation method
to construct space-filling U-type designs including uniform and maximin distance
designs as special cases. Tang (1993) proposed to generate orthogonal array-based
LHDs (OALHDs) by expanding levels in randomized OAs. Jiang and Ai (2017) con-
structed uniform OALHDs via permuting and expanding the levels of OAs. Xiao and
Xu (2018) developed an efficient procedure to generate maximin LHDs as well as
maximin multi-level designs from existing orthogonal or nearly orthogonal designs
via level permutations and expansions.

Specifically, Xiao and Xu (2018) introduced a general framework of the level
permutation and expansion algorithm for constructing good U-type designs. Denote
a U-type design with N runs, n factors and s levels by D(N, sn) where each column
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takes values from the set Zs = {0, 1, . . . , s− 1}. To generate a good high-level U-
type design D̃(N, (ms)n) where m is a positive integer satisfying that m ≤ N/s
and N/(ms) is an integer, Xiao and Xu (2018) proposed to first select a good initial
U-type design D(N, sn), then permute the levels of D to improve its property, and
finally expand each of its levels to m distinct levels. This procedure restricts the
entire candidate space of D̃ to a much smaller sub-space — the candidate designs
that can be generated by the level permutations and expansions of the initial design
D. Different initial designs D will lead to different sub-spaces, and the one leading to
the best average properties of candidate designs should be chosen. Standard stochastic
searching algorithms can be used to find the best design in the selected sub-space.
Xiao and Xu (2018) used the threshold accepting algorithm and Jiang and Ai (2017)
used the simulated annealing algorithm. Through simulation studies, Jiang and Ai
(2017) and Xiao and Xu (2018) showed that the level permutation and expansion
method is very efficient for generating good high-level U-type designs. Many new
optimal designs were found by these authors.

In this paper, we systematically study the theoretical properties of U-type designs
before and after all level permutations and expansions. We focus on the theoreti-
cal results on the choices of the initial designs and their connections with the aver-
age properties of the generated designs, which provides theoretical supports for the
level permutation and expansion algorithms in Jiang and Ai (2017) and Xiao and Xu
(2018). The established theorems justify the use of the generalized minimum aber-
ration (GMA) designs as the initial designs in the level permutation and expansion
method, where the GMA designs (Xu and Wu, 2001) have the sequentially minimized
generalized word-length pattern (GWLP; see Section 2 for details). Specifically, we
prove that the orthogonality and space-filling properties of the generated high-level
designs on average are determined by the GWLPs of the initial low-level designs.
Consequently, starting with a GMA U-type design, the mean squared correlations,
the maximin distance metrics and the uniformity discrepancies of all candidate de-
signs generated via all possible level permutations and expansions are minimized on
average, i.e. the “mean-best” searching sub-space.

The theoretical results in this paper can be viewed as the generalizations of the
results in Zhou and Xu (2014), Jiang and Ai (2017), and Xiao and Xu (2018), where
the “mean-best” sub-spaces based on the GMA designs were used. For construct-
ing orthogonal and nearly orthogonal designs, Zhou and Xu (2014) only focused on
generating fractional factorial designs via level permutations; while, we prove results
for generating LHDs as well as multi-level designs via both level permutations and
expansions. For constructing maximin distance designs, Xiao and Xu (2018) only
connected the generated designs’ expected distance variations with A2(D), i.e., the
second element of the GWLP of the initial design; while, we establish the relation-
ship between the generated designs’ expected measures of whole distance structures
and the initial design’s entire GWLP. Jiang and Ai (2017) only considered uniform
LHDs; while, we discuss uniform U-type designs under various discrepancy criteria.
Note that our work only contributes to the theory, and it adopts the same algorithms
for generating practical designs as those in Jiang and Ai (2017) and Xiao and Xu
(2018).
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The remainder of this paper is organized as follows. Section 2 introduces some
notation and preliminaries. Section 3 shows the theoretical results connecting the
U-type designs before and after level permutations and expansions under the orthog-
onality, maximin distance and uniformity discrepancy criteria. Section 4 summarizes
the paper and discusses some possible future work. All proofs are relegated to the
Appendix.

2 Notation and preliminaries

A design D(N, sn) is called an orthogonal array (OA) of strength t, denoted by
OA(N,n, s, t), if all possible level-combinations in each t-columns of D appear the
same number of times. A U-type design is an OA(N,n, s, 1), where each of the s
levels occurs exactly N/s times. In particular, a U-type (N,Nn) design is called an
LHD, denoted by LHD(N,n). Throughout the paper, we assume n ≥ 2.

The generalized minimum aberration (GMA) criterion was proposed by Xu and
Wu (2001) for evaluating fractional factorial designs. For a design D(N, sn), con-
sider the full ANOVA model:

Y = X0α0 +X1α1 + · · ·+Xnαn + ϵ,

where Y is the vector of N observations, α0 is the intercept, X0 is an N×1 vector of
1’s, αj is the (s−1)j

(
n
j

)
×1 vector of all jth-order factorial effects for j = 1, . . . , n,

Xj is the N × (s− 1)j
(
n
j

)
matrix of orthonormal contrast coefficients for αj and ϵ

is the random error term. Xu and Wu (2001) defined

Aj(D) = N−2∥XT

0Xj∥2 for j = 0, . . . , n,

to measure the overall aliasing between all jth-order factorial effects and the in-
tercept, where ∥X∥2 = tr(XTX). Obviously, A0(D) = 1 for U-type designs by
the definition. The generalized word-length pattern (GWLP) of D is defined to be
the vector (A1(D), A2(D), . . ., An(D)). Note that ∥XT

0Xj∥2 is independent of the
choice of orthonormal contrasts, thus the value of Aj(D) is independent of the param-
eterizations of the full ANOVA model (Xu and Wu, 2001). The GMA criterion is to
sequentially minimize the GWLP. For two designs D1 and D2, D1 is said to have less
aberration than D2 if there exists a k ∈ {1, 2, . . . , n}, such that Ak(D1) < Ak(D2)
and Ai(D1) = Ai(D2) for i = 1, . . . , k − 1. If no other design has less aberration
than D1, it is said to be a GMA design. Xu and Wu (2001) showed that a design
D(N, sn) is an OA(N,n, s, t) if and only if A1(D) = · · · = At(D) = 0.

Next, we present some mathematical background of the level permutation and
expansion methods in Jiang and Ai (2017) and Xiao and Xu (2018). For an initial
U-type design D(N, sn), by permuting the s levels of each columns in D, we can
obtain a new U-type design of the same size. When all possible level permutations
are considered, there are a total of (s!)n generated designs from D. Denote them
by P(D). Since the level permutation does not change designs’ combinatorial struc-
tures, all designs in P(D) have the same GWLP. By expanding the s levels of each
column in D to ms levels, we can obtain a new U-type design D̃(N, (ms)n), where
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m ≤ N/s and both m and N/(ms) are positive integers. In particular, design D̃ is an
LHD(N,n) when m = N/s. The level expansion procedure is carried out by replac-
ing the N/s entries of level ℓ (ℓ ∈ Zs) with a random sequence of N/(ms) replicates
of ℓm+ i (i = 0, . . . ,m− 1) for each column in the initial design D, which ensures
that the expanded (ms)-levels in D̃ take values from Zms. For example, consider
expanding a two-level column (0, 1, 0, 1, 0, 1, 0, 1)T to a random four-level column
(0, 2, 1, 3, 0, 2, 1, 3)T. Here, the original level 0 is expanded to N/(ms) = 2 repli-
cates of levels (0,1) in some random orders, and the original level 1 is expanded to
2 replicates of levels (2,3) in some random orders. From an initial D(N, sn), when
first performing all possible level permutations and then performing all possible level
expansions, the total number of generated U-type designs D̃(N, (ms)n) (including
isomorphic ones) is

n0 = (s!)n

(
N
s !(

N
ms !
)m
)sn

. (1)

Denote the set of these designs by EP(D). As a special case, when m = 1, EP(D) =
P(D). To obtain space-filling designs D̃ via level permutations and expansions, Zhou
and Xu (2014), Jiang and Ai (2017), and Xiao and Xu (2018) proposed to start from
a GMA design D and then adopt stochastic searching algorithms to identify the best
generated designs in EP(D). Next, we will justify this procedure by theories.

3 Theoretical results

In this section, we present some theoretical results connecting the U-type designs
before and after level permutations and expansions under the orthogonality, maximin
distance and uniformity discrepancy criteria. These results provide justifications for
the use of GMA designs as initial designs for the level permutation and expansion
method.

3.1 Orthogonal and nearly orthogonal designs

Orthogonality is a widely used design criterion. Specifically, we adopt the average
squared correlations to measure designs’ orthogonality (Owen, 1994; Joseph and
Hung, 2008; Wang et al., 2020). Let D = (xik)N×n be an (N, sn) U-type design.
The correlation between the jth and kth columns of D (j ̸= k) is

ρjk(D) =

∑N
i=1

(
xij − s−1

2

) (
xik − s−1

2

)√∑N
i=1

(
xij − s−1

2

)2∑N
i=1

(
xik − s−1

2

)2 .
The average squared correlation metric for orthogonality is defined as

ρ2(D) =
1(
n
2

)∑
j<k

ρ2jk(D).
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A design D is orthogonal if and only if ρ2(D) = 0. When orthogonal designs do not
exist, the nearly orthogonal designs have the minimized ρ2(D) values.

From a U-type design D(N, sn), we consider generating the U-type designs
D̃(N, (ms)n) via level permutations and expansions. When m = N/s, designs D̃
are LHDs. Denote ρ2(D̃) as the average ρ2(D̃) value over EP(D). Theorem 1 estab-
lishes a connection between ρ2(D̃) and the A2(D) value of its initial design D.

Theorem 1 Given a U-type initial design D(N ; sn), consider all possible level per-
mutations and expansions. Then we have

ρ2(D̃) =
1

n0

∑
D̃∈EP(D)

ρ2(D̃)

= α(N, s,m) +
144n4

2c
2
1(s,m)(c2(s,m)− 1)2(

n
2

)
n4
1s

4(s− 1)2 (m2s2 − 1)
2 A2(D),

where

α (N, s,m) =
4n2

2m
2(2ms− 1)2

Nn1
2(ms+ 1)2

+
144n4

2c
2
1(s,m)

Nn4
1s

2(s− 1)2 (m2s2 − 1)
2×[

N

(
c2(s,m) + s− 1

s

)2

− c22(s,m)

]
,

c1(s,m) =
∑

l1,l2∈Zs
l1 ̸=l2

∑
xik∈Tl1,s

xjk∈Tl2,s

x̃ikx̃jk,

c2(s,m) =
n1n3

n2
2

s− 1

c1(s,m)

∑
l∈Zs

 ∑
xik∈Tl,s

xjk∈Tl,s

x̃ikx̃jk −
∑

xik∈Tl,s

x̃2
ik

 ,

x̃ik = xik − (ms− 1)/2 for xik ∈ Zms,

n1 =
(N/s)!

([N/(ms)]!)
m ,

n2 =
(N/s− 1)!

[N/(ms)− 1]! ([N/(ms)]!)
m−1 ,

n3 =

{
(N/s−2)!

[N/(ms)−2]!([N/(ms)]!)m−1 + (N/s−2)!

([N/(ms)−1]!)2([N/(ms)]!)m−2 if N ̸= ms,
(N/s−2)!

([N/(ms)−1]!)2([N/(ms)]!)m−2 if N = ms,

Tl,s = {lm, lm+ 1, . . . , (l + 1)m− 1} and n0 is defined in Equation (1).

Theorem 1 shows that the average ρ2(D̃) value is a linear function of A2(D).
Therefore, starting from an OA(N,n, s, 2) as the initial design in the level permu-
tation and expansion method tends to generate better final design under the orthogo-
nality criterion.

It is worth mentioning that level permutations and expansions for U-type designs
have not been studied under the ρ2 criterion previously. The special case of m = 1
of Theorem 1 reduces to a level-permutation only procedure which is considered in
Zhou and Xu (2014).
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3.2 Maximin distance designs

To construct space-filling designs, the maximin distance criterion proposed by John-
son et al. (1990) aims to maximize the minimum distance among design points. For
an (N, sn) design D = (xij)N×n, define the Lp-distance (p is a positive integer)
between the ith and jth rows of D as

dp(xi, xj) =

n∑
k=1

|xik − xjk|p.

The maximin Lp-distance designs have the maximized values of min{dp(xi, xj) |
1 ≤ i < j ≤ N}. Here, dp(xi, xj) is an additive function and we can write it as
dp(xi, xj) =

∑n
k=1 dp(xik, xjk). In practice, p = 1 (Manhattan distance) and p = 2

(Euclidean distance) are the most commonly used.
Morris and Mitchell (1995) and Zhou and Xu (2014) developed some scalar met-

rics to quantify the designs’ maximin distance properties as extensions of the max-
imin distance criterion. The metric defined by Morris and Mitchell (1995) is

φ(D) =

 ∑
1≤i<j≤N

1

(dp(xi, xj))q/p

1/q

,

where q is a positive integer. Zhou and Xu (2014) further proposed a generalized
metric. For any design D and y ∈ (0, 1), consider the function

ydp(xi,xj) =

n∏
k=1

ydp(xik,xjk),

which is a decreasing function of dp(xi, xj). Zhou and Xu (2014) proposed to mini-
mize the scalar value

ϕ(D) =
1

N2

N∑
i,j=1

ydp(xi,xj). (2)

Note that minimizing φ(D) when q → ∞ or minimizing ϕ(D) when y → 0 are
both asymptotically equivalent to maximizing the minimum Lp-distance of D. In
this paper we consider the ϕ metric.

For a U-type initial design D(N, sn), let ϕ(D̃) be the average maximin distance
metric values defined in Equation (2) over EP(D) (i.e. all the generated U-type de-
signs D̃(N, (ms)n)). The following Theorem 2 shows that ϕ(D̃) is a linear combi-
nation of the GWLP of the design D.

Theorem 2 Given a U-type initial design D(N ; sn), consider all possible level per-
mutations and expansions. Suppose the maximin distance metric in Equation (2) is
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adopted such that the scalar value c2(s;m) defined in Equation (3) is larger than 1.
Then we have

ϕ(D̃) =
1

n0

∑
D̃∈EP(D)

ϕ(D̃)

= α (N,n, s,m) +

[
n2
2

n2
1

c1(s,m)(c2(s,m) + s− 1)

s2(s− 1)

]n n∑
i=2

(
c2(s,m)− 1

c2(s,m) + s− 1

)i

Ai(D),

where

α (N,n, s,m) =
1

N
− 1

N

[
n2
2

n2
1

c1(s,m)c2(s,m)

s(s− 1)

]n
+

[
n2
2

n2
1

c1(s,m)(c2(s,m) + s− 1)

s2(s− 1)

]n
,

c1(s,m) =
∑

l1,l2∈Zs
l1 ̸=l2

∑
xik∈Tl1,s

xjk∈Tl2,s

y|xik−xjk|p ,

c2(s,m) =
n1n3

n2
2

s− 1

c1(s,m)

∑
l∈Zs

 ∑
xik∈Tl,s

xjk∈Tl,s

y|xik−xjk|p −m

 , (3)

Tl,s = {lm, lm+ 1, . . . , (l + 1)m− 1}, (n1, n2, n3) are given in Theorem 1 and n0

is defined in Equation (1).

For the commonly used p = 1 (Manhattan distance) and p = 2 (Euclidean dis-
tance), one can easily verify that the condition c2(s,m) > 1 in Theorem 2 holds and
thus (c2(s,m) − 1)/(c2(s,m) + s − 1) ∈ (0, 1). This means that the coefficient of
Ai(D) in the expression of ϕ(D̃) decreases exponentially as i increases. Therefore,
Theorem 2 shows that starting from the GMA U-type designs in the level permutation
and expansion method tends to generate better high-level U-type designs under the
maximin distance criterion on average.

In the existing work for generating maximin distance designs, Zhou and Xu
(2014) considered level permutations only and their Theorem 2 was a special case
of our Theorem 2 with m = 1. Xiao and Xu (2018) considered both level permu-
tations and expansions, but their Theorem 2 only connected the generated designs’
expected distance variations with the A2(D) values; whereas, we connect ϕ(D̃) with
the entire GWLP of the design D. Thus, Theorem 2 generalizes the related results in
the above two papers.

3.3 Uniform designs

Uniformity is another widely used space-filling criterion. The basic idea behind uni-
form design is to scatter the design points as uniformly as possible in the design
space by minimizing certain discrepancy metric. Hickernell (1998) developed several
discrepancies defined on the reproducing kernel Hilbert spaces to measure designs’
uniformity. Among them, the centered L2-discrepancy (CD) and the wrap-around
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L2-discrepancy (WD) are the most commonly used. In addition, Zhou et al. (2013)
proposed another popular mixture discrepancy (MD).

Let K(x, y) =
∏n

j=1 f(xj , yj) be a reproducing kernel defined on [0, 1]n ×
[0, 1]n, where x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ [0, 1]n. Here f(x, y) satisfies
the condition

f(x, y) ≥ 0 and f(x, x) + f(y, y) > f(x, y) + f(y, x) ∀x ̸= y, x, y ∈ [0, 1]. (4)

Then for an (N, sn) design D = (xij)N×n = {x1, . . . , xN}, we can obtain the
corresponding discrepancy according to the choice of K(·, ·),

Disc(D) = K2 −
2

N

N∑
i=1

n∏
k=1

f1(xik) +
1

N2

N∑
i,j=1

n∏
k=1

f(xik, xjk), (5)

where K2 =
∫
[0,1]n

∫
[0,1]n

K(x, y)dxdy is a constant and f1(x) =
∫ 1

0
f(x, y)dy.

Below, we list the choices of K(x, y) and their corresponding discrepancies:

(i) for CD, f(x, y) = 1 + (|x− 1/2|+ |y − 1/2| − |x− y|)/2;
(ii) for WD, f(x, y) = 3/2− |x− y|+ |x− y|2;

(iii) for MD, f(x, y) = 15/8− (|x− 1/2|+ |y − 1/2|+ 3|x− y| − 2|x− y|2)/4.

Next, we show the explicit expressions of the squared CD, WD and MD for an
(N, sn) design D = (xik)N×n:

CD(D) =

(
13

12

)n

− 2

N

N∑
i=1

n∏
k=1

(
1 +

1

2

∣∣∣∣uik − 1

2

∣∣∣∣− 1

2

∣∣∣∣uik − 1

2

∣∣∣∣2
)

+
1

N2

N∑
i=1

N∑
j=1

n∏
k=1

(
1 +

1

2

∣∣∣∣uik − 1

2

∣∣∣∣+ 1

2

∣∣∣∣ujk − 1

2

∣∣∣∣− 1

2
|uik − ujk|

)
,

WD(D) = −
(
4

3

)n

+
1

N2

N∑
i=1

N∑
j=1

n∏
k=1

(
3

2
− |uik − ujk|+ |uik − ujk|2

)
,

MD(D) =

(
19

12

)n

− 2

N

N∑
i=1

n∏
k=1

(
5

3
− 1

4
|uik| −

1

4
|uik|2

)

+
1

N2

N∑
i=1

N∑
i=1

n∏
k=1

(
15

8
− 1

4
|uik| −

1

4
|ujk| −

3

4
|uik − ujk|+

1

2
|uik − ujk|2

)
,

where uik = (xik + 1/2)/s which re-scales xik to the [0, 1] range. Please refer to
Hickernell (1998) and Zhou et al. (2013) for more details on the discrepancy criteria.

Consider generating U-type designs D̃(N, (ms)n) from a U-type design D(N, sn)
via level permutations and expansions. Let Disc(D̃) be the average value of any kind
of discrepancy defined by Equation (5) over EP(D). The following Theorem 3 es-
tablishes a connection between Disc(D̃) and the GWLP of the design D.
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Theorem 3 Given a U-type initial design D(N ; sn), consider all possible level per-
mutations and expansions. Suppose any kind of discrepancy defined by Equation (5)
is adopted such that the scalar value c2(s;m) defined in Equation (6) is larger than 1.
Then we have

Disc(D̃) =
1

n0

∑
D̃∈EP(D)

Disc(D̃)

= α (N,n, s,m) +

[
n2
2

n2
1

c1(s,m)(c2(s,m) + s− 1)

s2(s− 1)

]n n∑
i=2

(
c2(s,m)− 1

c2(s,m) + s− 1

)i

Ai(D),

where

α (N,n, s,m) =K2 − 2

(
n2

n1s

ms−1∑
l=0

f1

(
l + 1/2

ms

))n

+
1

N

(
n2

n1s

ms−1∑
l=0

f

(
l + 1/2

ms
,
l + 1/2

ms

))n

− 1

N

[
n2
2

n2
1

c1(s,m)c2(s,m)

s(s− 1)

]n
+

[
n2
2

n2
1

c1(s,m)(c2(s,m) + s− 1)

s2(s− 1)

]n
,

c1(s,m) =
∑

l1,l2∈Zs
l1 ̸=l2

∑
xik∈Tl1,s

xjk∈Tl2,s

f(uik, ujk),

c2(s,m) =
n1n3

n2
2

s− 1

c1(s,m)

∑
l∈Zs

 ∑
xik∈Tl,s

xjk∈Tl,s

f(uik, ujk)−
∑

xik∈Tl,s

f(uik, uik)

 ,

(6)
uik = (xik + 1/2)/ms for xik ∈ Zms, (n1, n2, n3) are given in Theorem 1, K2 =∫
[0,1]n

∫
[0,1]n

K(x, y)dxdy and Tl,s = {lm, lm+ 1, . . . , (l + 1)m− 1}.

Theorem 3 shows that the average discrepancies of the designs generated by
level permutations and expansions can be linearly expressed by the initial designs’
GWLPs. It is straightforward to verify that for the commonly used discrepancies CD,
WD and MD, the condition c2(s,m) > 1 in Theorem 3 holds and thus (c2(s,m) −
1)/(c2(s,m)+s−1) ∈ (0, 1). This means that the coefficient of Ai(D) in the expres-
sion of Disc(D̃) decreases exponentially as i increases. Therefore, Theorem 3 shows
that starting from the GMA U-type designs in the level permutation and expansion
method tends to give the best generated high-level U-type designs on average under
the CD, WD and MD criteria.

Generating uniform designs has been previously studied by Zhou and Xu (2014)
and Jiang and Ai (2017). Theorem 1 in Zhou and Xu (2014) is a special case of
our Theorem 3 when m = 1, which considers level permutations only. Corollary 2
in Jiang and Ai (2017) is a special case of our Theorem 3 for m = N/s, which
corresponds to LHDs.
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4 Concluding remarks

The method of level permutation and expansion is a powerful tool to construct good
high-level designs from low-level designs. In this paper, we establish theoretical con-
nections between the U-type designs before and after level permutations and expan-
sions under the orthogonality, maximin distance and uniformity criteria. These results
generalize the existing results and provide theoretical guidance on the selections of
good initial designs for the level permutation and expansion algorithms in Zhou and
Xu (2014), Jiang and Ai (2017), and Xiao and Xu (2018). When following these algo-
rithms to generate optimal U-type designs, we justify that OAs and GMA designs are
good choices for the initial designs, which will lead to the best candidate sub-spaces
to search from.

In this paper, we focus on pure-level designs that are not supersaturated, where
each factor has the same number of levels and the run size is larger than the factor
size. In practice, good mixed-level designs (i.e. factors can have different numbers
of levels) and supersaturated designs (i.e. the run size is too small to estimate all
the main effects) are also needed (Yamada and Matsui, 2002; Georgiou, 2014). It
is promising to generalize the established results in this paper for mixed level de-
signs and supersaturated designs. New algorithms based on the level permutation and
expansion can be developed to construct such designs, which will be an interesting
future work.

Most space-filling designs only consider the uniformity in full-dimensional pro-
jections. To guarantee the space-filling properties on all possible dimensions, Joseph
et al. (2015) proposed the maximum projection (MaxPro) designs. How to construct
MaxPro designs with flexible sizes is also a challenging question. Another possible
future work is to generalize the established results for constructing the MaxPro de-
signs via the level permutations and expansions.

Appendix: Proofs

To prove the theorems in this paper, the following lemma by Tang et al. (2012) and
Zhou and Xu (2014) is needed.

Lemma 1 For two rows xi and xj of an (N, sn) design D, denote δij(D) be the
number of places where they take the same value. Then for any real number z > 1,
we have

N∑
i,j=1

zδij(D) = N2

(
z + s− 1

s

)n n∑
i=0

(
z − 1

z + s− 1

)i

Ai(D). (7)

Proof of Theorem 1. Let D̃ = (xik) be a U-type (N, (ms)n) design obtained by
permutating and expanding levels of D. Because all the ms levels in Zms appear
N/(ms) times in each column of D̃, for the kth and k′th columns of D̃, their corre-
lation is

ρkk′ =
12

N (m2s2 − 1)

N∑
i=1

x̃ikx̃ik′ ,
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where x̃ik = xik − (ms − 1)/2. Let D(k,k′) and D̃(k,k′) respectively represent the
sub-design of D and D̃ projected onto the kth and k′th columns. When all level
permutations and expansions are considered, we can get a set of U-type (N, (ms)2)
designs D̃(k,k′), say EP(D(k,k′)). Then the average ρ2 value over EP(D(k,k′)), de-
noted by ρ2(D̃(k,k′)), equals

144

(s!)2n2s
1 N2 (m2s2 − 1)

2

∑
D̃(j,k)∈EP(D(k,k′))

(
N∑
i=1

x̃ikx̃ik′

)2

.

Now we calculate the term
∑

D̃(k,k′)∈EP(D(k,k′))

(∑N
i=1 x̃ikx̃ik′

)2
. Expand the squares

we further get the quadratic terms and interaction terms. First, the quadratic terms are

∑
D̃(k,k′)∈EP(D(k,k′))

N∑
i=1

x̃2
ikx̃

2
ik′ =

N∑
i=1

∑
D̃(k,k′)∈EP(D(k,k′))

x̃2
ikx̃

2
ik′

=

N∑
i=1

(
(s− 1)!ns−1

1 n2

ms−1∑
l=0

l2

)2

= N

(
(s− 1)!ns−1

1 n2
(2ms− 1)(ms− 1)ms

6

)2

.

(8)

Next, the interactions are

∑
D̃(k,k′)∈EP(D(k,k′))

N∑
i,j=1,i̸=j

x̃ikx̃ik′ x̃jkx̃jk′ =

N∑
i,j=1,i̸=j

∑
D̃(k,k′)∈EP(D(k,k′))

x̃ikx̃jkx̃ik′ x̃jk′

=

N∑
i,j=1,i̸=j

(s− 2)!ns−2
1 n2

2

∑
l1,l2∈Zs
l1 ̸=l2

∑
xik∈Tl1,s

xjk∈Tl2,s

x̃ikx̃jk


2−δij(D(k,k′))

×

N∑
i,j=1,i̸=j

(s− 1)!ns−1
1 n3

∑
l1,l2∈Zs
l1=l2

 ∑
xik∈Tl1,s

xjk∈Tl2,s

x̃ikx̃jk −
∑

xik∈Tl1,s

x̃2
ik




δij(D(k,k′))

=
[
(s− 2)!ns−2

1 n2
2c1(s,m)

]2 N∑
i,j=1,i̸=j

c2(s,m)δij(D(k,k′))

=
[
(s− 2)!ns−2

1 n2
2c1(s,m)

]2 N∑
i,j=1

c2(s,m)δij(D(k,k′)) −N
[
(s− 2)!ns−2

1 n2
2c1(s,m)c2(s,m)

]2
,

(9)
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where c1(s,m) and c2(s,m) are defined in Theorem 1, and δij(D(k,k′)) is the number
of places where the ith and jth rows of D(k,k′) take the same value. Combining (8)
with (9) and simplifying gives

ρ2(D̃(k,k′)) = α0(N, s,m) + β0(N, s,m)

N∑
i,j=1

c2(s,m)δij(D(k,k′)),

where

α0(N, s,m) =
4n2

2m2(2ms− 1)2

Nn1
2(ms+ 1)2

− 144n4
2c

2
1(s,m)c22(s,m)

Nn4
1s

2(s− 1)2 (m2s2 − 1)
2 ,

β0(N, s,m) =
144n4

2c
2
1(s,m)

N2n4
1s

2(s− 1)2 (m2s2 − 1)
2 .

Applying Lemma 1 for n = 2 and using the fact that A1(D(k,k′)) = 0, we have

ρ2(D̃(k,k′)) = α0(N, s,m) + β0(N, s,m)N2×[(
c2(s,m) + s− 1

s

)2

+

(
c2(s,m)− 1

s

)2

A2(D(k,k′))

]
.

(10)

Now we calculate ρ2(D̃). We have

ρ2(D̃) =
1

n0

∑
D̃∈EP(D)

ρ2(D̃)

=
1

n0

∑
D̃∈EP(D)

1

n(n− 1)

n∑
k,k′=1,k ̸=k′

ρ2kk′

=
1

n(n− 1)

n∑
k,k′=1,k ̸=k′

1

n0

∑
D̃∈EP(D)

ρ2kk′

=
1

n(n− 1)

n∑
k,k′=1,k ̸=k′

ρ2(D̃(k,k′)),

where the last equality uses the fact that the average of ρ2kk′(D̃) over EP(D) is equal
to the average of ρ2kk′(D̃(k,k′)) over EP(D(k,k′)). Finally, by (10), the above equation
and the fact that A2(D) =

∑n
k,k′=1,k ̸=k′ A2(D(k,k′)), we have

ρ2(D̃) = α(N, s,m) +
144n4

2c
2
1(s,m)(c2(s,m)− 1)2(

n
2

)
n4
1s

4(s− 1)2 (m2s2 − 1)
2 A2(D),

where α(N, s,m) is defined in Theorem 1. ⊓⊔
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Proof of Theorem 2. Let D̃ = (xik) be a U-type (N, (ms)n) design obtained by
permutating and expanding levels of D. Then the entries xik ∈ Zms. Because of the
additivity of dp(·, ·), we have

ϕ(D̃) =
1

n0N2

∑
D̃∈EP(D)

N∑
i,j=1

n∏
k=1

ydp(xik,xjk)

=
1

n0N2

∑
D̃∈EP(D)

N∑
i=1

n∏
k=1

y0 +
1

n0N2

∑
D̃∈EP(D)

N∑
i,j=1,i̸=j

n∏
k=1

ydp(xik,xjk)

=
1

N
+

1

n0N2

∑
D̃∈EP(D)

N∑
i,j=1,i̸=j

n∏
k=1

ydp(xik,xjk)

(11)

In the last equation, the term
∑

D̃∈EP(D)

∑N
i,j=1,i̸=j

∏n
k=1 y

dp(xik,xjk) can be simi-
larly simplified as follows:

∑
D̃∈EP(D)

N∑
i,j=1,i̸=j

n∏
k=1

ydp(xik,xjk) =

N∑
i,j=1,i̸=j

∑
D̃∈EP(D)

n∏
k=1

ydp(xik,xjk)

=

N∑
i,j=1,i̸=j

∑
D̃∈EP(D)

 ∏
k:⌊ xik

m ⌋=⌊
xjk
m ⌋

ydp(xik,xjk)


 ∏

k:⌊ xik
m ⌋̸=⌊

xjk
m ⌋

ydp(xik,xjk)



=

N∑
i,j=1,i̸=j

(s− 2)!ns−2
1 n2

2

∑
l1,l2∈Zs
l1 ̸=l2

∑
xik∈Tl1,s

xjk∈Tl2,s

ydp(xik,xjk)


n−δij(D)

×

N∑
i,j=1,i̸=j

(s− 1)!ns−1
1 n3

∑
l1,l2∈Zs
l1=l2

 ∑
xik∈Tl1,s

xjk∈Tl2,s

ydp(xik,xjk) −
∑

xik∈Tl1,s

ydp(xik,xik)




δij(D)

=
[
(s− 2)!ns−2

1 n2
2c1(s,m)

]n N∑
i,j=1

c2(s,m)δij(D) −N
[
(s− 2)!ns−2

1 n2
2c1(s,m)c2(s,m)

]n
,

where c1(s,m) and c2(s,m) are defined in Theorem 2. The desired result then fol-
lows by substituting the above equation into (11) and applying Lemma 1 and the fact
that A1(D) = 0. ⊓⊔
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Proof of Theorem 3. For an (N, (ms)n) design D̃ = (xij), the entries xik ∈ Zms,
denote uik = (xik + 1/2)/ms. By (5), we have

Disc(D̃) =
1

n0

∑
D̃∈EP(D)

Disc(D̃)

=
1

n0

∑
D̃∈EP(D)

K2 −
2

N

N∑
i=1

n∏
k=1

f1(uik) +
1

N2

N∑
i,j=1

n∏
k=1

f(uik, ujk)


= K2 −

2

n0N

∑
D̃∈EP(D)

N∑
i=1

n∏
k=1

f1(uik) +
2

n0N2

∑
D̃∈EP(D)

N∑
i,j=1

n∏
k=1

f(uik, ujk).

(12)

Now we calculate the two terms in (12),
∑

D̃∈EP(D)

∑N
i=1

∏n
k=1 f1(uik) and∑

D̃∈EP(D)

∑N
i,j=1

∏n
k=1 f(uik, ujk), respectively. The first term is

∑
D̃∈EP(D)

N∑
i=1

n∏
k=1

f1(uik) =

N∑
i=1

∑
D̃∈EP(D)

n∏
k=1

f1(uik)

= N

(
(s− 1)!ns−1

1 n2

ms−1∑
l=0

f1

(
l + 1/2

ms

))n

.

The second term can be further splitted into two terms as

∑
D̃∈EP(D)

N∑
i=1

n∏
k=1

f(uik, uik) +
∑

D̃∈EP(D)

N∑
i,j=1,i̸=j

n∏
k=1

f(uik, ujk).

The former is equal to

N

(
(s− 1)!ns−1

1 n2

ms−1∑
l=0

f

(
l + 1/2

ms
,
l + 1/2

ms

))n
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and the latter is

∑
D̃∈EP(D)

N∑
i,j=1,i̸=j

n∏
k=1

f(uik, ujk) =

N∑
i,j=1,i̸=j

∑
D̃∈EP(D)

n∏
k=1

f(uik, ujk)

=

N∑
i,j=1,i̸=j

∑
D̃∈EP(D)

 ∏
k:⌊ xik

m ⌋=⌊
xjk
m ⌋

f(uik, ujk)


 ∏

k:⌊ xik
m ⌋̸=⌊

xjk
m ⌋

f(uik, ujk)



=

N∑
i,j=1,i̸=j

(s− 2)!ns−2
1 n2

2

∑
l1,l2∈Zs
l1 ̸=l2

∑
xik∈Tl1,s

xjk∈Tl2,s

f(uik, ujk)


n−δij(D)

×

N∑
i,j=1,i̸=j

(s− 1)!ns−1
1 n3

∑
l1,l2∈Zs
l1=l2

 ∑
xik∈Tl1,s

xjk∈Tl2,s

f(uik, ujk)−
∑

xik∈Tl1,s

f(uik, uik)




δij(D)

=
[
(s− 2)!ns−2

1 n2
2c1(s,m)

]n N∑
i,j=1,i̸=j

c2(s,m)δij(D)

=
[
(s− 2)!ns−2

1 n2
2c1(s,m)

]n N∑
i,j=1

c2(s,m)δij(D) −N
[
(s− 2)!ns−2

1 n2
2c1(s,m)c2(s,m)

]n
,

where c1(s,m) and c2(s,m) are defined in Theorem 3, and Tl,s = {lm, lm +
1, . . . , (l + 1)m− 1}.

Substituting the above equations into (12) and simplifying, we obtain

Disc(D̃) = α(N,n, s,m) +
1

N2

(
n2
2

n2
1

c1(s,m)

s(s− 1)

)n N∑
i,j=1

c2(s,m)δij(D),

where α(N,n, s,m) is defined in Theorem 3. Then the result follows by the above
equation, Lemma 1 and the fact that A1(D) = 0. ⊓⊔
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