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OPTIMAL MAXIMIN L1-DISTANCE LATIN HYPERCUBE DESIGNS
BASED ON GOOD LATTICE POINT DESIGNS1

BY LIN WANG∗, QIAN XIAO† AND HONGQUAN XU∗

University of California, Los Angeles∗ and University of Georgia†

Maximin distance Latin hypercube designs are commonly used for com-
puter experiments, but the construction of such designs is challenging. We
construct a series of maximin Latin hypercube designs via Williams transfor-
mations of good lattice point designs. Some constructed designs are optimal
under the maximin L1-distance criterion, while others are asymptotically op-
timal. Moreover, these designs are also shown to have small pairwise corre-
lations between columns.

1. Introduction. Computer experiments are increasingly being used to inves-
tigate complex systems [Sacks, Schiller and Welch (1989), Santner, Williams and
Notz (2003), Fang, Li and Sudjianto (2006), Morris and Moore (2015)]. A gen-
eral design approach to planning computer experiments is to seek design points
that fill a design region as uniformly as possible [Lin and Tang (2015)]. Represen-
tative designs include Latin hypercube designs (LHDs) and their modifications,
maximin distance designs [Johnson, Moore and Ylvisaker (1990)] and uniform
designs [Fang and Wang (1994)]. LHDs have uniform one-dimensional projec-
tions and orthogonal-array based LHDs [Tang (1993), He and Tang (2013, 2014),
He, Cheng and Tang (2018)] have improved two- or three-dimensional projec-
tions. Many researchers have constructed orthogonal or nearly orthogonal LHDs;
see, among others, Ye (1998), Steinberg and Lin (2006), Cioppa and Lucas (2007),
Lin, Mukerjee and Tang (2009), Sun, Liu and Lin (2009), Yang and Liu (2012),
Georgiou and Efthimiou (2014), Lin and Tang (2015) and Sun and Tang (2017).
However, these LHDs are often not space-filling in high dimensions [Joseph and
Hung (2008), Xiao and Xu (2018)].

A maximin distance design spreads design points over the design space in such
a way that the separation distance, that is, the minimal distance between pairs
of points, is maximized. Computer experiments are often modeled as Gaussian
processes. When the correlations between observations rapidly decrease as the
distances between design points increase, maximin distance designs are asymp-
totically D-optimal in the sense that they maximize the determinant of the corre-
lation matrix [Johnson, Moore and Ylvisaker (1990)]. The choice of distances is
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application dependent. Some researchers worked on the L2-distance and proposed
algorithms such as simulated annealing [Morris and Mitchell (1995), Joseph and
Hung (2008), Ba, Myers and Brenneman (2015)] and swarm optimization algo-
rithms [Moon, Dean and Santner (2011), Chen et al. (2013)] to construct maximin
distance LHDs. However, such methods are not efficient for constructing large
designs due to their computational complexity. Nevertheless, large designs are
needed for computer experiments; for example, Morris (1991) considered many
simulation models involving hundreds of factors. Zhou and Xu (2015) studied
both L1- and L2-distances of good lattice point (GLP) designs. The GLP method
was introduced by Korobov (1959) for numerical evaluation of multivariate inte-
grals and has been widely used in quasi-Monte Carlo method, uniform designs
and computer experiments [Fang and Wang (1994)]. Zhou and Xu (2015) showed
that permuting levels can increase the separation distances of GLP designs. It is
infeasible to conduct all level permutations, so they considered only linear permu-
tations, which limits the ability of generating good designs. Xiao and Xu (2017)
proposed construction methods via Costas’ arrays and obtained some LHDs with
large minimal L1-distance.

In this paper, we propose a series of systematic methods to construct maximin
L1-distance LHDs. The L1-distance provides a lower bound for the L2-distance
by the Cauchy–Schwarz inequality so that the constructed designs also perform
well regarding the L2-distance. The proposed method is based on the Williams
transformation and its modification. The Williams transformation was first used
by Williams (1949) to construct Latin square designs that are balanced for near-
est neighbors. Bailey (1982) and Edmondson (1993) used the transformation to
construct designs orthogonal to polynomial trends. Butler (2001) used the trans-
formation to construct optimal and orthogonal LHDs under a second-order cosine
model. Our purpose is different from theirs. We apply the Williams transformation
to GLP designs and construct a class of asymptotically optimal maximin LHDs.
Applying the leave-one-out method we obtain another class of asymptotically opti-
mal maximin LHDs. By modifying the Williams transformation, we obtain a class
of exactly optimal maximin LHDs. Moreover, all resulting designs have small pair-
wise correlations between columns and the average correlations converge to zero
as the design sizes increase. This near orthogonality is desirable for estimating
potential linear trend efficiently in a Gaussian process.

This paper is organized as follows. Section 2 provides the construction methods.
Sections 3 and 4 give theoretical results on separation distances and correlations
of some special constructed designs. Section 5 extends the theoretical results to a
general situation. Concluding remarks are given in Section 6. Proofs are deferred
to the Appendix.

2. Construction methods. An N × n LHD is an N × n matrix where each
column is a permutation of N equally spaced levels, denoted by 0, . . . ,N − 1
or 1, . . . ,N . The L1-distance between two vectors x1 = (x11, . . . , x1n) and x2 =
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(x21, . . . , x2n) is d(x1, x2) = ∑n
j=1 |x1j − x2j |. For an N × n design matrix D,

let xi be the ith row, i = 1, . . . ,N , and dik(D) be the L1-distance between the
ith and kth rows of D, that is, dik(D) = d(xi, xk). The L1-distance of D, denoted
by d(D) = min{dik(D) : i �= k, i, k = 1, . . . ,N}, is the minimum L1-distance be-
tween any two distinct rows in D. The maximin distance criterion [Johnson, Moore
and Ylvisaker (1990)] is to maximize d(D) among all possible designs. For an
N × n LHD, the average pairwise L1-distance between rows is (N + 1)n/3 [Zhou
and Xu (2015)]. Because the minimum pairwise L1-distance cannot exceed the
integer part of the average, we have the following result.

LEMMA 1. For any N × n LHD D, d(D) ≤ dupper = �(N + 1)n/3�, where
�x� is the integer part of x.

Let h = (h1, . . . , hn) be a set of positive integers smaller than and coprime to
N . An N × n GLP design D = (xij ) is defined by xij = i × hj (mod N) for
i = 1, . . . ,N and j = 1, . . . , n. The last row of D is a vector of zeros. Each col-
umn of D is a permutation of {0, . . . ,N − 1}. Thus a GLP design is an LHD. We
can construct an N × n GLP design for any n ≤ φ(N), where φ(N) is the Eu-
ler function, that is, the number of positive integers smaller than and coprime to
N . Let Db = D + b (mod N) for b = 0, . . . ,N − 1, that is, Db is a linearly per-
muted GLP design. Then Db is still an LHD. Zhou and Xu (2015) showed that
d(Db) ≥ d(D) for any b and proposed to search b that maximizes d(Db).

2.1. Williams’ transformation. Given an integer N , for x = 0, . . . ,N − 1, the
Williams transformation is defined by

(2.1) W(x) =
{

2x for 0 ≤ x < N/2;
2(N − x) − 1 for N/2 ≤ x < N.

The Williams transformation is a permutation of {0, . . . ,N − 1}. Hence, for an
LHD D = (xij ), W(D) = (W(xij )) is also an LHD. The following example shows
that the Williams transformation can further increase the L1-distance of linearly
permuted GLP designs.

EXAMPLE 1. Consider N = 11 and h = (1, . . . ,10). The GLP design D =
(xij ) is an 11 × 10 LHD with xij = i × j (mod 11) and d(D) = 30. For each
b = 0, . . . ,10, we obtain two designs via linear permutation and Williams’ trans-
formation, namely, Db = D + b (mod 11) and Eb = W(Db). Table 1 shows
the L1-distances of Db and Eb. The linearly permuted designs Db’s have dis-
tances ranging from 30 to 34, while the distances for Eb’s vary from 10 to 39.
The upper bound from Lemma 1 is 40. The best design from Db’s is D1 or D9
with d(D1) = d(D9) = 34, while the best design from Eb’s is E1 or E4 with
d(E1) = d(E4) = 39.
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TABLE 1
The L1-distances of Db and Eb in Example 1

b 0 1 2 3 4 5 6 7 8 9 10

d(Db) 30 34 30 32 31 30 31 32 30 34 30
d(Eb) 10 39 31 31 39 10 28 34 30 34 28

Example 1 shows that the Williams transformation can generate designs with
larger distances than the linear permutation. Inspired by this, we propose a new
construction for maximin LHDs:

ALGORITHM 1 (Williams’ transformation of linearly permuted GLP designs).

Step 1. Given a pair of integers N and n ≤ φ(N), generate an N × n GLP
design D.

Step 2. For b = 0, . . . ,N − 1, generate Db = D + b (mod N) and Eb =
W(Db).

Step 3. Find the best Db and Eb which maximize d(Db) and d(Eb), respec-
tively.

As an illustration, we apply Algorithm 1 for N = 7, . . . ,30 and n = φ(N).
Table 2 compares LHDs generated by the linear permutation, the Williams trans-
formation, R package SLHD provided by Ba, Myers and Brenneman (2015) and
the Gilbert and Golomb methods proposed by Xiao and Xu (2017). The SLHD
package adopts the L2-distance measure, so we ran the command maximinSLHD
with option t = 1 and default settings for 100 times, and chose the design with the
largest L1-distance. The Williams transformation always offers better designs than
the linear permutation except for N = 13, and consistently outperforms the Gilbert
and Golomb methods, which only work for prime N . Compared to the SLHD
package, the Williams transformation performs better for designs with moderate
to large sizes. The Williams transformation performs specially well when N is a
prime.

2.2. Leave-one-out method. Since the last row of a GLP design D is (0, . . . ,

0), then the last rows of Db and Eb are (b, . . . , b) and (W(b), . . . ,W(b)), re-
spectively. The leave-one-out method is to delete the constant row of a design
and rearrange the levels so that the resulting design is still an LHD. Specifically,
starting from Db, we delete the last row and reduce the levels b + 1, . . . ,N − 1
by one, which gives us an (N − 1) × n LHD, denoted by D∗

b . Similarly, from
Eb, we obtain another (N − 1) × n LHD, denoted by E∗

b . Table 3 compares the
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TABLE 2
Comparison of L1-distances of N × n LHDs

N n LP WT SLHD Gil Gol N n LP WT SLHD Gil Gol

7 6 13 16 15 14 14 19 18 106 115 108 102 106
8 4 8 10 11 20 8 32 42 43
9 6 15 16 18 21 12 66 76 73

10 4 8 11 11 22 10 60 68 61
11 10 34 39 36 34 34 23 22 154 168 160 154 158
12 4 8 10 13 24 8 32 36 50
13 12 54 52 52 46 48 25 20 147 162 153
14 6 22 24 23 26 12 84 98 87
15 8 29 36 35 27 18 135 156 145
16 8 32 36 37 28 12 72 94 92
17 16 84 94 86 86 80 29 28 250 274 254 250 244
18 6 18 28 28 30 8 40 62 57

Note: LP, linear permutation; WT, Williams’ transformation; SLHD, R package SLHD; Gil, Gilbert
method; Gol, Golomb method.

L1-distances of D∗
b and E∗

b for N = 7, . . . ,30, as well as the (N − 1) × n de-
signs generated by R package SLHD and the Gilbert and Golomb methods. From
Table 3,the leave-one-out Williams transformation generates designs with larger
L1-distance than other methods in most cases. It performs specially well when N

is a prime.

TABLE 3
Comparison of L1-distances of (N − 1) × n LHDs

N n LP-1 WT-1 SLHD Gil Gol N n LP-1 WT-1 SLHD Gil Gol

7 6 12 14 14 14 14 19 18 104 112 103 102 106
8 4 8 9 9 20 8 37 40 41
9 6 14 14 16 21 12 64 74 71

10 4 10 10 11 22 10 56 64 60
11 10 34 36 34 34 34 23 22 152 166 152 154 158
12 4 8 10 12 24 8 32 36 47
13 12 52 50 47 46 48 25 20 146 156 146
14 6 19 23 22 26 12 80 93 85
15 8 28 34 34 27 18 134 152 139
16 8 32 34 36 28 12 81 91 89
17 16 82 88 82 86 80 29 28 244 268 247 250 244
18 6 18 27 26 30 8 40 60 56

Note: LP-1, leave-one-out linear permutation; WT-1, leave-one-out Williams transformation.
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2.3. Modified Williams’ transformation. To construct other maximin LHDs,
we propose a modified Williams transformation. For x = 0, . . . ,N − 1, define

(2.2) w(x) =
{

2x for 0 ≤ x < N/2;
2(N − x) for N/2 ≤x < N.

The following lemma shows an important connection between the original and
modified Williams transformations.

LEMMA 2. Let N be an odd prime, D be an N × (N − 1) GLP design and
Db = D + b (mod N) for b = 0, . . . ,N − 1. Then dik(w(Db)) = dik(W(Db)) for
i + k �= N and i, k = 1, . . . ,N − 1.

The w(x) is always an even number, so w(Db) is not an LHD. We can con-
struct LHDs by selecting some submatrices of w(D)/2. Let us see an illustrating
example.

EXAMPLE 2. Consider N = 11 and the 11 × 10 GLP design D. The design
matrices of D and w(D)/2 are shown in Table 4. If we divide the design matrix of
w(D)/2 into four blocks as shown in Table 4, then each block is a LHD. Denote
H1 and H2 as the top two blocks, and H3 and H4 as the bottom two blocks, respec-
tively. It can be verified that H1 and H2 are 5×5 LHDs with d(H1) = d(H2) = 10,
which attains the upper bound of L1-distance in Lemma 1. In fact, H1 and H2 are
the same design up to column permutations; in addition, H3 and H4 can be ob-
tained by adding a row of zeros to H1 and H2, respectively.

Generally, suppose that N is an odd prime with N = 2m + 1 and D = (xij ) is
the N × (N − 1) GLP design. Since xij + x(N−i)j = N and xij + xi(N−j) = N for

TABLE 4
The design matrices of D and w(D)/2 in Example 2

D w(D)/2

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 5 4 3 2 1
2 4 6 8 10 1 3 5 7 9 2 4 5 3 1 1 3 5 4 2
3 6 9 1 4 7 10 2 5 8 3 5 2 1 4 4 1 2 5 3
4 8 1 5 9 2 6 10 3 7 4 3 1 5 2 2 5 1 3 4
5 10 4 9 3 8 2 7 1 6 5 1 4 2 3 3 2 4 1 5

6 1 7 2 8 3 9 4 10 5 5 1 4 2 3 3 2 4 1 5
7 3 10 6 2 9 5 1 8 4 4 3 1 5 2 2 5 1 3 4
8 5 2 10 7 4 1 9 6 3 3 5 2 1 4 4 1 2 5 3
9 7 5 3 1 10 8 6 4 2 2 4 5 3 1 1 3 5 4 2

10 9 8 7 6 5 4 3 2 1 1 2 3 4 5 5 4 3 2 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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TABLE 5
Comparison of L1-distances of m × m LHDs

m MWT SLHD Wel Gil Gol m MWT SLHD Wel Gil Gol

5 10 10 10 10 8 23 184 167 166 164
6 14 14 12 14 14 26 234 212
8 24 22 29 290 263 264 266 270
9 30 28 26 30 310 281 240 276 292

11 44 40 40 40 40 33 374 340
14 70 64 35 420 383 386
15 80 72 72 36 444 402 342 408 404
18 114 103 90 102 106 39 520 473 482
20 140 126 41 574 523 524 534 520
21 154 141 140 44 660 604

Note: MWT, modified Williams’ transformation; Wel, Welch.

any i, j = 1, . . . ,N − 1, then

(2.3) D =
⎛
⎝ A1 N − A2

N − A3 A4
0m 0m

⎞
⎠ and w(D) =

⎛
⎝w(A1) w(A2)

w(A3) w(A4)

0m 0m

⎞
⎠ ,

where A1 is the m×m leading principal submatrix of D, and A2, A3 and A4 can be
obtained from A1 by reversing the order of columns, rows and both, respectively.
In fact, w(A1), . . . ,w(A4) are the same design up to row and column permutations,
each column of which is a permutation of {2,4, . . . ,2m}. Let

(2.4) H = w(A1)/2

be an m × m LHD from the modified Williams transformation. Table 5 compares
LHDs generated by the modified Williams transformation, the R package SLHD
and the Welch, Gilbert and Golomb methods from Xiao and Xu (2017). The mod-
ified Williams transformation always provides better designs than any other meth-
ods. In fact, the L1-distance of each design generated by the modified Williams
transformation in Table 5 attains the upper bound given in Lemma 1.

3. Theoretical results. The Williams transformation leads to a remarkably
simple design structure in terms of the L1-distance when N is an odd prime.

THEOREM 1. Let N be an odd prime, D be an N × (N − 1) GLP design,
Db = D + b (mod N) and Eb = W(Db) for b = 0, . . . ,N − 1. Then for i �= k,

dik(Eb) =

⎧⎪⎪⎨
⎪⎪⎩

(
N2 − 1

)
/3 + f (b) for i = N or k = N,(

N2 − 1
)
/3 − 2f (b) for i = N − k,(

N2 − 1
)
/3 otherwise,
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FIG. 1. The three possible values of pairwise L1-distance of Eb for N = 11 or 17.

and d(Eb) = (N2 − 1)/3 + min{f (b),−2f (b)}, where f (b) = (W(b) − (N −
1)/2)2 − (N2 − 1)/12.

The pairwise L1-distance between any two distinct rows of Eb takes on only
three possible values. One attains dupper = (N2 − 1)/3 given in Lemma 1, and
the other two vary around dupper. Figure 1 shows the three values for N = 11 and
N = 17 for each b = 0, . . . ,N − 1.

To maximize d(Eb), we need to maximize min{f (b),−2f (b)}. Let c0 =
�
√

(N2 − 1)/12�,

c =
{
c0 if c2

0 + 2(c0 + 1)2 ≥ (
N2 − 1

)
/4;

c0 + 1 otherwise,

and

(3.1) b = W−1
(

N − 1

2
± c

)
.

It can be verified that either choice of b defined in (3.1) maximizes min{f (b),
−2f (b)} and leads to the best Eb.

EXAMPLE 3. Consider N = 11. Then c0 = �
√

(112 − 1)/12� = 3. Since c2
0 +

2(c0 + 1)2 ≥ (N2 − 1)/4, set c = 3. By (3.1), b = 1 or 4. For either b = 1 or b = 4,
by Theorem 1, for i �= k,

dik(Eb) =

⎧⎪⎪⎨
⎪⎪⎩

39 for i = 11 or k = 11,

42 for i = 11 − k,

40 otherwise.

Hence, d(E1) = d(E4) = 39.

Based on the upper bound in Lemma 1, we define the distance efficiency as

(3.2) deff(D) = d(D)/dupper = d(D)/
⌊
(N + 1)n/3

⌋
.
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When N is a prime, n = φ(N) = N −1 and (N +1)n/3 = (N2 −1)/3 is an integer.
In this case, deff(D) = d(D)/((N + 1)n/3). For example, for the designs E1 and
E4 in Example 3, deff(E1) = deff(E4) = 39/40 = 0.975. Generally, we have the
following result.

THEOREM 2. For an odd prime N and b defined in (3.1),

d(Eb) ≥ N2 − 1

3
− 2

3

√
N2 − 1

3
and deff(Eb) ≥ 1 − 2√

3(N2 − 1)
.

As N → ∞, deff(Eb) → 1; so Eb is asymptotically optimal under the maximin
distance criterion. For the leave-one-out design E∗

b defined in Section 2.2, we have
the following result.

THEOREM 3. For an odd prime N and b defined in (3.1),

d
(
E∗

b

) ≥ N2 − 7

3
+ 1

3

√
N2 − 1

3
− (N − 1).

When N ≥ 7, deff(E
∗
b) ≥ 1 − (3 − 1/

√
3)/N > 1 − 2.43/N .

For an odd prime N = 2m + 1 and the m × m design H constructed in
(2.4), we have even better results. By Lemma 2 and Theorem 1, dik(w(D)) =
(N2 − 1)/3 for i �= k, i, k = 1, . . . ,m. By the structure of w(D) shown in (2.3),
dik(w(A1)) = dik(w(D))/2 = (N2 − 1)/6; so H is an equidistant LHD and
d(H) = (N2 − 1)/12 = (m + 1)m/3.

THEOREM 4. Let N = 2m+1 be an odd prime, D = (xij ) be an N × (N −1)

GLP design, and A1 be the m × m leading principal submatrix of D, that is,
A1 = (xij ) with i, j = 1, . . . ,m. Then H = w(A1)/2 is a maximin distance LHD
with d(H) = (m + 1)m/3.

The modified Williams transformation generates exact maximin LHDs when
N is an odd prime. The constructed H is a cyclic Latin square, with each level
occurring once in each row and once in each column. We can add a row of zeros to
H to obtain an (m + 1) × m LHD, denoted by H ∗. It is easy to see that d(H ∗) =
d(H) = (m + 1)m/3 and deff(H

∗) = (m + 1)/(m + 2) → 1 as m → ∞.
The proposed methods are also useful in the construction of maximin L2-

distance designs. An upper bound for the L2-distance of an N × n LHD is
d

(2)
upper = √

N(N + 1)n/6 [Zhou and Xu (2015)]. By the Cauchy–Schwarz inequal-

ity, we have ‖x‖2 ≥ ‖x‖1/
√

n for any n-vector x, so d
(2)
eff >

√
2/3deff, where d

(2)
eff

is the L2-distance efficiency. Therefore, for an (asymptotically) optimal design
under the maximin L1-distance criterion, its L2-distance efficiency will tend to be
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greater than
√

2/3 > 0.816. This is a loose lower bound, and yet it illustrates the
good performance of our constructed designs regarding the L2-distance. Numeri-
cal calculation shows that our proposed methods are able to produce designs with
L2-distance efficiencies greater than 0.95 for large N .

4. Additional results on correlations. We now consider the pairwise correla-
tion between columns for the constructed designs. For any N ×n design D = (xij ),
define

(4.1) ρave(D) =
∑

j �=k |ρjk|
n(n − 1)

,

where ρjk is the correlation between columns j and k of D. The ρave in (4.1) is
a performance measure on the overall pairwise column correlations for design D.
A good design should have a low ρave value to reduce correlations between factors
and reduce the variance of coefficients estimates.

Consider the ρave values for the designs from the Williams transformation. For
each prime N , Table 6 compares the ρave values of designs from the linear per-
mutation, Williams transformation [with b chosen by (3.1)], Gilbert and Golomb
methods. The Williams transformation always generates designs with the smallest
ρave values. In fact, we have a general result on the average correlation ρave(Eb)

for any b = 0, . . . ,N − 1, not restricted to the b defined in (3.1).

THEOREM 5. Let N be an odd prime and D be an N × (N − 1) GLP design,
Db = D + b (mod N), and Eb = W(Db) for b = 0, . . . ,N − 1. Then ρave(Eb) <

2/(N − 2).

For a prime N , ρave(Eb) → 0 as N → ∞ for any b = 0, . . . ,N − 1. This prop-
erty makes it possible to generate large LHDs with tiny pairwise column correla-

TABLE 6
Comparison of the ρave values for N × (N − 1) LHDs

N LP WT Gil Gol N LP WT Gil Gol

7 0.25 0.086 0.25 0.25 47 0.09 0.015 0.09 0.11
11 0.16 0.054 0.19 0.17 53 0.08 0.014 0.07 0.07
13 0.07 0.065 0.16 0.18 59 0.08 0.013 0.08 0.07
17 0.17 0.043 0.13 0.15 61 0.07 0.012 0.07 0.07
19 0.16 0.027 0.18 0.13 67 0.06 0.011 0.08 0.06
23 0.14 0.022 0.12 0.09 71 0.06 0.010 0.07 0.07
29 0.12 0.023 0.11 0.12 73 0.06 0.011 0.06 0.08
31 0.10 0.024 0.09 0.09 79 0.06 0.010 0.06 0.08
37 0.11 0.017 0.10 0.10 83 0.06 0.010 0.06 0.07
41 0.11 0.019 0.11 0.09 89 0.06 0.009 0.07 0.06
43 0.09 0.017 0.09 0.11 97 0.06 0.008 0.07 0.06
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TABLE 7
Comparison of the ρave values for (N − 1) × (N − 1) LHDs

N LP-1 WT-1 Gil Gol N LP WT-1 Gil Gol

7 0.35 0.211 0.21 0.20 47 0.09 0.029 0.08 0.10
11 0.18 0.121 0.15 0.16 53 0.07 0.027 0.06 0.06
13 0.09 0.140 0.17 0.18 59 0.08 0.026 0.07 0.07
17 0.14 0.095 0.11 0.14 61 0.07 0.023 0.06 0.07
19 0.12 0.063 0.15 0.10 67 0.06 0.022 0.08 0.06
23 0.12 0.050 0.11 0.07 71 0.06 0.020 0.07 0.06
29 0.11 0.046 0.09 0.13 73 0.06 0.021 0.06 0.08
31 0.11 0.049 0.11 0.07 79 0.07 0.020 0.06 0.08
37 0.10 0.034 0.08 0.10 83 0.07 0.019 0.05 0.07
41 0.09 0.038 0.09 0.09 89 0.07 0.018 0.06 0.06
43 0.09 0.032 0.09 0.11 97 0.06 0.016 0.07 0.06

tions without any computer search. For the leave-one-out Williams transformation,
we have the following result.

THEOREM 6. Let N be an odd prime, D be an N × (N − 1) GLP design,
Db = D + b (mod N), Eb = W(Db), and E∗

b be the leave-one-out design ob-
tained from Eb for b = 0, . . . ,N − 1. Then ρave(E

∗
b) < 5(N + 1)/(N − 2)2 for any

b = 0, . . . ,N − 1.

Table 7 compares designs obtained from the leave-one-out linear permutation,
leave-one-out Williams transformation, Gilbert and Golomb methods. The leave-
one-out Williams transformation generates designs with the smallest ρave values
except for N = 13.

For the modified Williams transformation, we have the following result.

THEOREM 7. Let N = 2m+1 be an odd prime, D = (xij ) be an N × (N −1)

GLP design, A1 be the m×m leading principal submatrix of D, that is, A1 = (xij )

with i, j = 1, . . . ,m, and H = w(A1)/2. Then ρave(H) < 2/(m − 1).

Table 8 compares the ρave values of designs generated by the modified Williams
transformation and some other available methods. The modified Williams transfor-
mation always provides designs with the smallest ρave values.

5. Extension. We consider extending the results to a general case where N =
kp with k and p being prime numbers. Let

(5.1) b = ⌊
N(1 + 1/

√
3)/4

⌋
,

and Eb be the N × φ(N) design constructed by the Williams transformation. Fig-
ure 2 (top) shows the values of deff(Eb) for N = 2p,3p,5p and 7p and p ≤ 200.
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TABLE 8
Comparison of the ρave values for m × m LHDs

m MWT Wel Gil Gol m MWT Wel Gil Gol

5 0.250 0.25 0.25 0.45 23 0.055 0.12 0.14
6 0.200 0.29 0.21 0.20 26 0.049
8 0.143 29 0.045 0.11 0.09 0.08
9 0.125 0.20 30 0.044 0.11 0.11 0.07

11 0.100 0.17 0.14 0.15 33 0.040
14 0.080 35 0.038 0.09
15 0.077 0.17 36 0.037 0.13 0.08 0.10
18 0.067 0.17 0.15 0.10 39 0.035 0.09
20 0.061 41 0.033 0.11 0.11 0.11
21 0.059 0.11 44 0.031

The deff(Eb) increases quickly as N increases and reaches 0.9 when N is around
30. When N > 100, the deff(Eb) values are typically greater than 0.95 and con-
verge to 1 for N = 2p and N = 7p. The deff(Eb) values do not converge to 1 for
N = 3p and N = 5p, possibly due to the looseness of the upper bound dupper. In
addition, Figure 2 (bottom) shows that ρave(Eb) goes to 0 quickly as N increases.

We present the asymptotic optimality of Eb for N = 2p based on the theoretical
results in Section 3. It is possible to establish similar results for other cases with
more elaborate arguments, which we do not pursue here.

THEOREM 8. Let p be an odd prime, N = 2p, D be an N × φ(N) GLP
design, Db = D+b (mod N) and Eb = W(Db). For b defined in (5.1), deff(Eb) =
1 − O(1/N). As N → ∞, deff(Eb) → 1.

Now we consider an extension of the leave-one-out procedure. We can generate
many asymptotically optimal LHDs by applying the following leave-out-one pro-
cedure for rows or columns. When we delete any row from an N × n LHD D and
rearrange the levels as in the leave-one-out method in Section 2.2, the distance of
the resulting design will reduce at most by n. When we delete any column from
an N × n LHD D, the distance will reduce at most by N − 1. Deleting multiple
columns and rows together is equivalent to repeating the leave-one-out procedure
for multiple times. The following result can be derived.

THEOREM 9. Let D be an N × n LHD. Deleting any kr rows and kc columns
and rearranging the levels yields an (N − kr) × (n − kc) LHD, denoted by D∗.
Then deff(D

∗) ≥ deff(D) − 3kr/(N − kr) − 3kc/(n − kc).

For N = kp and n = φ(N), n → ∞ as N → ∞. If kr and kc are fixed constants
not increasing with N , deff(D

∗) → 1 as N → ∞. This multiple leave-one-out pro-
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FIG. 2. The values of deff(Eb) (top) and ρave(Eb) (bottom) with b defined in (5.1).

cedure yields many asymptotically optimal LHDs with different sizes. For exam-
ple, let k = 3 and p = 41, we obtain a 123 × 80 LHD with deff = 0.956. Delete the
last 22 rows and rearrange the levels; we obtain a 101×80 LHD with deff = 0.948.
Let k = 2 and p = 61, we obtain a 122×60 LHD with deff = 0.980. Delete the last
21 rows and rearrange the levels; we obtain a 101×60 LHD with deff = 0.961. Let
k = 5 and p = 103, we obtain a 515×408 LHD with deff = 0.962. Delete the last 3
rows and the last 8 columns, and rearrange the levels, we obtain a 512 × 400 LHD
with deff = 0.953. A distinctive feature of our method is the excellent performance
for moderate and large designs. Many other methods slow down quickly as the
design size increases and usually give designs with poor distance efficiencies. In
contrast, our method generates moderate and large designs with guaranteed high
distance efficiencies without search, as long as the ratios of kr/N and kc/φ(N)

are small. When the ratios are relatively large, this simple procedure may not work
well and further research is needed.

6. Concluding remarks. We have proposed a series of systematic methods
for the construction of maximin LHDs via the Williams transformation and its
modification. The Williams transformation and leave-one-out method produce
asymptotically optimal LHDs under the maximin distance criterion, and the mod-
ified Williams transformation generates equidistant LHDs under the L1-distance.



3754 L. WANG, Q. XIAO AND H. XU

Xu (1999) showed that equidistant LHDs are universally optimal for computer ex-
periments. The average correlations between columns of the constructed designs
converge to zero as the design sizes increase. Moreover, the constructed designs
often have larger L1-distance and smaller average correlation than existing designs
even for designs with small sizes.

The Williams transformation can be applied to other designs as well. We have
explored the Williams transformation on regular fractional factorial designs and
found that it can substantially improve design efficiencies for estimating polyno-
mial models. We will report the results in a separate paper.

APPENDIX: PROOFS

We need to distinguish two addition operations. To clarify, let ⊕ be the addition
operation over the Galois field {0, . . . ,N − 1}. Let D = (xij ) be the N × φ(N)

GLP design and Db = (xij ⊕ b). When N is a prime, xi = (xi1, . . . , xi(N−1)) and
xi ⊕ b = (xi1 ⊕ b, . . . , xi(N−1) ⊕ b) are the ith row of D and Db, respectively, xi

is a permutation of {1, . . . ,N − 1} for i = 2, . . . ,N − 1; and x1 = (1, . . . ,N −
1). The designs D and Db have some important properties which are crucial for
the proofs of all theoretical results. We first summarize these properties in the
following lemma.

LEMMA 3. Let N be an odd prime:

(i) For i �= k and i, k = 1, . . . ,N − 1, there exists a unique q ∈ {2, . . . ,N − 1}
such that k = iq (mod N). For any given b, the two matrices(

xi ⊕ b

xk ⊕ b

)
and

(
x1 ⊕ b

xq ⊕ b

)

are the same up to column permutations. In addition, q = N − 1 if and only if
i + k = N .

(ii) For any b = 0, . . . ,N − 1 and i = 2, . . . ,N − 2, denote a = (1 − i)b

(mod N). The two matrices(
x1 ⊕ b b

xi ⊕ b b

)
and

(
x1 0

xi ⊕ a a

)

are the same up to column permutations.

PROOF. Part (i) is obvious from the definition of D and Db. For (ii), denote
x̃i = (xi,0) for i = 1, . . . ,N . Then x̃i ⊕ b = i(x̃1 ⊕ b) ⊕ a. The result follows by
noting that x̃1 ⊕ b is a permutation of x̃1 and ix̃1 ⊕ a = x̃i ⊕ a = (xi ⊕ a, a). �

PROOF OF LEMMA 2. We divide the proof in four steps.
Step 1. For i + k �= N , i �= k, and i, k = 1, . . . ,N − 1, by Lemma 3(i), there

exists a unique q ∈ {2, . . . ,N − 2} such that dik(W(Db)) = d1q(W(Db)) and
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dik(w(Db)) = d1q(w(Db)). Therefore, it suffices to show that d1i (W(Db)) =
d1i (w(Db)) for any b = 0, . . . ,N − 1 and i = 2, . . . ,N − 2.

Step 2. By Lemma 3(ii), to prove d1i (W(Db)) = d1i (w(Db)), we only need to
show that d(W(x1),W(xi ⊕ a)) + W(a) = d(w(x1),w(xi ⊕ a)) + w(a) for any
a = 0, . . . ,N − 1. Note that W(a) = w(a) if a < N/2, and W(a) = w(a) − 1 if
a > N/2. It suffices to show that

(A.1) d
(
W(x1),W(xi ⊕ a)

) =
{
d
(
w(x1),w(xi ⊕ a)

)
if a < N/2;

d
(
w(x1),w(xi ⊕ a)

) + 1 if a > N/2.

Step 3. Recall that x1 = (1, . . . ,N −1) and xi ⊕a = (xi1 ⊕a, . . . , xi(N−1) ⊕a).
Then d(W(x1),W(xi ⊕ a)) = ∑N−1

j=1 |W(j) − W(xij ⊕ a)| and d(w(x1),w(xi ⊕
a)) = ∑N−1

j=1 |w(j) − w(xij ⊕ a)|. It can be shown that

∣∣W(j) − W(xij ⊕ a)
∣∣ =

⎧⎪⎪⎨
⎪⎪⎩

∣∣w(j) − w(xij ⊕ a)
∣∣ for j ∈ I ∪ J ;∣∣w(j) − w(xij ⊕ a)
∣∣ − 1 for j ∈ U\I ;∣∣w(j) − w(xij ⊕ a)
∣∣ + 1 for j ∈ V \J,

where

I = {
j : j < N/2, (xij ⊕ a) < N/2

}
,

J = {
j : j > N/2, (xij ⊕ a) > N/2

}
,

U = {
j : j + (xij ⊕ a) < N

}
and V = {

j : j + (xij ⊕ a) ≥ N
}
.

Therefore, to prove (A.1), we need to show that if a < N/2, U\I and V \J contain
the same number of elements; and if a > N/2, U\I contains one less element than
V \J .

Step 4. Denote #S as the number of elements in a set S. Since #(U\I ) = #U −
#I and #(V \J ) = #V − #J , we want to show that

#U = #V and

{
#I = #J if a < N/2;
#I = #J + 1 if a > N/2.

Since

x(i+1)j ⊕ a =
{
j + (xij ⊕ a) for j ∈ U ;
j + (xij ⊕ a) − N for j ∈ V,

then
∑N−1

j=1 (x(i+1)j ⊕ a) = ∑N−1
j=1 (xij ⊕ a) + ∑N−1

j=1 j − (#V )N . Because both xi

and xi+1 are permutations of {1, . . . ,N − 1}, ∑N−1
j=1 (x(i+1)j ⊕ a) = ∑N−1

j=1 (xij ⊕
a), which leads to #V = ∑N−1

j=1 j/N = (N − 1)/2. Because #U + #V = N − 1,
#U = #V = (N − 1)/2. Denote I1 = {j : j > N/2, (xij ⊕ a) < N/2}. If a < N/2,
#I + #I1 = #J + #I1 = (N − 1)/2 so #I = #J . If a > N/2, #I + #I1 = (N + 1)/2
and #J + #I1 = (N − 1)/2 so #I = #J + 1. This completes the proof. �

To prove Theorem 1, we need the following lemma.
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LEMMA 4. For all i = 2, . . . ,N − 2 and b = 0, . . . ,N − 1, d(x1 ⊕ b, xi ⊕
b) + d(N − (x1 ⊕ b), xi ⊕ b) = (2N2 + 1)/3 − |N − 2b|.

PROOF. We divide the proofs in three steps.
Step 1. By Lemma 3(ii),

d(x1 ⊕ b, xi ⊕ b) = d(x1, xi ⊕ a) + a

and

d
(
N − (x1 ⊕ b), xi ⊕ b

) + |N − 2b| = d(N − x1, xi ⊕ a) + N − a,

where a = (1 − i)b (mod N). Then

d(x1 ⊕ b, xi ⊕ b) + d
(
N − (x1 ⊕ b), xi ⊕ b

)
= d(x1, xi ⊕ a) + d(N − x1, xi ⊕ a) + N − |N − 2b|.

Hence, it suffices to show that d(x1, xi ⊕ a)+ d(N − x1, xi ⊕ a) = (2N2 + 1)/3 −
N = (N − 1)(2N − 1)/3 for any a = 0, . . . ,N − 1.

Step 2. Let gi(a) = d(x1, xi ⊕ a) + d(N − x1, xi ⊕ a). If we can prove gi(0) =
gi(1) = · · · = gi(N − 1), we will have

gi(a) = 1

N

N−1∑
c=0

gi(c) = 1

N

N−1∑
c=0

(
d(x1, xi ⊕ c) + d(N − x1, xi ⊕ c)

)
.

Because
∑N−1

c=0 d(N − x1, xi ⊕ c) = ∑N−1
c=0 d(x1, xi ⊕ c), then

gi(a) = 2

N

N−1∑
c=0

d(x1, xi ⊕ c) = 2

N

N−1∑
c=0

N−1∑
j=1

∣∣j − (xij ⊕ c)
∣∣

= 2

N

N−1∑
j=1

N−1∑
k=0

|j − k| = (N − 1)(2N − 1)/3.

Step 3. Now we prove that gi(0) = gi(1) = · · · = gi(N − 1). It suffices to show
that gi(a + 1) = gi(a) for any a = 0, . . . ,N − 2. Recall that gi(a) = d(x1, xi ⊕
a) + d(N − x1, xi ⊕ a) = ∑N−1

j=1 (|j − (xij ⊕ a)| + |N − j − (xij ⊕ a)|). Since

∣∣j − (
xij ⊕ (a + 1)

)∣∣ + ∣∣N − j − (
xij ⊕ (a + 1)

)∣∣

=

⎧⎪⎪⎨
⎪⎪⎩

∣∣j − (xij ⊕ a)
∣∣ + ∣∣N − j − (xij ⊕ a)

∣∣ for j ∈ S1 ∪ S2;∣∣j − (xij ⊕ a)
∣∣ + ∣∣N − j − (xij ⊕ a)

∣∣ + 2 for j ∈ S3;∣∣j − (xij ⊕ a)
∣∣ + ∣∣N − j − (xij ⊕ a)

∣∣ − 2 for j ∈ S4,
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where

S1 = {j : j ≤ xij ⊕ a < N − j},
S2 = {j : N − j ≤ xij ⊕ a < j},
S3 = {j : xij ⊕ a ≥ j, xij ⊕ a ≥ N − j},
S4 = {j : xij ⊕ a < j,xij ⊕ a < N − j},

we only need to show that #S3 = #S4. Note that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(i−1)j ⊕ a = xij ⊕ a − j

and x(i+1)j ⊕ a = xij ⊕ a + j for j ∈ S1;
x(i−1)j ⊕ a = xij ⊕ a − j + N

and x(i+1)j ⊕ a = xij ⊕ a + j − N for j ∈ S2;
x(i−1)j ⊕ a = xij ⊕ a − j

and x(i+1)j ⊕ a = xij ⊕ a + j − N for j ∈ S3;
x(i−1)j ⊕ a = xij ⊕ a − j + N

and x(i+1)j ⊕ a = xij ⊕ a + j for j ∈ S4.

Then

(A.2)
N−1∑
j=1

(
(x(i−1)j ⊕ a) + (x(i+1)j ⊕ a)

) = 2
N−1∑
j=1

(xij ⊕ a) − N(#S3 − #S4).

Because xi ⊕ a is a permutation of {0, . . . , a − 1, a + 1, . . . ,N − 1} for any i < N ,∑N−1
j=1 (x(i−1)j ⊕ a) = ∑N−1

j=1 (xij ⊕ a) = ∑N−1
j=1 (x(i+1)j ⊕ a). By (A.2), N(#S3 −

#S4) = 0 so #S3 = #S4. This completes the proof. �

PROOF OF THEOREM 1. For the first case, note that W(xi ⊕ b) is a permu-
tation of {0, . . . ,W(b) − 1,W(b) + 1, . . . ,N − 1}, and W(xN ⊕ b) is a constant
vector with each component equal to W(b), so diN(Eb) = dNi(Eb) = ∑N−1

j=0 |j −
W(b)| = (N2 − 1)/3 + f (b).

To prove the result for the second case, i = N − k, it suffices to prove the result
for the third case. This is because the total pairwise L1-distance between distinct
rows of W(Db) is t = (N − 1)

∑N−1
j1=0

∑N−1
j2=0 |j1 − j2| = N(N − 1)2(N + 1)/6.

Out of all the pairs of distinct rows, N − 1 pairs belong to the first case with a total
distance t1 = (N − 1)[(N2 − 1)/3 + f (b)], (N − 1)(N − 3)/2 pairs belong to the
third case with a total distance t2 = (N2 − 1)(N − 1)(N − 3)/6, and (N − 1)/2
pairs belong to the second case. By Lemma 3(i), di(N−i)(Eb) = d1(N−1)(Eb) for
any i. Therefore, di(N−i)(Eb) = (t − t1 − t2)/[(N − 1)/2] = (N2 − 1)/3 − 2f (b).

Now we prove the result for the last case where i �= N −k, i �= N , and k �= N . By
Lemmas 2 and 3(i), it suffices to consider d1i (Eb) = d(W(x1 ⊕ b),W(xi ⊕ b)) =
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d(w(x1 ⊕ b),w(xi ⊕ b)) for i = 2, . . . ,N − 2. Denote

B = (
B1|B2|B3|B4

)
=

(
w(x1 ⊕ b) w(x1 ⊕ b) 2N − w(x1 ⊕ b) 2N − w(x1 ⊕ b)

w(xi ⊕ b) 2N − w(xi ⊕ b) w(xi ⊕ b) 2N − w(xi ⊕ b)

)
,

then d1i (Eb) = d(B1). By column permutations, B can be rearranged as

C =
(

2(x1 ⊕ b) 2(x1 ⊕ b) 2N − 2(x1 ⊕ b) 2N − 2(x1 ⊕ b)

2(xi ⊕ b) 2N − 2(xi ⊕ b) 2(xi ⊕ b) 2N − 2(xi ⊕ b)

)
.

By Lemma 4, d(B) = d(C) = 4((2N2 + 1)/3 − |N − 2b|). Note that d(B1) =
d(B4) and d(B2) = d(B3). For B2, in both w(x1 ⊕ b) and w(xi ⊕ b), 0 and
w(b) appear once and all other even numbers smaller than N appear twice. Then
d(B2) = ∑N−1

j=1 (N −w(x1j ⊕b)−w(xij ⊕b)) = (N2 +1)−2|N −2b|. Therefore,

d1i (Eb) = d(B1) = (d(B) − 2d(B2))/2 = (N2 − 1)/3. �

PROOF OF THEOREM 2. If c2
0 + 2(c0 + 1)2 ≥ (N2 − 1)/4, then c0 ≥√

(N2 − 1)/12 − 2/9 − 2/3 and c2
0 ≥ (N2 − 1)/12 − (4/3)

√
(N2 − 1)/12. Hence,

d(Eb) = (N2 − 1)/4 + c2
0 ≥ (N2 − 1)/3 − (4/3)

√
(N2 − 1)/12. Similarly, if

c2
0 + 2(c0 + 1)2 < (N2 − 1)/4, c0 + 1 ≤

√
(N2 − 1)/12 − 2/9 + 1/3, and

(c0 + 1)2 ≤ (N2 − 1)/12 + (2/3)

√
(N2 − 1)/12. Then d(Eb) = (N2 − 1)/2 −

2(c0 + 1)2 ≥ (N2 − 1)/3 − (4/3)
√

(N2 − 1)/12. Therefore,

d(Eb) ≥ N2 − 1

3
− 4

3

√
N2 − 1

12
= N2 − 1

3
− 2

3

√
N2 − 1

3
.

By the definition in (3.2), deff(Eb) = d(Eb)/((N
2 − 1)/3) ≥ 1 − 2/

√
3(N2 − 1).

�

PROOF OF THEOREM 3. Let ei = (ei1, . . . , ei(N−1)) and ek = (ek1, . . .,
ek(N−1)) be two distinct rows of Eb for i, k = 1, . . . ,N − 1, and e∗

i = (e∗
i1, . . . ,

e∗
i(N−1)) and e∗

k = (e∗
k1, . . . , e

∗
k(N−1)) be the corresponding rows of E∗

b . For
j = 1, . . . ,N − 1, if eij > W(b) > ekj or ekj > W(b) > eij , |e∗

ij − e∗
kj | =

|eij − ekj | − 1; otherwise, |e∗
ij − e∗

kj | = |eij − ekj |. Since the number of j ’s
such that eij > W(b) > ekj [or ekj > W(b) > eij ] cannot exceed min{W(b),N −
1 − W(b)}, then d(E∗

b) ≥ d(Eb) − 2 min{W(b),N − 1 − W(b)}. For the b de-
fined in (3.1), min{W(b),N − 1 − W(b)} = (N − 1)/2 − c. Then d(E∗

b) ≥
d(Eb) − (N − 1) + 2c ≥ d(Eb) − (N − 1) + 2(

√
(N2 − 1)/12 − 1). By The-

orem 2, d(E∗
b) ≥ (N2 − 7)/3 +

√
(N2 − 1)/3/3 − (N − 1). When N ≥ 7, we
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have deff(E
∗
b) = d(E∗

b)/�N(N −1)/3� ≥ d(E∗
b)/(N(N −1)/3) ≥ 1+1/(

√
3N)−

3/N > 1 − 2.43/N . �

PROOF OF THEOREM 5. Let ρjk be the correlation between the j th and kth
columns of Eb. Denote the j th column of Db as z̃j ⊕ b for j = 1, . . . ,N − 1, then
z̃j ⊕ b = (xj ⊕ b, b)T. By Lemma 3(i), there exists a unique q ∈ {2, . . . ,N − 1}
such that ρjk = ρ1q . Thus,

(A.3) ρave(Eb) =
∑N−1

j=2 |ρ1j |
N − 2

,

where

ρ1j = cor
(
W(z̃1 ⊕ b),W(z̃j ⊕ b)

)

=
∑N

i=1(W(xi1 ⊕ b) − N−1
2 )(W(xij ⊕ b) − N−1

2 )

(N3 − N)/12
.

(A.4)

For x ∈ [0,N], the Fourier cosine expansion of x − N/2 is given by

(A.5) x − N

2
=

∞∑
u=1

au cos
(

uπx

N

)
,

with

au = 2

N

∫ N

0

(
x − N

2

)
cos

(
uπx

N

)
dx =

{
0 if u is even;

−4N/
(
u2π2)

if u is odd.

By (A.5), for any x + 0.5 ∈ [0,N],

x − N − 1

2
= (x + 0.5) − N

2
=

∞∑
u=1

au cos
(

uπ(x + 0.5)

N

)
.

Then the numerator of (A.4) is

N∑
i=1

(
W(xi1 ⊕ b) − N − 1

2

)(
W(xij ⊕ b) − N − 1

2

)

=
∞∑

u=1

∞∑
v=1

auavs(u, v) = 16N2

π4

∑
odd u

∑
odd v

1

u2v2 s(u, v),

(A.6)

where

s(u, v) =
N∑

i=1

cos
(

uπ(W(xi1 ⊕ b) + 0.5)

N

)
cos

(
vπ(W(xij ⊕ b) + 0.5)

N

)
.
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By (2.1), for any x = 0, . . . ,N − 1, cos(uπ(W(x) + 0.5)/N) = cos(uπ(2x +
0.5)/N). Then

s(u, v) =
N∑

i=1

cos
(

uπ(2xi1 + 2b + 0.5)

N

)
cos

(
vπ(2xij + 2b + 0.5)

N

)

= 1

2

N∑
i=1

cos
(

2π((jv + u)i + c1)

N

)

+ 1

2

N∑
i=1

cos
(

2π((jv − u)i + c2)

N

)
,

(A.7)

where c1 = (b + 0.25)(u + v) and c2 = (b + 0.25)(v − u). For positive odd
numbers u and v, let I1 = {(u, v) : u = jv or − jv, v �= 0 (mod N)} and I2 =
{(u, v) : u = 0 and v = 0 (mod N)}. For (u, v) ∈ I1, |s(u, v)| ≤ N/2 because only
one of the two items in (A.7) can be nonzero. For (u, v) ∈ I2, |s(u, v)| ≤ N ; for
(u, v) /∈ I1 ∪ I2, s(u, v) = 0. Then by (A.3), (A.4) and (A.6),

ρave(Eb) =
∑N−1

j=2 |∑N
i=1(W(xi1 ⊕ b) − N−1

2 )(W(xij ⊕ b) − N−1
2 )|

(N − 2)(N3 − N)/12

≤ 192N2

π4(N3 − N)(N − 2)

N−1∑
j=2

(∑
I1

N

2

1

u2v2 + ∑
I2

N
1

u2v2

)

= 192N2

π4(N2 − 1)(N − 2)

N−1∑
j=2

(∑
I1

1

2u2v2 + ∑
I2

1

u2v2

)
.

(A.8)

Since

N−1∑
j=2

(∑
I1

1

2u2v2 + ∑
I2

1

u2v2

)

≤ 1

2

∑
odd v

1

v2

(
2

∑
odd u

1

u2 −
∞∑

k=0

1

(v + 2kN)2 − 2
∑
odd k

1

k2N2

)

≤ ∑
odd v

1

v2

∑
odd u

1

u2 − 1

2

∑
odd v

1

v4 − 1

N2

∑
odd v

1

v2

∑
odd k

1

k2

= N2 − 1

N2

(
π4

82

)
− π4

192
,

where we used the fact that
∑

odd v 1/v2 = π2/8 and
∑

odd v 1/v4 = π4/96. Then
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by (A.8),

ρave(Eb) ≤ 1

N − 2

192N2

π4(N2 − 1)

(
N2 − 1

N2

(
π4

82

)
− π4

192

)

= 1

N − 2

(
3 − N2

N2 − 1

)
<

2

N − 2
. �

PROOF OF THEOREM 6. For any b = 0, . . . ,N − 1, let Eb = (eij ). Because∑N
i=1(eij −(N −1)/2)2 = N(N2 −1)/12 for any j = 1, . . . ,N −1, by Theorem 5,

we have

(A.9)
N−1∑
j=2

∣∣∣∣∣
N∑

i=1

(
ei1 − N − 1

2

)(
eij − N − 1

2

)∣∣∣∣∣ <
N(N2 − 1)

6
.

Let ρ∗
jk be the correlation between the j th and kth columns of E∗

b . Similar to (A.3),

(A.10) ρave
(
E∗

b

) =
∑N−1

j=2 |ρ∗
1j |

N − 2
.

Note that

(A.11) ρ∗
1j = 12C0

N(N − 1)(N − 2)

with

C0 = ∑
ei1<W(b)
eij<W(b)

(ei1 − μ)(eij − μ) + ∑
ei1>W(b)
eij<W(b)

(ei1 − 1 − μ)(eij − μ)

+ ∑
ei1<W(b)
eij>W(b)

(ei1 − μ)(eij − 1 − μ)

+ ∑
ei1>W(b)
eij>W(b)

(ei1 − 1 − μ)(eij − 1 − μ)

=
N∑

i=1

(
ei1 − N − 1

2

)(
eij − N − 1

2

)
+ C1 + C2,

where μ = (N − 2)/2,

C1 = 1

2

( ∑
ei1<W(b)

eij − ∑
ei1>W(b)

eij + ∑
eij<W(b)

ei1 − ∑
eij>W(b)

ei1

)

+ (N − 1)2

4
− (

W(b)
)2
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and

C2 = 1

4

( ∑
ei1<W(b)
eij<W(b)

1 + ∑
ei1>W(b)
eij>W(b)

1 − ∑
ei1>W(b)
eij<W(b)

1 − ∑
ei1<W(b)
eij>W(b)

1
)
.

It is easy to see that |C1| ≤ (N2 − 1)/4 and |C2| ≤ (N − 1)/4. Hence, by (A.9),
(A.10) and (A.11),

ρave
(
E∗

b

)
<

12

N(N − 1)(N − 2)2

×
(

N(N2 − 1)

6
+ (N − 2)(N2 − 1)

4
+ (N − 2)(N − 1)

4

)

<
5(N + 1)

(N − 2)2 . �

PROOF OF THEOREM 7. The proof is similar to that of Theorem 5. By (A.5),
for j = 1, . . . , (N − 1)/2,

N∑
i=1

(
w(xi1) − N

2

)(
w(xij ) − N

2

)
= 16N2

π4

∑
odd v

1

u2v2 s(u, v),

where

s(u, v) =
N∑

i=1

cos
(

uπw(xi1)

N

)
cos

(
vπw(xij )

N

)
.

Similar to (A.8), we can prove that

(N−1)/2∑
j=2

∣∣∣∣∣
N∑

i=1

(
w(xi1) − N

2

)(
w(xij ) − N

2

)∣∣∣∣∣ ≤ N3

24
.

Since

N−1∑
i=1

(
w(xi1) − N + 1

2

)(
w(xij ) − N + 1

2

)

=
N∑

i=1

(
w(xi1) − N

2

)(
w(xij ) − N

2

)

− (N − 1) + (N + 1)2 + 1

4
,
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then
(N−1)/2∑

j=2

∣∣∣∣∣
N−1∑
i=1

(
w(xi1) − N + 1

2

)(
w(xij ) − N + 1

2

)∣∣∣∣∣
≤ N3

24
+

(
N − 1

2
− 1

)(
(N + 1)2 + 1

4
− (N − 1)

)

= N3

6
− 5N2 − 12N + 18

8

≤ (N + 1)(N − 1)(N − 3)

6
.

Hence,

ρave(H) = ρave
(
w(A1)

)

=
∑(N−1)/2

j=2 |∑N−1
i=1 (w(xi1) − N+1

2 )(w(xij ) − N+1
2 )|

(m − 1)(N + 1)(N − 1)(N − 3)/12

≤ 2

m − 1
. �

PROOF OF THEOREM 8. To save space, we sketch only the main steps.
Step 1. For N = 2p, φ(N) = p − 1 and D = (xij ) with xij = i(2j − 1)

(mod N) for i = 1, . . . ,2p and j = 1, . . . , p − 1. With proper row and column
permutations, D is equivalent to

(A.12)
(

2C

2C + p

)
(mod N),

where C = (yij ) is an p × (p − 1) GLP design with yij = i · j (mod p) for i =
1, . . . , p and j = 1, . . . , p − 1. Then Eb = W(Db) is equivalent to

Ẽb =
(

W(2C ⊕ b)

W
(
2C ⊕ (b + p)

)) .

Step 2. Consider W(2C ⊕ b). If b is even, 2C ⊕ b = 2(C + b/2 (mod p)).
Then w(2C ⊕ b) = 2wp(C + b/2 (mod p)) where w is the modified Williams
transformation defined in (2.2) and wp is the modified transformation with N re-
placed by p. By Lemma 2 and Theorem 1, dik(w(2C ⊕ b)) = 2[dik(wp(C + b/2
(mod p)))] = 2(N2 − 1)/3 for i �= k, i �= p,k �= p, and i + k �= p. Following the
lines of Lemma 2 will result dik(W(2C ⊕ b)) = dik(w(2C ⊕ b)). Then

(A.13)
dik

(
W(2C ⊕ b)

) = (
N2 − 4

)
/6

for i �= k, i �= p,k �= p, and i + k �= p.

If b is odd, W(2C ⊕ b) = N − 1 − W(2C ⊕ (b + p)) and (A.13) also holds.
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Step 3. If b is even, the last row of W(2C ⊕ b) is (2b, . . . ,2b) and each other
row is a permutation of {0,3,4, . . . ,2(p − 1) − 1,2(p − 1)}\{2b}. Based on this
structure, we get

dip

(
W(2C ⊕ b)

) = N2

6
− N + 2

4
+ W(b)

2
+ g(b)

2
,(A.14)

di(p−i)

(
W(2C ⊕ b)

) = N2

6
+ N

2
− 1 − W(b) − g(b),(A.15)

where

g(b) =
(
W(b) − 1

2

(
1 + 1√

3

)
N

)(
W(b) − 1

2

(
1 − 1√

3

)
N

)
.

Similarly, if b is odd, (A.14) and (A.15) also hold.
Step 4. Because W(2C ⊕ b) = N − 1 − W(2C ⊕ (b + p)), W(2C ⊕ (b + p))

has the same distance structure as W(2C ⊕ b).
Step 5. By the structure of W(2C ⊕ (b + p)) and W(2C ⊕ b), by computation,

we can get

di(p+k)

(
Ẽ(b)

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

N2/4 − l1(b) for i = k �= p;
(N/2 − 1)l1(b) for i = k = p;
N2/6 − l1(b) + 1/3 for (i, k) ∈ I1;
N2/6 − (N − 2)/4 + l2(b)/2 − l1(b) for (i, k) ∈ I2;
−N2/12 + (N/2 − 1)l1(b) + N/2 − l2(b) for (i, k) ∈ I3,

(A.16)

where l1(b) = |N − 2W(b) − 1|, l2(b) = W(b) + g(b), I1 = {(i, k) : i �= p,k �=
p, i + k �= p}, I2 = {(i, k) : i �= p,k = p, or i = p,k �= p} and I3 = {(i, k) : i �=
p,k �= p, i + k = p}.

Step 6. For b = �N(1 + 1/
√

3)/4�, W(b) = 2b = �N(1 + 1/
√

3)/2� or �N(1 +
1/

√
3)/2� + 1, so −N/

√
3 ≤ g(b) ≤ 0. Then l1(b) = O(N) and l2(b) = O(N).

Since for any N × (N/2−1) LHD, dupper = (N +1)(N −2)/6, by (A.13)–(A.16),
it can be verified that deff(Eb) = deff(Ẽb) = 1 − O(1/N). �
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