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Abstract

Mixed-level fractional factorial designs are commonly used in industries but its aliasing relations have
not been studied in full rigor. These designs take the form of a product array. Aliasing patterns of mixed
level factorial designs, in the form of product arrays, are discussed here.
r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Two- and three-level factorial and fractional factorial designs are widely used in industrial
experimentations and are discussed in detail in design of experiments textbooks (Box et al., 1978;
Cochran and Cox, 1950). The literature on symmetric designs is already voluminous. For
example, the theory of regular fractions for symmetric factorials is given by Dey and Mukerjee
(1999). Wu and Hamada (2000) devote a full chapter in their applied design of experiment
textbook, on analysis techniques for mixed-level factorial plans. Although these are important
designs, their aliasing patterns have not been studied explicitly.
Mixed-levels designs typically occur when there are both qualitative and quantitative factors in

the experiment, and the qualitative factors have more than two levels and the quantitative factors
see front matter r 2005 Elsevier B.V. All rights reserved.

spl.2005.05.021

rch is supported by NSF grant DMS-0305996.

ress: amandal@stat.uga.edu.

www.elsevier.com/locate/stapro


ARTICLE IN PRESS

A. Mandal / Statistics & Probability Letters 75 (2005) 203–210204
have two levels. Consider an experiment by Hale-Bennett and Lin (1997) and reported in Wu and
Hamada (2000) that was performed to improve a painting process of charcoal grill parts. A
mixed-level 36-run design was used to study six factors: three of them ðA;B;CÞ were at two levels
and the other three ðD;E;FÞ were at three levels. It is a 23�1 � 33�1 design which consists of
4� 9 ¼ 36 runs and is a ‘‘product’’ of a 4-run 23�1 and a 9-run 33�1 design. Now it is not evident
that the factorial effect ABD2E is same as that of ABDE2. If all the factors of a factorial effect are
at two-levels, AB for example, a modulo 2 operation should be performed. Similarly, modulo 3
operations are used when all of them are have three level, as in the case for DE2. But what about
ABDE2? It is not obvious whether modulo 2 or modulo 3 operations should be done in calculating
the aliasing relationship of a mixed level factorial effect. In fact, there is no simple answer to this
question, as will be clear from the discussions of Section 2.
In Section 2, we develop the general theory for sn1

1 � sn2
2 factorial designs and illustrate it in the

context of a 23 � 33 design. In Section 3, we discuss sn1�k1

1 � sn2�k2

2 factorial designs and discuss the
Paint experiment as an example of 23�1 � 33�1 design. The results obtained here pertain to
product arrays only.
2. sn1
1 � sn2

2 factorial designs

An experiment involving n1 factors each at s1 levels and n2 factors each at s2 levels is an sn1
1 � sn2

2

asymmetrical factorial experiment. Suppose the levels of the si-level factor are coded as si elements
of Galois field GF ðsiÞ where si is a prime or prime power. With levels as 0; 1; . . . ; si � 1, a typical
treatment combination, i.e., a combination of the levels of the n1 þ n2 ¼ n factors will be
represented by an ordered n-tuple i1 . . . in1 j1 . . . jn2

where ik 2 f0; 1; . . . ; s1 � 1g; 1pkpn1 and
jk 2 f0; 1; . . . ; s2 � 1g; 1pkpn2. Clearly, altogether there are sn1

1 sn2
2 treatment combinations.

In what follows, ða; bÞ and ða0; b0
Þ
0 will be used interchangeably for the sake of notational

simplicity where a and b are column vectors of dimension n1 and n2, respectively.
A treatment contrast L is said to belong to the pencil ða; bÞ if it is of the form

L ¼
Xs1�1

i¼0

Xs2�1

j¼0

lði; jÞ
X

ðx;yÞ2Vi;jða;bÞ

tðx; yÞ

8<
:

9=
;, (1)

where Vi;jða; bÞ ¼ fðx; yÞ ¼ ðx1; . . . ;xn1 ; y1; . . . ; yn2
; Þ0 : a0x ¼ ai; b

0y ¼ bjg, 0pips1 � 1,
0pjps2 � 1; the effect of a treatment combination represented by ðx; yÞ will be denoted by
tðx; yÞ and lði; jÞ’s are real numbers, not all zeros, satisfying

Xs1�1

i¼0

lði; jÞ ¼
Xs2�1

j¼0

lði; jÞ ¼ 0. (2)

In other words, a treatment contrast L belongs to ða; bÞ if for all ðx; yÞ belonging to the same
Vi;jða; bÞ, the coefficient of tðx; yÞ in L is also the same.
In general, consider any two pencils ða; bÞ and ða�; b�Þ. These two pencils are distinct if a is

distinct from a� and b is distinct from b�, in the sense of symmetric factorial designs. Recall that,
in symmetric fractions, pencils with proportional entries are considered as identical.
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For a sn1
1 � sn2

2 product array, for the sni

i factorial part, there are ðsni

i � 1Þ=ðsi � 1Þ distinct pencils
which involve only si-level factors. The distinct pencils involving both s1- and s2-level factors are
given by the products of those two sets of pencils involving only s1- or only s2-level factors. A
simple counting of degrees of freedom justifies this formulation. Recall that the total number of
factorial effects involving only si-level factors is ðsni

i � 1Þ=ðsi � 1Þ, each with ðsi � 1Þ d.f.. The
interactions involving both s1- and s2-level factors are given by products of the other two sets of
pencils, i.e., there are ðsn1

1 � 1Þ=ðs1 � 1Þ � ðsn2
2 � 1Þ=ðs2 � 2Þ pencils of this kind, each with ðs1 �

1Þðs2 � 1Þ d.f.. Thus, the above description accounts for

sn1
1 � 1

s1 � 1
ðs1 � 1Þ þ

sn2
2 � 1

s2 � 1
ðs2 � 1Þ þ

sn1
1 � 1

s1 � 1

sn2
2 � 1

s2 � 1
ðs1 � 1Þðs2 � 1Þ ¼ sn1

1 sn2
2 � 1

d.f. which agrees with the fact that there are sn1
1 sn2

2 in all.
Following Bose (1947), Dey and Mukerjee (1999) gave the definition for treatment contrasts

belonging to factorial effects for the general case of an s1 � � � � � sn factorials. The next two results
link pencils with factorial effects.

Result 2.1. (a) Treatment contrasts belonging to distinct pencils are orthogonal to each other. (b) Let

ða; bÞ be a pencil such that aia0 if i 2 fi1; . . . ; igg, and ¼ 0 otherwise, bja0 if j 2 fi1; . . . ; ihg,
and ¼ 0 otherwise, where 1pi1o � � �oigpn1, 1pj1o � � �oihpn2 and 1pgpn1, 1phpn2. Then

any treatment contrast belonging to ða; bÞ also belongs to the factorial effect F i1 . . .Fig
F 0

j1
. . .F 0

jh
.

Example. Let us consider the 23 � 33 full factorial design with two-level factors A, B, C and three-
level factors D, E, F. The levels of A, B, C are denoted by 0 and 1, and those of D, E, F are
denoted by 0, 1 and 2. Then a typical treatment combination, i.e., the combination of the levels of
six factors will be represented by x ¼ ða; b; c; d; e; f Þ, where a; b; c 2 f0; 1g and d; e; f 2 f0; 1; 2g. For
example, the factorial effect ABDE2 is denoted by ða; b; c; d; e; f Þ  ð1; 1; 0; 1; 2; 0Þ. Clearly there
are 23 � 33 ¼ 216 possible treatment combinations.

The pencils involving only the two-level factors or only the three-level factors can be described
as usual. Thus the pencil AB is given by the contrasts between the two sets of treatment
combinations for which a þ b ¼ 0 or 1mod2. More explicitly, these two sets are fx : x ¼

ða; b; c; d; e; f Þ; a þ b ¼ 0mod2g and fx : x ¼ ða; b; c; d; e; f Þ; a þ b ¼ 1mod2g. Clearly, there are
108 treatment combinations in each of these sets, e.g., the first set consists of the treatment
combinations ð0; 0; c; d; e; f Þ and ð1; 1; c; d; e; f Þ, where c 2 f0; 1g and d; e; f 2 f0; 1; 2g, leading to
54+54 ¼ 108 treatment combinations in all. In a similar manner, the pencil DEF2, involving
exclusively the three-level factors, is given by contrasts among three sets of treatment
combinations for which d þ e þ 2f ¼ 0; 1 or 2 mod 3. As before, there are 8� 9 ¼ 72 treatment
combinations in each of these sets. It is clear that any pencil involving A, B, C will have 1 d.f.
while any pencil involving only D, E, F will have 2 d.f.
Now consider the interactions that involve both two- and three-level factors. Recall that there

are seven pencils A, B, C, AB, AC, BC and ABC involving only the two-level factors. Similarly
there are 13 distinct pencils D, E, F, DE, DE2; . . . ;DE2F2 involving only the three-level factors.
The pencils representing interactions that involve both two- and three-level factors are given by
the products of these two sets of pencils, i.e., there are 7� 13 ¼ 91 pencils of this kind, namely,
AD, AE, . . ., ADE2F2, BD, BE; . . . ;BDE2F2; . . . ;ABCD, ABCE; . . . ;ABCDE2F2. Each of these
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91 pencils carries 2 d.f.. Clearly, for example, AD and AD2 mean the same thing in this
formulation (so we write only AD). Similarly ABDE2 ¼ ABD2E ¼ ABðDE2Þ

2. Taking care of the
seven pencils involving only the two-level factors and the 13 pencils involving only the three-level
factors, the above description accounts for 7� 1þ 13� 2þ 91� 2 ¼ 215 d.f., which agrees with
the fact that there are 23 � 33 ¼ 216 treatment combinations in all.
How does one actually define contrasts belonging to pencils as considered in the last paragraph?

Consider, for example, the pencil ABDE2. For i ¼ 0; 1 and j ¼ 0; 1; 2, define
Vi;j ¼ Vi;jð110; 120Þ ¼ fx : x ¼ ða; b; c; d; e; f Þ; a þ b ¼ imod2; d þ 2e ¼ j mod3g. Note that a þ

b ¼ imod2 corresponds to AB, and d þ 2e ¼ j mod3 corresponds to DE2. Clearly, each of the six
sets Vi;j has cardinality 4� 9 ¼ 36. Let Tði; jÞ be the total of the treatment effects for the
treatment combinations in Vi;j. Then a typical contrast belonging to the pencil ABDE2 will be of
the form

P
i

P
j lði; jÞTði; jÞ, where the scalars lði; jÞ, not all zeros, must satisfy lð0; jÞ þ lð1; jÞ ¼ 0 for

every j and lði; 0Þ þ lði; 1Þ þ lði; 2Þ ¼ 0 for every i. Thus there will be two such independent
treatment contrasts, namely, L1 ¼ Tð0; 0Þ � Tð1; 0Þ � Tð0; 2Þ þ Tð1; 2Þ and L2 ¼ Tð0; 0Þ�
Tð1; 0Þ � 2Tð0; 1Þ þ 2Tð1; 1Þ þ Tð0; 2Þ � Tð1; 2Þ.
3. sn1�k1
1 � sn2�k2

2 fractional factorial designs

A regular fraction of an sn symmetrical factorial, where s ðX2Þ is a prime or prime power, is
specified by any k ð1pkonÞ linearly independent pencils, say bð1Þ; . . . ; bðkÞ, and consists of
treatment combinations z satisfying Bz ¼ c, where B is a k � n matrix with rows ðbðiÞÞ0; 1pipk,
and c is a fixed k � 1 vector over GF ðsÞ. The specific choice of c is inconsequential. Hence, without
loss of generality, it is assumed that c ¼ 0, the k � 1 null vector over GF ðsÞ. Then a regular
fractional factorial plan is given by, say, dðBÞ ¼ fz : Bz ¼ 0g.
In the same line, for a sn1

1 � sn2
2 design, a regular fractional factorial plan, sn1�k1

1 � sn2�k2

2 is given
by dðBÞ ¼ fz : Bz ¼ 0g ¼ fðx; yÞ : B1x ¼ 0;B2y ¼ 0g where

B ¼
B1 0

0 B2

" #
.

Note that dðBiÞ gives a regular sni�ki

i fractional factorial plan. For a symmetric fractional factorial,
a pencil is called a defining pencil if it belongs to the row space of B. Equivalently, a defining
pencil of a sn1�k1

1 � sn2�k2

2 design is of the form ðb1; b2Þ where bi is a defining pencil of sni�ki

i .
Consider now any defining pencil ða; bÞ. Then a0 ¼ l0B1 and b0

¼ x0B2 for suitable l and x with
entries from GF ðs1Þ and GF ðs2Þ, respectively. Now it is not difficult to see that dðBÞ � V0;0ða; bÞ.
Recalling the definition of a treatment contrast, the following result is evident.

Result 3.1. No treatment contrast belonging to any defining pencil is estimable in dðBÞ.

Two pencils are aliases of each other if their difference belongs to the row space of B. Let C be
the set of distinct pencils which are not defining pencils. Then we get the following Lemma.

Lemma 3.1. Let the pencils ða; bÞ; ða�; b�
Þ 2 C be aliases of each other and L and L� be the treatment

contrasts belonging to ða; bÞ and ða�; b�Þ, respectively. Then the parts of L and L�, which involve only

the treatment combinations included in dðBÞ, are identical.
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Let LðBÞ be the part of L that involves only the treatment combination involved in the fraction
dðBÞ and is often called the relevant part of L. Then the relevant parts of corresponding contrasts
belonging to pencils that are aliases of each other, are identical. Let Vi;jðða; bÞ;BÞ ¼ Vi;jða; bÞ\
dðBÞ. Then for any pencil ða; bÞ 2 C and for its alias set A, we get the following theorem.

Theorem 3.1. For ða; bÞ 2 A, consider the corresponding treatment contrast given in Eq. (1). Then

X
ða;bÞ

Xs1�1

i¼0

Xs2�1

j¼0

lði; jÞ
X

ðx;yÞ2Vi;jða;bÞ

tðx; yÞ

8<
:

9=
;

2
4

3
5 ¼ sk1

1 sk2

2

Xs1�1

i¼0

Xs2�1

j¼0

lði; jÞ
X

ðx;yÞ2Vi;jðða;bÞ;BÞ

tðx; yÞ

8<
:

9=
;, (3)

where
P

ða;bÞ denote the sum over all ða; bÞ 2 A.

To prove this theorem, we need the following Lemma.

Lemma 3.2. Consider any pencil ða; bÞ 2 C and let A denote its alias set. Let

fi;jðða; bÞðx; yÞÞ ¼
1 if a0x ¼ ai; b

0y ¼ bj;

0 otherwise:

(
(4)

Then for every treatment combination ðx; yÞ and every ði; jÞ, 0pips1 � 1; 0pjps2 � 1,

X
ða;bÞ

fi;jðða; bÞ; ðx; yÞÞ ¼

sk1

1 sk2

2 if ðx; yÞ 2 Vi;jðða; bÞ;BÞ;

0 if ðx; yÞ 2 dðBÞ � Vi;jðða; bÞ;BÞ;

sk1�1
1 sk2�1

2 if ðx; yÞedðBÞ:

8>><
>>: (5)

Proof. A pencil in A is of the form ðp; qÞ where p ¼ a þ B0
1l and q ¼ b þ B0

2x where l ¼

ðl1; l2; . . . ; lk1
Þ
0; li 2 GF ðsiÞ and x ¼ ðx1; x2; . . . ; xk2

Þ
0; xj 2 GF ðs2Þ. For fixed ðx; yÞ and ði; jÞ, we getP

ða;bÞfi;jðða; bÞ; ðx; yÞÞ ¼ #fl ¼ ðl1; . . . ; lk1
Þ
0 : x þ l0B1x ¼ ai; x ¼ ðx1; . . . ; xk2

Þ
0 : b0y þ x0B2y ¼

bj; li 2 GF ðsiÞ; xj 2 GF ðs2Þ 8i; jg where # denotes the cardinality of a set.
(i)
 If ðx; yÞ 2 Vi;jða; bÞ then a0x þ l0B1x ¼ ai for all k1 � 1 vectors over GF ðs1Þ and b0y þ x0B2y ¼

bj for all k2 � 1 vectors over GF ðs2Þ. Hence the RHS of (5) is sk1

1 sk2

2 .

(ii)
 If ðx; yÞ 2 dðBÞ � Vi;jðða; bÞ;BÞ, then B1x ¼ 0, B2 ¼ 0. Also, a0xaai and/or b0yabj. ThenP

ða;bÞfi;jðða; bÞ; ðx; yÞÞ ¼ #fðl; xÞ : a0x ¼ ai; b
0y ¼ bjg ¼ 0.
(iii)
 If ðx; yÞedðBÞ, then B1xa0, B2ya0. Trivially a0x þ l0B1x ¼ ai iff ðB1xÞ
0l ¼ ai � a0x. Since

B1xa0, exactly as in the proof of Lemma 2.1, one can freely choose ðl2; . . . ; lk1�1Þ in sk1�1
1

ways to satisfy the above equation. Similarly b0y þ x0B2y ¼ bj gives sk2�1
2 choices of xl’s.

Combining the values of lk’s and xl ’s, the result follows.
Proof of Theorem 3.1. Let O denote the set of all sn1
1 sn2

2 treatment combinations. Using Lemma 3.2
and the indicator variable fi;jðða; bÞðx; yÞÞ in (4),

X
ða;bÞ

Xs1�1

i¼0

Xs2�1

j¼0

lði; jÞ
X

ðx;yÞ2V i;jða;bÞ

tðx; yÞ

8<
:

9=
;

2
4

3
5
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¼
X
ða;bÞ

Xs1�1

i¼0

Xs2�1

j¼0

lði; jÞ
X

ðx;yÞ2O

fi;jðða; bÞðx; yÞÞtðx; yÞ

( )" #

¼
Xs1�1

i¼0

Xs2�1

j¼0

lði; jÞ
X

ðx;yÞ2O

X
ða;bÞ

fi;jðða; bÞðx; yÞÞ

" #
tðx; yÞ

( )

¼ sk1

1 sk2

2

Xs1�1

i¼0

Xs2�1

j¼0

lði; jÞ
X

ðx;yÞ2Vi;jðða;bÞ;BÞ

tðx; yÞ

8<
:

9=
;,

since
P

lði; jÞ ¼ 0.

The RHS of (3) is a contrast involving only the treatment combinations included in dðBÞ.
Therefore the RHS and hence the LHS of (3) will be estimable using the plan dðBÞ. In other
words, while pencils belonging to the same alias set, are confounded with one another (Lemma
A.3), the sum of corresponding contrasts, belonging to such pencils is estimable in dðBÞ. Thus any
treatment contrast belonging to a pencil ða; bÞ which is not a defining pencil is estimable in dðBÞ if
and only if corresponding contrasts belonging to all other pencils that are aliased with ða; bÞ are
ignorable.
We say that a pencil is estimable in dðBÞ if so is every treatment contrast belonging to it.

Similarly, if every treatment contrast belonging to a pencil is ignorable, then the pencil itself is
called ignorable. Hence the following result is immediate.

Result 3.2. A pencil b, which is not a defining pencil, is estimable in dðBÞ if and only if all other
pencils that are aliased with b are ignorable.

Example. Now consider the fractional factorial design used for the Paint experiment. This kind of
fraction treats the two- and three-level factors separately, leading to a product array.

The defining relation of the 23�1 � 33�1 design can be obtained from those of its two component
designs: I ¼ ABC and I ¼ DEF2. So we decide to include the treatment combinations x ¼

ða; b; c; d; e; f Þ satisfying a þ b þ c ¼ 0mod2 and d þ e þ 2f ¼ 0mod3. There are four such
choices of ða; b; cÞ and nine such choices of ðd; e; f Þ. Combining these, we will have 4� 9 ¼ 36
treatment combinations in our plan which will be in the from of product array. The alias sets will
again be of three types:

Type I (involving only two-level factors arising from I ¼ ABC): These are A ¼ BC, B ¼ AC,
C ¼ AB, each carrying 1 d.f.

Type II (involving only three-level factors arising from I ¼ DEF2): there will be four such alias
sets, each carrying 2 d.f. these are D ¼ DE2F ¼ EF 2; E ¼ DF 2 ¼ DE2F2; F ¼ DE ¼ DEF and
DE2 ¼ DF ¼ EF .

Type III (involving the ‘‘mixed’’ pencils discussed earlier): These are obtained by combining
each type I alias set with each type II alias set, e.g., a typical alias set of type III will be
AD ¼ ADE2F ¼ AEF2 ¼ BCD ¼ BCDE2 ¼ BCEF2. There will be 3� 4 ¼ 12 such alias sets
each carrying 2 d.f.
For any pencil in a type III alias set, it is not hard to see that each set Vi;j corresponding to that

pencil will contain six of the treatment combinations included in our fraction. To see this, consider
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the pencil BCDE2F . A treatment combination x ¼ ða; b; c; d; e; f Þ in our fraction will then belong
to the corresponding Vi;j if it satisfies b þ c ¼ imod2 and d þ 2e þ f ¼ j mod3, in addition to
satisfying a þ b þ c ¼ 0mod2 and d þ e þ 2f ¼ 0mod3 needed for inclusion in the fraction. Now
the first and third of the equations just mentioned yield two solutions for ða; b; cÞ while the second
and fourth of these equations yield three solutions for ðd; e; f Þ. Combining these, we get six
solutions altogether.
4. Summary

The designs discussed here are called product arrays. These are quite common in robust
parameter designs and are named cross arrays (inner-outer array in Taguchi’s terminology). Here
only sn1

1 � sn2
2 factorials are discussed, although with heavier notations, and without any significant

conceptual change, it is possible to obtain general results for sn1
1 � sn2

2 � � � � snm
m factorials.
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Appendix A

The following two lemmas are immediate.

Lemma A.1. Let ða; bÞ ¼ ða1; . . . ; an1 ; b1; . . . ; bn2Þ
0 be any fixed nonnull vector where ai 2 GF ðs1Þ and

bj 2 GF ðs2Þ. Then each of the sets

Vi;jða; bÞ ¼ fðx; yÞ ¼ ðx1; . . . ; xn1 ; y1; . . . ; yn2
; Þ0 : a0x ¼ ai; b

0y ¼ bjg (A.1)

0pips1 � 1, 0pjps2 � 1 has cardinality sn1�1
1 sn2�1

2 .

Lemma A.2. If (að1Þ; bð1Þ
Þ and ðað2Þ; bð2Þ

Þ are distinct pencils, then for every ði; jÞ; ði0; j0Þ,
ð0pi; i0ps1 � 1; 0pj; j0ps2 � 1Þ, the set Vi;jða

ð1Þ; bð1Þ
Þ \ Vi0;j0 ða

ð2Þ; bð2ÞÞ has cardinality sn1�2
1 sn2�2

2 .

Proof of Result 2.1. (a) Let L and L� be the treatment contrasts belonging to ða; bÞ and ða�; b�Þ,
respectively (Refer Eq. (1)). Consider the scalar product S of the coefficient vectors of L and L�.
Observe that, for any ði; jÞ and ðk; lÞ, if ðx; yÞ 2 Vi;jða; bÞ \ Vi;jða

�; b�Þ, then the contribution of
tðx; yÞ to S equals lði; jÞl�ðk; lÞ. Hence S equals

PP
lði; jÞl�ðk; lÞ#fVi;jða; bÞ \ Vk;lða

�; b�
Þg which is

zero by Lemma A.2.

Proof of Result 2.1. (b) Without loss of generality, let i1 ¼ 1; . . . ; ig ¼ g and j1 ¼ 1; . . . ; jh ¼ h.
Then a1; . . . ; ag are nonzero while agþ1 ¼ � � � ¼ an1 ¼ 0 and b1; . . . ; bh are nonzero while
bhþ1 ¼ � � � ¼ bn2 ¼ 0, so that Vi;jða; bÞ ¼ fðx; yÞ :

Pg
k¼1akxk ¼ ai;

Ph
l¼1blyl ¼ bjg, 0pips1 � 1

and 0pjps2 � 1. Recalling the definition of a treatment contrast L in Eqs. (1) and (2),, it is
easy to see that for and ðx; yÞ, the coefficient of tðx; yÞ in L depends on ðx; yÞ only through
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x1; . . . ;xg and y1; . . . ; yh. Writing lðx1; . . . ; xg; y1; . . . ; yhÞ for the coefficient of tðx; yÞ in L, one gets
lðx1; . . . ;xg; y1; . . . ; yhÞ ¼ lði; jÞ, if for 0pips1 � 1 and 0pjps2 � 1,

Xg

k¼1

akxk ¼ ai;
Xh

l¼1

blyl ¼ bj. (A.2)

Now, as a1a0, the quantity
Pg

k¼1akxk equals each of a0; a1; . . . ; as1�1 once as x1 assumes all
possible values over GF ðs1Þ, each exactly once, for any fixed x2; . . . ; xg; y1; . . . ; yh. Hence by (A.2),
we get

P
x12GF ðs1Þ

lðx1; . . . ; xg; y1; . . . ; yhÞ ¼ 0, for any fixed x2; . . . ;xg; y1; . . . ; yh. Similar argu-
ments for other xk and yl’s complete the proof. &

Proof of Lemma 3.1. It is enough to show that Vi;jðða; bÞ;BÞ ¼ Vi;jðða
�; b�Þ;BÞ 8i; j: Since ða; bÞ and

ða�; b�Þ are aliases of each other, we have a � a� ¼ B0
1l and b � b� ¼ B0

2x for suitable l 2 GF ðs1Þ
and x 2 GF ðs2Þ. Now,

Vi;jðða; bÞ;BÞ ¼ fðx; yÞ : a0x ¼ ai; b
0y ¼ bj;B1x ¼ 0;B2y ¼ 0g

¼ fðx; yÞ : ða� þ B0
1lÞ

0x ¼ ai; ðb
�
þ B0

2xÞ
0y ¼ bj;B1x ¼ 0;B2y ¼ 0g

¼ fðx; yÞ : a�0x þ l0B1x ¼ ai; b
�0y þ x0B2y ¼ bj;B1x ¼ 0;B2y ¼ 0g

¼ fðx; yÞ : a�0x ¼ ai; b
�0y ¼ bj;B1x ¼ 0;B2y ¼ 0g

¼ Vi;jðða
�; b�

Þ;BÞ.
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