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To search for an optimum in a large search space, Wu, Mao, and Ma suggested the sequential elimination
of levels (SELs)-method to find an optimal setting. Genetic algorithms (GAs) can be used to improve on
this method. To make the search procedure more efficient, new ideas of forbidden array and weighted
mutation are introduced. Relaxing the condition of orthogonality, GAs are able to accommodate a variety
of design points, which allows more flexibility and enhances the likelihood of getting the best setting in
fewer runs, particularly in the presence of interactions. The search procedure is enriched by a Bayesian
method for identifying the important main effects and two-factor interactions. Illustration is given with
the optimization of three functions, one of which is from Shekel’s family. A real example on compound
optimization is also given.
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1. INTRODUCTION

In many scientific problems, the goal is to select an optimal
candidate from a large pool of potential candidates. Genetic
algorithms (GAs) are a popular optimization technique when
searching for global optimums in a large candidate or design
space. A modification of GAs, called sequential elimination of
level combinations (SELC), is proposed in this article and out-
performs classical GAs in several practical situations. Here we
present two scenarios in which the SELC method can be use-
ful. The first scenario is in the context of computer experiments,
and the second arises in pharmaceutical industries.

In the last 15 years, many phenomena that could be studied
only using physical experiments can now be studied by com-
puter experiments. In a computer experiment, a deterministic
output, y(x), is computed for each set of input variables, x, us-
ing numerical methods implemented by (complex) computer
codes (Santner, Williams, and Notz 2003). In such cases, the
complex function can be thought of as a “black box,” and
the proposed SELC method can be used to obtain the optimal
settings efficiently. In Section 5 we illustrate how the SELC
method can be efficiently used for a “black box”–type problem.

The SELC method also has potential applications in the
pharmaceutical industry. Over the past 30 years, technologies
have been developed to explore and synthesize vast numbers
of chemical entities. This technology, known as combinato-
rial chemistry, has been widely applied in the pharmaceuti-
cal industry and is gaining interest in other areas of chemical
manufacturing (Leach and Gillet 2003; Gasteiger and Engel

2003). In general, combinatorial chemistry identifies molecules
that can be easily joined together and uses robotics to physi-
cally make each molecular combination. Depending on the ini-
tial number of molecules, the number of combinations can be
extremely large. For example, consider a core molecule onto
which various reagents can be theoretically added to three lo-
cations. If 100 reagents can be added at each location on the
core, then 1 million products potentially can be synthesized. In
the pharmaceutical industry, combinatorial chemistry has been
used to enhance the diversity of compound libraries, to ex-
plore specific regions of chemical space (i.e., focused library
design), and to optimize one or more pharmaceutical end-
points such as target efficacy or ADMET (absorption, distri-
bution, metabolism, excretion, toxicology) properties (Rouhi
2003). Although it is theoretically possible to make a large
number of chemical combinations, it generally is not possi-
ble to follow up on each newly synthesized entity. Instead of
synthesizing all possible molecular combinations, combinato-
rial libraries are created computationally and evaluated using
structure-based models. (For this purpose, specialized software
uses “black box”–type functions.) In addition, chemists look
for reagent combinations known to produce undesirable com-
pounds and attempt to avoid these combinations during synthe-
sis. Using these constraints, a subset of promising reagents is
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selected to generate a combinatorial library. By construction,
the SELC is a natural fit for searching for optimal molecules in
combinatorial chemistry.

These real-life scenarios can be thought of as large-dimen-
sional design of experiment problems where the challenge is
to identify the optimal design settings. Statistical design and
analysis of experiments is an effective and commonly used tool
in scientific and engineering investigation aimed at understand-
ing and/or improving a system. Identifying important factors
and choosing factor levels are among the first and most fun-
damental issues facing an experimenter. But when confronted
with a large number of important factors, designing an ex-
periment can be difficult. Classical experimental design re-
lies heavily on algebraic properties, such as orthogonality. But
orthogonality does not allow the flexibility to accommodate all
kinds of promising follow-up runs, which in turn makes finding
suitable designs for large-scale problems difficult, particularly
when the factors have more than two levels.

The use of high-fidelity computer simulations of physical
phenomena (Bates, Buke, Riccomagno, and Wynn 1996) has
stimulated new research into ways in which experimental de-
sign can be applied to such problems. One technique, motivated
by design of experiments, was introduced by Wu, Mao, and Ma
(1990) (hereafter WMM) and called sequential elimination of
levels (SEL). The idea of SEL is opposite to that of the “greedy
algorithm”; instead of focusing on factor levels that improve the
response, SEL focuses on those levels that worsen the response.
Based on this idea, SEL eliminates one level of each factor
in each sequence of the experiment. But this kind of marginal
analysis does not perform well in the presence of interactions,
which is generally the case for high-dimensional response sur-
faces. In this article we extend the idea of SEL to accommodate
situations in which important interactions are present. But to
make this accommodation, we must abandon follow-up designs
that are orthogonal, and instead use a modified version of ge-
netic algorithms (GAs) to determine subsequent design points.

GAs most often have been viewed from a biological perspec-
tive. The metaphors of natural selection, cross-breeding, and
mutation have been helpful in providing a framework to ex-
plain how and why GAs work. Thus it makes sense that most
practical applications of GAs are rooted in the context of opti-
mization. In an attempt to understand how GAs function as opti-
mizers, Reeves and Wright (1999) considered GAs as a form of
sequential experimental design. Recently, GAs have been used
quite successfully in solving statistical problems, particularly
for finding near-optimal designs (Hamada, Martz, Reese, and
Wilson 2001; Heredia-Langner, Carlyle, Montgomery, Borror,
and Runger 2003; Heredia-Langner, Montgomery, Carlyle, and
Borror 2004).

The article is organized as follows. In Section 2 we review
the idea of SEL and classical GAs. We propose new version
of SEL, called SELC, in Section 3. (The Bayesian model se-
lection, which can be used in this process, is discussed in the
App.) We discuss the behavior of the SELC algorithm in Sec-
tion 4. In Section 5 we apply the proposed algorithm to three
functions, including one from Shekel’s family, and investigate
the performance of this search methodology via simulations. In
Section 6 we use SELC to identify potentially good compounds
for synthesization in a pharmaceutical industry. We give some
concluding remarks in Section 7.

2. REVIEW: SEQUENTIAL ELIMINATION OF LEVELS
AND GENETIC ALGORITHMS

2.1 Sequential Elimination of Levels

WMM proposed their search method, based on orthogonal
arrays, as follows:

1. Start with an appropriate orthogonal array.
2. For each factor, eliminate those level(s) with the worst

mean value(s) of the performance measure computed
from the current array.

3. Choose an orthogonal array (typically of a smaller size)
for the remaining levels, and replace the array in step 1
with the new array.

4. Conduct another experiment on the new array.
5. Repeat steps 2–4 if necessary.

In step 1, if the mean is replaced by another descriptive statis-
tic z (e.g., minimum), then the method is called SEL(z).

The main drawback of SEL is that its method of search is
too restrictive for many optimization problems. First, for ex-
periments that contain important interactions, the SEL method
is not optimal, because it eliminates individual levels of each
factor without considering interactions. Hence SEL can blindly
eliminate a factor level that is required for the optimal run of the
experiment. Second, SEL requires that subsequent experiments
follow an orthogonal array. As mentioned previously, our mod-
ification of the SEL will prevent it from using an orthogonal
array. In addition, orthogonal arrays are not flexible enough to
handle complex response surfaces. To overcome this problem,
we have developed a modified GA to determine subsequent de-
sign points.

2.2 Genetic Algorithms

Before describing the novel approach to improve SEL, we
briefly review GAs (Holland 1975). GAs are stochastic opti-
mization tools that work on “Darwinian” models of population
biology and are capable of obtaining near-optimal solutions for
multivariate functions without the usual mathematical require-
ments of strict continuity, differentiability, convexity, or other
properties. The algorithm attempts to mimic the natural evolu-
tion of a population by allowing solutions to reproduce, creat-
ing new solutions, and to compete for survival. The idea behind
GAs is to get “better solutions” using “good solutions”; the al-
gorithm process is as follows:

1. Solution representation. For problems that require real
number solutions, a simple binary representation is used
where unique binary integers are mapped onto some range
of the real line. Each bit is called a gene, and this binary
representation is called a chromosome.

Once a representation is chosen, the GA proceeds as
follows. A large initial population of random candidate
solutions is generated; these are then continually trans-
formed following steps 2 and 3.

2. Select the best and eliminate the worst solution on the ba-
sis of a fitness criterion (e.g., the higher, the better for a
maximization problem), to generate the next population
of candidate solutions.
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3. Reproduce to transform the population into another
set of solutions by applying the genetic operations of
“crossover” and “mutation”:
a. Crossover. A pair of binary integers (chromosomes)

are split at a random position, and the head of one is
combined with the tail of the other and vice versa.

b. Mutation. The state (0 or 1) of a randomly chosen bit
is changed. This helps avoid the search being trapped
into local optima.

4. Repeat steps 2 and 3 until some convergence criterion is
met or some fixed number of generations has passed.

This algorithm was shown to converge by Holland (1992),
who first proposed this procedure in its most abstract form and
discussed it in relation to adaptive and nonlinear systems.

3. SEQUENTIAL ELIMINATION OF
LEVEL COMBINATIONS

The main drawback of SEL is that its search is too restric-
tive. This method eliminates a level on the basis of marginal
means, which can be affected by the presence of interactions.
To overcome this drawback, we propose eliminating level com-
binations instead of just a single level. This modification is ca-
pable of capturing important interactions and provides more
flexibility in the choice of follow-up design points. Our mod-
ification of SEL, sequential elimination of level combinations
(SELC), incorporates the fundamentally new ideas of the for-
bidden array and weighted mutation. In Section 4 we describe
how these two novel concepts, motivated by the ideas of design
of experiments, make the search algorithm much more efficient
than classical GAs.

Recall that by the effect hierarchy principle (Wu and Hamada
2000), two-factor interactions are more important than higher-
order interactions. In SELC we use this principle by allowing
the algorithm to identify important interactions with respect to
the optimization problem. Here we propose to eliminate those
factor settings that have the same level combinations as that
of the worst one for two factors. For larger dimensions, third-
or higher-order tuples may need to be considered to narrow
the search space. The worst observed runs are stored in the
forbidden array as the search procedure continues. New exper-
iments are conducted with runs suggested by the SELC algo-
rithm, which uses the idea of GAs, and promising level settings
for a new run are achieved by using better runs from the previ-
ous experiments. Before formally defining the SELC algorithm,
we define the concepts of the forbidden array and weighted mu-
tation, both required by the algorithm. We end this section with
a constructed example to illustrate the SELC algorithm.

3.1 Forbidden Array

In some situations, prior knowledge is available about cer-
tain factor-level combinations that lead to undesirable results.
Consider the introductory combinatorial chemistry example. In
this setting, chemists can often identify runs (i.e., new mole-
cules), based on their scientific knowledge and prior experience,
which are not worth creating in the laboratory. These runs can
be placed into the forbidden array before initializing the SELC
algorithm.

In the absence of prior knowledge, the SELC is initialized
with an orthogonal design. The data from this initial experiment
are then used to suggest run(s) that are not optimal. These run(s)
are then placed into the forbidden array.

In subsequent steps of the experiment, the worst run(s) are
chosen with probability governed by a “fitness” measure (i.e.,
value of y) and are stored in the forbidden array. Furthermore,
we specify the strength and order of the forbidden array. The
number of runs placed into the forbidden array at each sequence
of the experiment defines the array’s strength. More specifi-
cally, a forbidden array of strength s contains the level com-
binations of the s worst runs of the experiment at each stage of
the iterations. In addition, the runs stored in the forbidden array
define a set of level combinations that will be prohibited from
subsequent runs of the experiment. The number of level combi-
nations that are prohibited from subsequent experiments defines
the order of the forbidden array. A forbidden array of order k
implies that any combinations of k or more levels from any ar-
ray in the forbidden array will be prohibited from being used in
subsequent runs of the experiment. Thus, as the order decreases,
the number of forbidden design points increases. Consequently,
the forbidden array is the generating set of all runs that are for-
bidden by SELC.

For example, consider an experiment in which the goal is to
maximize a response. Suppose that the experiment has four fac-
tors, each at three levels (0, 1, and 2), and we choose a forbid-
den array with strength 1 and order 2. Further, suppose that the
minimum value of E( y) occurs when all factors are set to 0, and
that this design point is run during the experiment. When this
run is placed into the forbidden array, it will prevent any design
points with two or more factors set to level 0 (order = 2). Note
that only one member will be added to the forbidden array at
each step (strength = 1).

Here the special case of k = 1 corresponds to the SEL
method of WMM. In addition s = 1 corresponds to SEL(mini)
of WMM. However, unlike in the SEL approach, in SELC the
choice of worst run is probabilistic. In Section 6 we illustrate
how the choice of strength affects the performance of the search
procedure.

After constructing the forbidden array, SELC starts search-
ing for better level settings. The search procedure is moti-
vated by GAs. The first step, as discussed in the review of
GAs, is solution representation. Here the runs are viewed as
chromosomes. For an m-level factor, the levels are denoted
by 0,1, . . . ,m − 1. For example, for a 34 experiment, the de-
sign points (chromosomes) would take the form (0,0,0,0),
(0,0,0,1), . . . , (2,2,2,2). Unlike classical GAs, the chromo-
somes are not required to be binary arrays. Next we identify,
with probability proportional to the “fitness” (i.e., the value
of y), the best runs for producing offspring of the next gener-
ation. After the good candidates are identified, they reproduce
to generate potentially better candidates. In SELC, crossover
is performed in the usual way, as explained in Section 2, but
a modification is proposed for mutation.

3.2 Weighted Mutation

In a generic GA, genes mutate with an equivalent specified
probability. Hence the mutation rate does not incorporate other
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information gathered from previous knowledge about the sys-
tem. For the SELC, we propose using prior information for gen-
erating mutation probabilities. For instance, suppose we know
that the factor, F, has a significant main effect and no signifi-
cant two-factor interactions. Then we will change the level of
this factor to a new level, l, with probability pl, where

pl ∝ y(F = l). (1)

Next, suppose that factors F1 and F2 have a significant inter-
action. Then the mutation should have a joint probability on
F1 and F2. That is, the mutation will occur if either F1 or F2 is
randomly selected. Factor F1 will be set to level l1 and factor F2

will be set to level l2 with probability ql1l2 , where

ql1l2 ∝ y(F1 = l1,F2 = l2). (2)

If the selected factor does not have significant main effects or
interactions, then its value is changed to any admissible levels
with equal probability. Note that if the aim is to minimize E( y),
then the probabilities in (1) and (2) should be inversely propor-
tional to y.

A linear regression model can be used to identify the signif-
icant effects. But a better, more time-consuming approach is to
consider a Bayesian variable selection strategy, which is dis-
cussed in the Appendix. This method is used in the analysis
illustrated at the end of this section.

3.3 Starting Design

The starting design is an orthogonal array, which allows
us to efficiently estimate factor effects used in the process of
weighted mutation. However, as the search proceeds, unlike
in SEL, the orthogonal structure of the design matrix is not re-
tained. Nonorthogonality is justified because the follow-up de-
signs should be more flexible than the starting design, using the
information already at hand.

3.4 The SELC Algorithm

Initialize the design with an appropriate orthogonal array:

1. Conduct the experiment.

Stop when the stopping criterion is achieved (see
later).

2. Construct the forbidden array and choose its strength and
order.

3. Generate b new offspring:
a. Select offspring for reproduction with probability pro-

portional to their “fitness.”
b. Crossover the offspring.
c. Mutate the positions using weighted mutation.

4. Check eligibility. An offspring is eligible if it is not pro-
hibited by any of the members of the forbidden array. If an
offspring is ineligible, then discard and generate another
new offspring.

5. If b = 1 and more than one offspring were generated, then
randomly select one offspring for the experiment.

Depending on the situation, the SELC method can be fully
(b = 1) or batch (b = b) sequential. For fully sequential SELC,
a new eligible offspring is generated in each iteration and the
experiment is conducted. For batch sequential SELC, a new set
of eligible offspring is generated in each iteration and the exper-
iment is conducted. Depending on the application, either fully
sequential or batch sequential may be more suitable. For ex-
ample, in combinatorial chemistry, a batch sequential SELC is
more appropriate.

Fully sequential SELC method is used in the illustrative ex-
ample of this section as well as in Section 6. In contrast, a batch
sequential SELC method is used in Section 5. In the later case,
a fixed number of offspring are generated before running the
experiments to evaluate their performance.

3.5 Stopping Rules

The stopping rule is subjective and depends on progression
of the algorithm and experimental constraints. As the runs are
added, the experimenter can decide, in a sequential manner,
whether significant progress has been made toward optimiza-
tion. Sometimes a target value or near-optimum value is pre-
determined for the experiment. Once the target is attained, the
search can be stopped. But typically the number of experiments
is limited by the resources at hand. This is often the case for the
combinatorial chemistry example discussed in Section 1. Ex-
amples in Section 5 illustrate a situation in which an experiment
is limited by number of runs.

To illustrate the SELC method, consider a hypothetical ex-
periment with nine factors (denoted by A–I) each at three lev-
els. In this example (and throughout this article), we use the
linear–quadratic system for coding linear and quadratic ef-
fects (Wu and Hamada 2000), in order to eliminate correlation
among a factor’s linear and quadratic components. The linear–
quadratic coding is expressed as follows:

Level
0
1
2

−→
Linear Quadratic

−1 1
0 −2
1 1

The response is generated from the following model:

y = 2 + (
A + 2B − 3C + D + 2E − 2A2 + 2B2 + 1.5C2

− 3AC + 2.5AE − BF − 2CG + DGI
)2 + ε,

where ε is the standard normal error. In this analysis we con-
sider only the linear and quadratic effects and linear-by-linear
interactions. Our aim is to find a setting for which the expected
value of y is maximized.

The starting design for the SELC is an orthogonal array, nine
columns of an OA(243,320,3). Without having a prior knowl-
edge about the unfavorable runs, here we use a forbidden ar-
ray with s = 1 and k = 6, and also use a weighted mutation
with the Bayesian variable selection strategy. After choosing
the first member of the forbidden array, the search for better
level settings is continued via crossover and weighted muta-
tion. After computing the posterior probabilities of C and BC,
we find that these are much larger than the posterior probabil-
ities of the other effects. According to the weighted mutation

TECHNOMETRICS, MAY 2006, VOL. 48, NO. 2



GA–ENHANCED SELC 277

scheme, if factor B or C is randomly selected for mutation, then
we must evaluate the ql1l2 ’s in (2). The ql1l2 ’s are as follows:

Factors C = 1 C = 2 C = 3
B = 1 .0526 .0556 .1212
B = 2 .0973 .0524 .0865
B = 3 .2933 .1368 .1043

After generating the new offspring, we check for eligibility and
the search continues. In this example, using the fully sequen-
tial version of SELC, the search was stopped after 400 runs.
The maximum value of y was 679.68, which corresponds to the
level setting of the third-best design point. Note that the SELC
algorithm found this near-optimum design point by evaluating
only 2.03% of all possible combinations.

4. A JUSTIFICATION OF CROSSOVER AND
WEIGHTED MUTATION

Steps of crossover and weighted mutation may be bet-
ter understood by considering the following analysis. Con-
sider the problem of maximizing K(x), x = (x1, . . . , xp), over
ai ≤ xi ≤ bi. Instead of the p-dimensional maximization prob-
lem

max{K(x) : ai ≤ xi ≤ bi, i = 1, . . . ,p}, (3)

the following p one-dimensional maximization problems are
considered:

max{Ki(xi) : ai ≤ xi ≤ bi, i = 1, . . . ,p}, (4)

where Ki(xi) is the ith marginal function of K(x),

Ki(xi) =
∫

K(x)
∏

j �=i

dxj, (5)

and the integral is taken over the intervals [aj,bj], j �= i. If the
xi in (3) and (4) can take only a finite number of values (dis-
crete xi), then the integral in (5) is replaced by a finite sum.
Let x∗

i be a solution to the ith problem in (4). The combination
x∗ = (x∗

1, . . . , x∗
p) may be proposed as an approximate solution

to (3). A sufficient condition for x∗ to be a solution of (3) is that
K(x) can be represented as

K(x) = ψ
(
K1(x1), . . . ,Kp(xp)

)
(6)

and

ψ is nondecreasing in each Ki.

A special case of (6) that is of particular interest to statisti-
cians is

K(x) =
p∑

i=1

αiKi(xi) +
p∑

i=1

p∑

j=1

λijKi(xi)Kj(xj). (7)

If λij is nonzero, then SEL will have difficulty finding the opti-
mal solution. However, SELC is more flexible and better suited
for finding the optimal solution.

Whereas the SEL method emphasizes orthogonal arrays,
SELC does not. The basic nature of GAs does not allow us

to retain the orthogonal structure of the design. Although or-
thogonal arrays are good for estimating the factorial effects,
they are not available for every combination of factor levels
and for every run size. GAs do not require orthogonality and
hence are more flexible for exploring new design points. This
flexibility enhances the likelihood of getting the best setting in
relatively fewer runs. If the response surface is very smooth,
then any standard design and analysis should find the optimal
settings; however, for many problems, the response surface is
not smooth. For instance, if the surface is undulated with local
maxima and minima, then the SELC method can perform well.
The random nature of the GA-type search explores the whole
surface rapidly, whereas the weighted mutation uses previous
knowledge about the surface to wisely direct the search.

The convergence of classical GAs was provided by Holland
(1975) using the concept of schema. The SELC method makes
a significant amount of modification to classical GAs, and it is
not obvious that the proposed modifications meet the require-
ments for convergence in Holland’s work. However, the simu-
lation studies provided in the next section are quite convincing
about the convergence.

5. EXAMPLES

We investigate the performance of SELC via several diverse
simulations. We consider three different “ill-behaved” func-
tions, and illustrate the effects of the fine tunings through vari-
ous examples. For all of these examples, we use the following
settings. For crossover, after choosing one position randomly,
parent chromosomes are split at that position, and the left frag-
ment of the first parent chromosome is combined with the
right fragment of the second parent chromosome to produce the
first offspring. Then mutation locations are chosen randomly
for each offspring, and weighted mutation is performed as de-
scribed in Section 3. For comparison, some simulations have
been done with unweighted mutation, which allows the level
of the factor to be changed randomly to any other admissible
level. For all simulations, the population size is 20, which cor-
responds to a batch size of 20 (i.e., b = 20). For each of these
examples, we assume that there is no prior knowledge about
undesirable runs. Hence we initialize the forbidden array using
information gathered from the initial orthogonal array.

5.1 Example 1: Shekel 4 Function (SQRIN)

The function

y(x1, . . . , x4) =
m∑

i=1

1
∑4

j=1(xj − aij)2 + ci

is known as Shekel’s function (Dixon and Szego 1978), where
the quantities {aij} and {ci} are given in Table 1. The region of
interest is 0 ≤ xj ≤ 10, and only integer values are considered.
This function is one of the “black box” functions of computer
experiments discussed in Section 1.

This setup corresponds to an experiment with 4 factors each
at 11 levels (i.e., the 11 integers). The starting design is an or-
thogonal array of 242 runs obtained by choosing 4 columns
from the OA(242,1123) (Hedayat, Sloane, and Stufken 1999).
In this example, unlike in Section 3, Bayesian variable selection
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Table 1. Coefficients for Shekel’s Function (m = 7)

i aij , j = 1, . . . , 4 ci

1 4.0 4.0 4.0 4.0 .1
2 1.0 1.0 1.0 1.0 .2
3 8.0 8.0 8.0 8.0 .2
4 6.0 6.0 6.0 6.0 .4
5 3.0 7.0 3.0 7.0 .4
6 2.0 9.0 2.0 9.0 .6
7 5.0 5.0 3.0 3.0 .3

strategy was not used. In each step, Gibbs sampling consumes
a significant amount of time, making it extremely difficult to run
thousands of simulations. Instead, regression analysis is used to
identify the important factors (at 5% level of significance). For-
bidden arrays of order 3 are considered, because order 1 or 2
becomes too restrictive for this problem by forbidding too many
runs (and also the results are not satisfactory). The results are
compared with those of a random search and with simple GA.

Table 2 summarizes the results. “Random search” corre-
sponds to a design in which all runs are selected randomly.
“Random follow-up” represents a design for which the search
begins with the same starting design and follow-up runs are se-
lected randomly. “Genetic algorithm” refers to a classical GA
in which the runs are considered chromosomes and crossovers
and mutations are performed in the traditional way. Recall that
GA corresponds to a special case of SELC with strength 0
and unweighted mutation. “SELC (no forbiddance)” refers to
weighted mutation only, because in this case forbidden ar-

Table 2. Percent Success in Identifying Global Maximum for Different
Methods Based on 1,000 Simulations (run size = 1,000 and 700)

Second Third Fourth Fifth
Strength Maximum best best best best Total

1,000 runs
Random search 6.3 11.5 5.7 10.1 4.2 37.8
Random follow-up 4.7 9.3 3.7 9.4 2.5 29.6

Genetic algorithm 11.8 7.0 10.4 15.1 4.5 48.4

SELC (no forbiddance) 14.0 7.2 12.4 14.1 5.4 53.1

SELC 1 13.0 9.3 9.3 13.4 5.3 50.3
(unweighted 2 13.3 6.5 11.7 16.1 5.8 53.4
mutation) 3 13.1 7.9 12.4 15.6 5.3 54.3

4 13.9 8.3 11.4 14.9 5.9 54.4
5 12.1 8.4 13.9 16.0 5.1 55.5

SELC 1 13.1 8.3 11.5 17.3 5.9 56.1
(weighted 2 13.2 8.6 13.2 14.9 3.6 53.5
mutation) 3 14.6 7.7 12.4 16.6 4.8 56.1

4 11.9 10.1 13.6 16.5 4.3 56.4
5 13.5 8.4 13.5 18.5 3.9 57.8

700 runs
Random search 4.2 9.0 4.0 9.2 4.1 30.5
Random follow-up 3.0 6.8 3.0 5.1 2.4 20.3

Genetic algorithm 5.8 5.6 6.0 9.2 3.3 29.9

SELC (no forbiddance) 5.4 4.7 7.2 11.3 4.8 33.4

SELC 1 5.8 6.1 6.0 9.9 4.9 32.7
(unweighted 2 6.4 4.3 4.6 10.1 5.7 31.1
mutation) 3 7.1 4.3 5.9 8.7 5.2 31.2

4 7.6 4.1 6.0 11.5 4.7 33.9
5 5.2 4.6 6.6 10.2 4.9 31.5

SELC 1 6.3 5.5 6.9 11.5 4.0 34.2
(weighted 2 6.6 4.9 7.2 10.6 3.1 32.4
mutation) 3 7.2 4.6 9.6 10.6 4.1 36.1

4 5.9 5.9 7.0 10.7 3.3 32.8
5 5.9 4.7 8.5 10.3 4.1 33.5

ray is set to be empty (i.e., strength = 0). In contrast, “SELC
(unweighted mutation)” refers to forbiddance only. Here un-
weighted mutation is performed instead of weighted muta-
tion. Finally, “SELC (weighted mutation)” refers to the SELC
method proposed in Section 3.

The performance of the search algorithm is measured by its
ability to find the global maximum. We also include its perfor-
mance on finding the second- through fifth-best values, because
these five values stand apart from the others on the response sur-
face.

In the first simulation, the search is stopped after 1,000 runs,
which is 6.83% of all possible 114 runs (Fig. 1). As seen in
Figure 1, GA performs better than random searches, and SELC
performs better than GA. The values for SELC (no forbiddance)
demonstrate the beneficial effect of weighted mutation (here
the strength of the forbidden array is 0), and the values for
SELC (unweighted mutation) demonstrate the beneficial effect
of forbidden array. SELC (no forbiddance) finds the maximum
in 53% of the cases, as opposed to 48% for GA. In contrast,
SELC (unweighted mutation) has a success rate of 55.5%.
Finally, when the power of both forbidden array and weighted
mutation are simultaneously explored, SELC performs satisfac-
torily 57.8% of the time. The greatest benefits are achieved by
considering the weighted mutation, and this effect is even more
pronounced in the next example.

As the strength of the forbidden array increases, the power
of the search algorithm also increases. However, the strength
cannot be increased arbitrarily, because it will then prohibit too
many design points from being considered. It should also be
noted that the improvement of the SELC’s performance with
the increment of the strength is not so prominent for the same
function when smaller run sizes are considered. In the second
case, the search is stopped after 700 runs, and the improvements
are not as significant. For the Shekel 4 function, evolutionary
algorithms would require more runs to reap the benefits.

5.2 Example 2

Consider the function

y(x1, . . . , x4) = 1 + {β ′x + (γ ′x)2 + η′x × τ ′x}2,

where the parameters are given in Table 3. The region of in-
terest is 0 ≤ xj ≤ 10 and only integer values are considered.
This choice is motivated by discussions in Section 4, especially
by (7).

As in Example 1, this setup also corresponds to an experi-
ment with 4 factors each at 11 levels. The simulations are done
with two starting designs: orthogonal array of size 121 and 242,
obtained by choosing four columns from OA(121,1112) and
OA(242,1123) (Hedayat et al. 1999). The results are summa-
rized in Table 4 and Figure 2. The simulations are done for a to-
tal of 300, 500, and 1,000 runs.

GA performs much better than random search. This ex-
ample shows that forbiddance need not always enhance the
performance. In fact, without weighted mutation, forbiddance
alone [i.e., SELC (unweighted mutation)] can perform worse
than GA. This means that good runs are located in the “neigh-
borhood” of bad runs, and the response surface y(x1, . . . , x4)

is very undulated. However, weighted mutation significantly
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Figure 1. Shekel Function: Percent Success in Identifying Global Maximum for Different Methods. Run size = 1,000. RS = random search;
RF = random follow-up; GA = genetic algorithm; SELC(NF) = SELC (no forbiddance); SELC(UNWTED) = SELC (unweighted mutation);
SELC = SELC (weighted mutation); S = strength. ( 5th best; 4th best; 3rd best; 2nd best; maximum.)

improves the performance of SELC. The main advantage of
SELC is that it uses prior information to direct the GA, thus
finding a near-optimal solution more quickly. This effect is
clearly demonstrated for smaller runs, those with total run sizes
300 and 500. If the search is continued long enough, then this
gap will be narrowed, and SELC may not perform much bet-
ter than GA. Consider the first case where the starting design
is an orthogonal array of size 121. For 300 runs, GA finds the
maximum in 15% of cases, whereas SELC (weighted mutation)
finds it in more than 40% of cases. For 500 runs, these values
are 40% and 75%. Finally, for 1,000 runs, the success rates are
80% and 97%. The ratio of the success rate decreases as the
run size increases, which is not surprising, because these kind
of evolutionary algorithms eventually find the near-optimal so-
lution. However, SELC finds the optimum quickly.

For the second case, the starting design is an orthogonal ar-
ray of size 242. Here, for a total run size 300, the evolutionary-
type algorithms are not expected to perform well, because only
58 follow-up runs are available. Even with these few follow-up
runs, SELC (weighted mutation) finds the maximum in more
than 15% of cases. With larger run sizes, the performance of
both GA and SELC improves, with SELC performing signifi-
cantly better than GA.

The overall patterns of performance of SELC for both start-
ing designs are similar. Also for 1,000 runs, the effect of starting
design diminishes, and the success rates are very close for both
cases. Note that for the 121-run initial design, SELC finds the

Table 3. Coefficients for the Function in Example 2

β γ η τ

1 −3 2 −5
−2 −4 −10 0

2 5 2 −5
−1 −6 4 0

global maximum in more than 40% of the cases by evaluating
only 300 evaluations (2.05% of all possible 114 runs).

5.3 Example 3

Levy and Montalvo (1985) provided the following function:

y(x1, . . . , xn)

= sin2
{
π

(
xi + 2

4

)}

+
n−1∑

i=1

(
xi − 2

4

)2{
1 + 10 sin2

(
π

(
xi + 2

4

)
+ 1

)}

+
(

xn − 2

4

)2{
1 + sin2(2π(xn − 1))

}
.

Table 4. Percent Success in Identifying Global Maximum for Different
Methods Based on 1,000 Simulations

121-run design 242-run design

Strength 300 500 1,000 300 500 1,000

Random search 1.7 3.6 7.0 1.7 3.6 7.0
Random follow-up 1.1 2.5 5.7 .4 2.4 4.6

Genetic algorithm 15.1 39.5 79.7 3.4 28.9 79.5

SELC (no forbiddance) 43.7 76.7 97.8 16.7 68.3 97.5

SELC 1 13.9 39.9 80.9 3.2 30.9 77.2
(unweighted 2 13.2 38.9 83.4 3.6 30.1 79.6
mutation) 3 17.0 41.4 82.3 4.3 31.4 78.4

4 15.4 40.2 81.1 3.7 28.3 76.9
5 15.0 44.1 81.5 3.6 29.5 78.5

SELC 1 41.3 76.9 97.3 17.1 67.4 98.4
(weighted 2 42.2 76.5 97.3 15.5 65.4 96.8
mutation) 3 40.5 75.1 98.2 15.7 67.6 97.8

4 40.5 75.9 98.0 15.7 69.6 98.0
5 39.9 73.9 97.9 18.2 66.1 96.9
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(a)

Starting design: OA(121, 114) Starting design: OA(242, 114)
Total run size = 300

(b)

Starting design: OA(121, 114) Starting design: OA(242, 114)
Total run size = 500

(c)

Starting design: OA(121, 114) Starting design: OA(242, 114)
Total run size = 1,000

Figure 2. Percent Success in Identifying Global Maximum for Different Methods for Total Run Sizes (a) 300, (b) 500, and (c) 1,000.

Here n = 4, and only integer values of xi’s (0 ≤ xi ≤ 10) are
considered. This again corresponds to an experiment with 4 fac-
tors each at 11 levels. The results are summarized in Table 5.
Here the performance of SELC is quite similar to that of Ex-
ample 2. Note that the analytic nature of the test function is
quite different from that of Examples 1 and 2. It is a standard
test function in global optimization literature and is presented
here to demonstrate the satisfactory performance of the SELC
method over various test functions.

Examples 1 and 3 are from standard test functions in the
global optimization literature. By closely examining those func-

tions, one may gain some idea about the location of the global
maximum and may be able to save some computations. How-
ever, in many real life examples (e.g., computer experiments),
the analytic form of the function is either unknown or very com-
plicated. In these situations, the function can be thought of as a
“black box,” and SELC method should perform well.

6. APPLICATION

We applied the SELC method to a combinatorial chemistry
problem in which a combination of reagents was desired to
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Table 5. Percent Success in Identifying Global Maximum for
Different Methods Based on 1,000 Simulations

121-run design 242-run design

Strength 300 500 1,000 300 500 1,000

Random search 5.8 9.3 18.4 5.0 9.3 18.4
Random follow-up 2.9 7.7 15.5 2.9 7.7 15.5

Genetic algorithm 16.8 43.1 80.7 2.9 33.3 81.8

SELC (no forbiddance) 30.3 62.2 94.5 5.9 50.6 93.8

SELC 1 17.6 43.1 84.5 2.9 31.6 82.2
(unweighted 2 16.7 42.9 84.3 3.3 32.4 82.0
mutation) 3 18.5 44.5 83.5 4.7 33.6 83.4

4 21.2 44.1 83.9 3.4 33.4 81.9
5 16.6 47.5 83.9 3.8 34.0 84.5

SELC 1 28.4 66.2 94.4 6.6 45.9 93.5
(weighted 2 26.0 66.2 92.8 7.5 50.5 91.8
mutation) 3 31.1 63.5 92.2 7.2 49.6 93.7

4 29.4 63.8 90.1 7.6 46.8 91.2
5 31.9 65.3 86.1 7.1 46.9 91.3

maximize target efficacy. In this example, target efficacy is
measured by a compound’s percent inhibition of activity for a
specific biological screen. For this screen, a percent inhibition
value of 50 or greater is an indicator of a promising compound,
and percent inhibition values of 95 or greater have a high prob-
ability of exhibiting activity in confirmation screening.

Consider a core molecule onto which reagents can be added
to three locations, denoted by A, B, and C. In this example, the
desired compound space included two reagents at position A,
10 reagents at position B, and 14 reagents at position C. In to-
tal, the compound space contained 280 (= 2×10×14) possible
chemical entities. The reagents in this application can be con-
sidered different levels of the factors (i.e., positions) and are
denoted by integers, 1, 2, and so on. In this example, 208 of the
280 chemical entities were actually created without the assis-
tance of the SELC algorithm. To demonstrate the algorithm’s
benefits to the combinatorial chemistry group, we applied the
SELC to this problem under the hypothetical constraint that re-
sources were limited to creating only 25 compounds.

Based on previous scientific knowledge, some combinations
of reagents for this experiment were known to yield unfavor-
able percent inhibition values. We used these combinations of
reagents to focus the initial starting design and placed them
into the forbidden array before the experiment. Tables 6 and 7
present the relative frequency of occurrence of the individ-
ual levels of factors B and C in the forbidden array. Because
we were limited to creating 25 total compounds, we chose a
2 × 2 × 3 orthogonal array to initialize the experiment. Using
Tables 6 and 7, in conjunction with scientific guidance, the ini-
tial orthogonal array included levels 8 and 9 of factor B and
levels 3, 4, and 8 of factor C. The results from the initial or-
thogonal array are presented in Table 8 (upper half ).

After completing the initial orthogonal array, we needed to
choose subsequent design points. Because not all levels of fac-
tors B and C were explored in the initial experiment, the SELC
algorithm was slightly modified to enable it to explore other

Table 6. Factor B

Level 1 2 3 4 5 6 7 8 9 10
Relative frequency (in %) 3 3 26 4 29 5 10 1 5 14

Table 7. Factor C

Level 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Relative frequency (in %) 8 7 7 4 5 4 4 3 8 5 16 11 8 8

parts of the chemistry space. Specifically, if a factor was found
to be significantly associated with an improvement in response
(at 5% level), the levels of that factor received probabilities
proportional to their individual association with the response.
However, if a factor was not significantly associated with im-
provement in response, then all levels of the factor received
equal probability for the weighted mutation. In this application,
factor B was significantly associated with the response after the
13th compound was created. The probabilities of mutation to
the levels of factor B are

p8 = 24 + 34 + 63 + 2 + 5 + 49 + 83 + 56 + 14 + 83

1,016
× .75

+ 1

10
× .25,

p9 = 0 + 12 + 21 + 9 + 0 + 5

1,016
× .75 + 1

10
× .25,

and

pj = 1

10
× .25 for all j �= 8,9.

The denominator, 1,016, is the sum of positive responses, and
the weights of .75 and .25 are arbitrary. The 10 levels of B ac-
count for the 1/10 in the foregoing expression. As desired, to
maximize the target efficacy, we considered only positive values
of the response in calculating pj’s. The results from the subse-
quent runs of the experiment are given in Table 8 (bottom half ).
We used a fully sequential SELC method here.

We analyzed all compounds run in the experiment in a
follow-up experiment in which their IC50 values were deter-

Table 8. Combinatorial Chemistry Example

No. A B C y

1 1 8 8 24
2 1 9 8 −23
3 2 8 8 34
4 2 9 8 12
5 1 8 3 63 *
6 1 9 3 21
7 2 8 3 2
8 2 9 3 9
9 1 8 4 5

10 1 9 4 −16
11 2 8 4 49 *
12 2 9 4 5

13 2 8 10 83 *
14 2 3 4 65 *
15 2 1 4 107 *
16 2 2 10 49
17 2 8 2 56 *
18 1 6 10 19
19 2 2 4 60 *
20 2 10 10 39
21 1 8 10 14
22 2 6 8 90 *
23 2 6 10 64 *
24 2 1 1 −3
25 2 2 5 63 *
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mined. [IC50 assays (assays to determine the concentration of
a drug-like compound resulting in a 50% reduction in activity
of a disease target) are a commonly used method for assess-
ing drug efficacy in pharmaceutical screening regimens. Typi-
cally, these assays are performed via serial dilutions of dimethyl
sulfoxide (DMSO) compound libraries to achieve dilutions of
2 × 107 in 100% DMSO. Subsequent to the DMSO serial di-
lution, assays are performed with each dilution to ascertain
the IC50 of the compound of interest.] Compounds that were
judged to be acceptable by the chemists are indicated with an
asterisk in Table 8. Clearly, the SELC method succeeded in
identifying a rich set of promising compounds.

7. SUMMARY AND CONCLUSIONS

The problem of searching for an optimal design setting in a
relatively large space is not easy. The SELC method does this
job efficiently. Relaxing the condition of orthogonality, GA is
flexible enough to explore more design points, which enhances
the likelihood of finding the best setting in relatively fewer runs,
particularly in the presence of interaction effects. Because the
forbidden array can make use of previous knowledge to rule
out unfavorable settings, the SELC is particularly well suited
for scientific problems in which such knowledge is available.

A byproduct of the SELC algorithm, discussed in the Ap-
pendix is also of interest. If there are many factors, the experi-
menter can get an insight by using the Bayesian approach. The
posterior probabilities clearly identify the important factors and
interactions. This approach will result in a more comprehensive
search of the model space. A system can have a large number of
factors, of which only a handful are important. A major use of
experimental design is screening, in which experimenters seek
to identify significant effects (both main effects and potentially
interactions) from a large set of candidate effects. The Bayesian
variable selection helps in identifying the important factors and
understanding the impact of a large number of factors in rela-
tively fewer runs.

The novel idea of forbidden array and weighted mutation
enables SELC to find the optimal solution more efficiently
than GA. The improvement on performance depends on the na-
ture of the response surface, however. If the response surface
is very smooth, then any reasonable search algorithm should
work satisfactorily. For an extremely complicated surface, al-
most complete enumeration might be needed irrespective of the
efficiency of the search methods. For response surfaces whose
ruggedness lies in between the two, SELC is expected to per-
form well.
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APPENDIX: IDENTIFICATION OF SIGNIFICANT
FACTORS: A BAYESIAN APPROACH

The model selection problem amounts to identifying a sub-
set of predictors as active, and in this setting there are typically
more parameters to estimate than unique treatments. Here we
propose stochastic variable selection, based on the Gibbs sam-
pler. We start with the given design and the corresponding re-
sponses. For the linear regression with normal errors,

y = Xβ + σε, ε ∼ N(0,1), (A.1)

where β contains linear and quadratic main effects and linear-
by-linear interaction effects. The Bayesian framework of
Chipman, Hamada, and Wu (1997) approaches model selection
as follows. The importance of effects is captured via an unob-
served vector δ of 0’s and 1’s where δi = I{θi �= 0}. A normal
mixture prior is used for the coefficients β ,

f (βi|δi) =
{

N(0, τ 2
i ) if δi = 0

N
(
0, (ciτi)

2
)

if δi = 1.
(A.2)

When δi = 0, βi has a high mass around 0 and thus is not likely
to have a large effect. In contrast, when δi = 1 a large value of ci

ensures that the variable is likely to have a large influence.
Not all models are equally likely. Based on the principles of

effect sparsity, effect hierarchy, and effect inheritance (Wu and
Hamada 2000), we can distinguish between the “likely” and
“unlikely” models. Note that the commonly used independence
prior, which implies that the importance of one factor is inde-
pendent of that of another, is not very attractive, because there
are quadratic main and linear-by-linear interaction effects. In-
stead, we have used hierarchical priors, motivated by Chipman
(1996). Consider a simple example with three main effects, A,
B, and C, each having three levels. It is logical to think that the
importance of the interaction effect AB will depend only on the
importance of main factors A and B, and also that the quadratic
effect of level A will be less likely to be important if the linear
effect of A is not important. This belief can be expressed in the
prior for δ = (δA, δB, δC, δA2 , δB2, δC2 , δAB, δAC, δBC) as

P(δ) = P(δA, δB, δC, δA2 , δB2, δC2 , δAB, δAC, δBC)

= P(δA, δB, δC)P(δA2 , δB2, δC2 |δA, δB, δC)

× P(δAB, δAC, δBC|δA, δB, δC)

= P(δA)P(δB)P(δC)

× P(δA2 |δA, δB, δC)P(δB2 |δA, δB, δC)P(δC2 |δA, δB, δC)

× P(δAB|δA, δB, δC)P(δAC|δA, δB, δC)P(δBC|δA, δB, δC)

= P(δA)P(δB)P(δC)P(δA2 |δA)P(δB2 |δB)P(δC2 |δC)

× P(δAB|δA, δB)P(δAC|δA, δC)P(δBC|δB, δC).

The first equality comes from the conditional independence
principle, which assumes that the higher-order terms are inde-
pendent when conditioned on the first-order terms. In addition,
it is assumed that first-order terms are independent. The inher-
itance principle assumes that the importance of a higher-order
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term depends only on its lower-order parents. The nature of the
exact dependence, which is followed in all our analysis, is

P(δA = 1) = p, (A.3)

P(δA2 = 1|δA) =
{

.1p if δA = 0

p if δA = 1,
(A.4)

and

P(δAB = 1|δA, δB) =





.1p if δA + δB = 0

.5p if δA + δB = 1

p if δA + δB = 2.
(A.5)

In our analysis, we choose p = .25. A prior must also be spec-
ified for σ . Following George and McCulloch (1993), we take

σ 2 ∼ IG(ν/2, νλ/2),

where IG denotes the inverted-gamma distribution. It can be
shown that νλ/σ 2 ∼ χ2

ν .
In addition, following George and McCulloch (1993), we

take

τj = �y

3�Xj
,

where �y represents a “small” change in y and �Xj represents a
large change in Xj. In our examples, �Xj = max(Xj) − min(Xj)

and �y = √
var( y)/5. For priors of σ , ν = 5 and λ = var( y)/25

are used. The posterior probabilities of the β’s are computed
using a Gibbs sampler.

[Received March 2004. Revised May 2005.]

REFERENCES

Bates, R. A., Buke, R. J., Riccomagno, E., and Wynn, H. P. (1996), “Exper-
imental Design and Observation for Large Systems,” Journal of the Royal
Statistical Society, Ser. B, 58, 77–94.

Chipman, H. (1996), “Bayesian Variable Selection With Related Predictors,”
Canadian Journal of Statistics, 24, 17–36.

Chipman, H., Hamada, M., and Wu, C. F. J. (1997), “A Bayesian Variable Se-
lection Approach for Analyzing Designed Experiments With Complex Alias-
ing,” Technometrics, 39, 372–381.

Dixon, L. C. W., and Szego, G. P. (1978), “The Global Optimization Problem:
An Introduction,” in Towards Global Optimization 2, eds. L. C. W. Dixon
and G. P. Szego, Amsterdam: North Holland, pp. 1–15.

Gasteiger, J., and Engel, T. (eds.) (2003), Chemoinformatics: A Textbook, Wein-
heim: Wiley–VCH.

George, E. I., and McCulloch, R. E. (1993), “Variable Selection via Gibbs Sam-
pling,” Journal of the American Statistical Association, 88, 881–889.

Hamada, M., Martz, H. D., Reese, C. S., and Wilson, A. G. (2001), “Find-
ing Near-Optimal Bayesian Designs via Genetic Algorithms,” The American
Statistician, 55, 175–181.

Hedayat, A. S., Sloane, N. J. A., and Stufken, J. (1999), Orthogonal Arrays:
Theory and Applications, New York: Springer-Verlag.

Heredia-Langner, A., Carlyle, W. M., Montgomery, D. C., Borror, C. M.,
and Runger, G. C. (2003), “Genetic Algorithms for the Construction of
D-Optimal Designs,” Journal of Quality Technology, 35, 28–46.

Heredia-Langner, A., Montgomery, D. C., Carlyle, W. M., and Borror, C. M.
(2004), “Model-Robust Optimal Designs: A Genetic Algorithm Approach,”
Journal of Quality Technology, 36, 263–279.

Holland, J. M. (1975), Adaptation in Natural and Artificial Systems, Ann Arbor,
MI: University of Michigan Press.

(1992), Adaptation in Natural and Artificial Systems, Cambridge, MA:
MIT Press.

Leach, A. R., and Gillet, V. J. (2003), An Introduction to Chemoinformatics,
London: Kluwer Academic Publishers.

Levy, A. V., and Montalvo, A. (1985), “The Tunnelling Algorithm for the
Global Minimization of Functions,” SIAM Journal of Scientific and Statis-
tical Computing, 6, 15–29.

Reeves, C. L., and Wright, C. C. (1999), “Genetic Algorithms and the Design
of Experiments,” in Evolutionary Algorithms, eds. L. D. Davis, K. DeJong,
M. D. Vose, and L. D. Whitley, New York: Springer-Verlag, pp. 207–226.

Rouhi, A. M. (2003), “Custom Synthesis for Drug Discovery,” Chemical &
Engineering News, 81, 75–78.

Santner, T. J., Williams, B. J., and Notz, W. (2003), The Design and Analysis of
Computer Experiments, New York: Springer-Verlag.

Wu, C. F. J., and Hamada, M. (2000), Experiments: Planning, Analysis, and
Parameter Design Optimization, New York: Wiley.

Wu, C. F. J., Mao, S. S., and Ma, F. S. (1990), “SEL: A Search Method Based
on Orthogonal Arrays,” in Statistical Design and Analysis of Industrial Ex-
periments, ed. S. Ghosh, New York: Marcel Dekker, pp. 279–310.

TECHNOMETRICS, MAY 2006, VOL. 48, NO. 2

http://www.ingentaconnect.com/content/external-references?article=0040-1706()39L.372[aid=366172]
http://www.ingentaconnect.com/content/external-references?article=0162-1459()88L.881[aid=1489585]
http://www.ingentaconnect.com/content/external-references?article=0003-1305()55L.175[aid=5195029]
http://www.ingentaconnect.com/content/external-references?article=0003-1305()55L.175[aid=5195029]

