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Throughout the drug discovery process, discovery teams are compelled to use statistics for making decisions
using data from a variety of inputs. For instance, teams are asked to prioritize compounds for subsequent
stages of the drug discovery process, given results from multiple screens. To assist in the prioritization
process, we propose a desirability function to account for a priori scientific knowledge; compounds can
then be prioritized based on their desirability scores. In addition to identifying existing desirable compounds,
teams often use prior knowledge to suggest new, potentially promising compounds to be created in the
laboratory. Because the chemistry space to search can be dauntingly large, we propose the sequential
elimination of level combinations (SELC) method for identifying new optimal compounds. We illustrate
this method on a combinatorial chemistry example.

INTRODUCTION

Historically in the drug discovery process, work has
primarily centered on finding chemical entities that are
effective against a particular disease or condition. Effective
chemical entities are often found through an iterative
synthesis and screening process. Upon finding an effective
compound or series of compounds, work then focuses on
tweaking the molecule(s) to eliminate potential negative
effects and to improve the molecule’s ability to interact with
the body. Historically, this two-stage process has found
numerous blockbuster pharmaceutical entities.

Over the past decade, great advancements have been made
in the automation of in vitro biological screening.1 This
improving technology enables companies to quickly test more
compounds at lower concentrations across a number of
screens. Thus, companies now have a large amount of
information about more chemical entities earlier in the drug
discovery process.

With the increase in information, drug discovery teams
have begun to turn from the two-stage optimization process
to a process thatsimultaneouslyoptimizes over a variety of
efficacy, pharmacokinetic/dynamic, and safety endpoints.
Hence, instead of focusing only on information about the
effectiveness of the chemical entities, the team can now also
focus on other desirable endpoints.

Given this vast amount of data currently available, the
process of prioritizing compounds for follow-up can be
extremely difficult. Often, no individual compound provides
the optimal value for each endpoint under consideration.
Instead, many compounds are near optimal for one or more
endpoints. To increase the complexity of the problem,
discovery teams rarely place an equal weight of decision on
each endpoint.

Many simple, univariate approaches can be taken for
solving the multiple endpoint problem. However, the univari-
ate approaches do not consider the potential interdependen-
cies between endpoints or their weighting of importance.

In addition to improvements in screening capacity of
compounds, technologies have been developed to explore
and synthesize vast numbers of chemical entities. This
technology, known as combinatorial chemistry, has been
widely applied in the pharmaceutical industry and is gaining
interest in other areas of chemical manufacturing.2,3 In
general, combinatorial chemistry identifies molecules that
can be easily joined together and employs robotics to
physically make each molecular combination. Depending on
the initial number of molecules, the number of combinations
can be extremely large. For example, consider a core
molecule onto which various reagents can be theoretically
added to three locations. If 100 reagents can be added at
each location on the core, then 1 million products can
potentially be synthesized. In the pharmaceutical industry,
combinatorial chemistry has been used to enhance the
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diversity of compound libraries, to explore specific regions
of chemical space (i.e., focused library design), and to
optimize one or more pharmaceutical endpoints such as target
efficacy or ADMET (absorption, distribution, metabolism,
excretion, toxicology) properties.4 While it is theoretically
possible to make a large number of chemical combinations,
it is generally not possible to follow up on each newly
synthesized entity. An alternative approach to synthesizing
all possible molecular combinations is to computationally
create and evaluate the entire library using structure-based
models. (For this purpose, specialized software uses “black
box” type functions.) Then, a subset of promising compounds
is selected for synthesis. For the purpose of optimization of
pharmaceutical endpoints, the proposed sequential elimina-
tion of level combinations (SELC) method can be employed
to efficiently find optimal molecules, as will be demonstrated
in the proof of concept example.

In the first part of this paper, we explore the use of the
desirability function for compound prioritization. While this
function is simple to compute and interpret, it allows the
user to incorporate a priori scientific knowledge or endpoint
prioritization. In the second part, we present the SELC
optimization technique to assist in the creation of new
compounds in combinatorial chemistry.

TECHNIQUE 1: COMPOUND PRIORITIZATION

In our first example, compounds are to be prioritized for
subsequent stages of the drug discovery process, given results
from multiple screens. For example, consider a project for
which we have measured six quantities for each compound:
Y1, ..., Y6. Larger values are better (“larger the better”) for
two qualities, smaller values are better (“smaller the better”)
for three qualities, and a target value is best (“nominal the
best”) for one quality. More specifically, a compound will
be good ifY1, Y3, andY4 are small,Y2 andY5 are large, and
Y6 is close to 42.5 (Table 1).

Unfortunately, no compounds for this project meet all of
the desirable characteristics. Given this situation, how can
we prioritize compounds for follow-up? Several statistical
methods are available for treating this kind of multiple-
response problem. Myers and Montgomery5 used a graphical
method, which has clear disadvantages. A more general
approach is to formulate it as a constrained optimization
problem, where one of the responses is selected as the
objective function and the other responses are treated as
constraints. This technique is also not recommended as the
choice of objective function can be debatable. For details,
see ref 6.

Desirability Score. A third technique is to combine the
information into one numeric score which can be used to
prioritize the compounds. The techniques available for
combining multiple-response models into a single scalar
include distance functions,7 squared error loss functions,8,9

and desirability functions.10-12 The desirability methods are
easy to understand and implement, are available in software,
and provide flexibility in weighting individual responses.
This approach consists of transforming the individual
response functions each into “desirability scores” based on
the particular goal for that response. Individual desirabilities
di(ŷi), i )1,...,6, map response values to unitless utilities
bounded by 0< di(ŷi) < 1, where a higher value ofdi

indicates that response valueŷi is more desirable; hence it is
termed as a “desirability score”. The individual desirability
scores,di, are combined into one overall desirability score
for the element using either a multiplicative or additive
model. A common approach is to define the overall desir-
ability as the geometric mean of individual desirabilitydi’s,
i ) 1,..., m) 6, where

If all the endpoints are not equally important, then the
definition of overall desirability function can be extended
to

reflect the possible difference in the importance of the
different responses, where the weightswi satisfy 0< wi <
1 andw1 + w2 + ...+ wm ) 1.

Although several forms have been proposed fordi(ŷi), the
most commonly adopted are those of Derringer and Suich.11

It is a two-sided problem for thenominal-the-bestcase, where
it is ideal for a compound to have theY6 score as close as
possible to a target value denoted byt. Apart from the target
valuet, there is a lower valueL and an upper valueU such
that the product is considered unacceptable ifY6 < L or Y6

> U. The desirability function is then defined as

with d6 ) 0 for ŷ < L or ŷ > U. The choice ofR1 andR2 is
more subjective than the choice ofL and U, and these
quantities define the penalty we pay for moving away from
t.

Next we consider thesmaller-the-betterproblem witha
being the smallest possible value for the responsey. For this
example,Y1, Y3, and Y4 are denoted byy, and the corre-
sponding observed value is denoted byŷ. Treata as the target
value and chooseU to be a value above which the product
is considered to be unacceptable. For example,U for Y1 is
10 and the correspondinga can be taken to be 0 because the
response cannot be negative. Then we can choose the right
half of thedi function as the desirability function, that is, let

with di ) 0 for ŷ > U.
For thelarger-the-betterproblem, there is no fixed ideal

target. Suppose that the scientist can choose a valueL below
which the compound is considered to be unacceptable, and

Table 1. Desirable Ranges for Compound Prioritization

end points desired type acceptable range

Y1 smaller the better Y1 < 10
Y2 larger the better Y2 > 500
Y3 smaller the better Y3 < 10
Y4 smaller the better Y4 < 60
Y5 larger the better Y5 > 1
Y6 nominal the best 20< Y6 < 80

d ) {d1d2...dm}1/m

d ) d1
w2d2

w2...dm
wm

d6 ) {|ŷ - L
t - L |R1

, L e ŷ e t

|ŷ - U
t - U |R2

, t e ŷ e U

di ) |ŷ - U
a - U|R, a e ŷ e U
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a valueU above which it is considered to be nearly perfect.
Then the desirability function can be defined as

with di ) 0 for ŷ < L anddi ) 1 for ŷ > U. For this example
U for Y2 andY5 are taken to be 1000 and 5, respectively.

While the desirability function is flexible, its original form
is biased toward individual undesirable characteristics. That
is, the overall desirability function can be driven to zero if
anyŷi is either infeasible or otherwise undesirable. This strict
penalization is not desirable because some compounds may
perform poorly for only one endpoint, even though all other
endpoints may be highly desirable. Additive desirability
functions, such as the arithmetic mean discussed in Kros and
Mastrangelo,13 incorporate a weak penalty when a constraint
has been violated. However, additive methods for combining
the individual desirability scores can result in unacceptable
compounds having higher desirability values than acceptable
ones. In order to overcome this, Ortiz et al.14 proposed
unconstrained multiplicative desirability function which does
not allow unacceptable compounds to have higher overall
desirability values than acceptable ones. This method in-
volves incorporating the constraints directly into the overall
desirability function via penalties. The overall desirability
function, D* ) d - p, incorporates penalties throughp,
which is proportional to the square of the constraint violation.
The overall penalty functionp is also a combined function
of the individual fitted responses, reflecting the overall
severity of the infeasibility. The overall penalty function is

wherec is a relatively small constant to forcepi > 0. Smaller
or larger values ofc can be used without loss of generality.
The corresponding individual penaltiespi(ŷi) are proposed
as follows. Fornominal-the-bestcase

for larger-the-better

and forsmaller-the-better

Incorporating this overall penalty function into a combined
fitted response metric, the proposed overall unweighted
desirability function becomes

The penalty modification improves the flexibility of the
desirability function by preventing poor individual desir-

abilities from dominating the product. Because of the
flexibility of this function, we suggest that the user determine
a defendable range of parameter settings prior to computing
the desirability scores in order to avoid biasing the resulting
scores.

ILLUSTRATION

For our example data,a is taken to be zero and theR’s
andâ’s are taken to be unity. Thed values of the compounds
corresponding to different values ofc are plotted in Figure
1. They-axis gives the desirability scores, and the important
compounds are marked on the plots with their index numbers.
It can be easily seen that, with higher values ofc, worse
compounds are well separated. Compound numbers 8, 35,
65, 105, 120, 123, 169, 188, and 206 turn out to be desirable,
whereas compounds 52 (also 51 and 53) are undesirable.

For this analysis,R’s and â’s are taken to be 1, which
leads to a linear desirability function. However, these choices
are often not the best for all problems. For example, one
might use a smallR value if the response does not have to
be very close to the targett. On the other hand, a largeR
value would imply the importance of being close tot. For
nominal-the-best case, if the penalties for being above or
below the target are very different, this difference can be
reflected by choosing different values forR1 andR2.

To illustrate the effect of different choices ofR andâ, we
have selected an undesirable compound (52) and a highly
desirable compound (188). For each of these compounds we
have computed the desirability score across a range ofR
and â (keeping each parameter the same for each charac-
teristic, Y1- Y6) for c ) 0.01 and 0.00001. For the
undesirable compound, changes inR have no affect on the
overall desirability score (Figure 2). However, the choice of
both â and c have an affect on the overall score: as each
increase, the desirability score is dampened toward zero. This
makes sense because bothâ and c are constructed to
minimize the effect of any individual undesirable charac-
teristic. For a highly desirable compound, changes inâ and
c have no affect on the overall desirability score, whereasR
has a significant effect on the score (Figure 2). AsR
increases, the desirability score decreases, which must occur
because the individual desirabilities are scaled between 0
and 1.

TECHNIQUE 2: OPTIMIZATION IN COMBINATORIAL
CHEMISTRY

A simple combinatorial chemistry problem involves con-
necting reagents to each of several locations along a scaffold.
Usually many potential reagents can be added at each
location on a scaffold, and as the number of locations and
number of reagents increase, the number of compounds to
create increases exponentially. Because of the vast number
of potential compounds, the entire combinatorial library is
rarely created in practice. Instead, scientific knowledge about
the project and the reactions are used to select a subset of
reagents for each location on the scaffold. After creating the
first library, subsequent libraries are created that use the
knowledge gained from the first library.

Indeed, several different optimization techniques could be
applied to this problem. Generally, optimization techniques
utilize either a systematic search (e.g., response surface or

di ) | ŷ - L
U - L|R, L e ŷ e U

p ) [{p1p2...pm}1/m - c]2

p6 ) {c + |ŷ - L
t - L |â1

, 0 e ŷ e L

c, L e ŷ e U

c + |ŷ - U
t - U |â2

, U e ŷ

pi ) {c + | ŷ - L
U - L|â, ŷ e L

c, ŷ > L

pi ) {c, ŷ e U

c + |ŷ - U
a - U|â, ŷ > L

D* ) {d1d2...dm}1/m - [{p1p2...pm}1/m - c]2
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Newton-Raphson methods) or a search with a random
component (e.g., genetic algorithms or simulated annealing).
Systematic search techniques are known to be best for finding
optimal values from a smooth response surface. Alternatively,

search techniques with a random component are best for
finding global optimums on a response surface where there
are local optimums. For many problems, like those in
combinatorial chemistry, the response surface is likely to

Figure 1. Desirability scores for each compound for different values ofc.

Figure 2. The combined effects of each parameter on the desirability function for compounds 52 and 188.
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have a variety of shapes, where some parts of the surface
are smooth, other parts are filled with local optimums, and
others have unexpected extreme peaks of activity. Hence,
to find optimums in this type of space, the technique needs
to have both systematic and random components. Further-
more, the technique needs to incorporate expert opinion to
guide the search process; standard optimization techniques
do not incorporate expert opinion, which is the chief reason
why they are not used for problems involving complex
response surfaces. As an alterative to traditional optimization
techniques, we suggest using the sequential elimination of
level combinations (SELC) method.15 Specifically, SELC
uses concepts of experimental design and genetic algorithms
in addition to expert opinion to find optimal candidates from
a very large pool of potential candidates. Mandal et al.15 show
that for problems with complicated response surfaces, the
SELC finds optimums more efficiently than either experi-
mental design or genetic algorithms alone. Before describing
the novel approach of employing SELC in combinatorial
chemistry, we briefly review GAs.16

GAs are stochastic optimization tools that work on
“Darwinian” models of population biology and are capable
of obtaining near-optimal solutions for multivariate functions
without the usual mathematical requirements of strict con-
tinuity, differentiability, convexity, or other properties. The
algorithm attempts to mimic the natural evolution of a
population by allowing solutions to reproduce, creating new
solutions, and to compete for survival. It begins by choosing
a large number of candidate solutions which propagate
themselves through a “fitness criteria” and are changed by
the application of well-developed genetic operators. The idea
of GAs is to get “better candidates” using “good candidates”,
and the algorithm process is as follows:

1. Solution representation:For problems that require real
number solutions, a simple binary representation is used
where unique binary integers are mapped onto some range
of the real line. Each bit is called agene, and this binary
representation is calledchromosome.

Once a representation is chosen, the GA proceeds as
follows. A large initial population of random candidate
solutions is generated; these are then continually transformed
following steps 2 and 3.

2. Selectthe best andeliminatethe worst solution on the
basis of a fitness criterion (e.g., higher the better for a
maximization problem) to generate the next population of
candidate solutions.

3. Reproduceto transform the population into another set
of solutions by applying the genetic operations of “crossover”
and “mutation”. (a) Crossover: A pair of binary integers
(chromosomes) is split at a random position, and the head
of one is combined with the tail of other and vice versa. (b)
Mutation: The state (0 or 1) of a randomly chosen bit is
changed. This helps the search avoid being trapped into local
optima.

4. Repeatsteps 2 and 3 until some convergence criterion
is met, or some fixed number of generations has passed.

This algorithm has been shown to converge by Holland,17

who first proposed this procedure in its most abstract form
and discussed it in relation to adaptive and nonlinear systems.

Now we explain the SELC method, in the context of a
combinatorial chemistry example. Consider the problem of
maximizing the objective functiony(x) ) f(x1,x2,...,xn) whose

analytic form is unknown and which is very complex in
nature. However, for a given value ofx1,x2,...,xn, y(x) can be
evaluated. These evaluations are expensive, and hence the
total number of possible evaluations is limited by the
available resources. Fori)1,..., n, xi can take discrete values
denoted by 1,2,...,si. Hence there ares ) Πi)1

n si possible
candidates, and the challenge is to find the optimal candidate
which maximizesy with a limited number of evaluations of
the unknown functionf.

Consider the combinatorial chemistry example presented
in Figure 3, where three positions require additions. These
three positions of the core molecule are denoted byx1,x2,x3,
and eachxi is called a “factor”. The different reagents to be
added to those positions are called “levels” of the factors,
which means factorxi hassi levels denoted by 1,2,..., si. If
s1 ) s2 ) s3 ) 20, there are 203 ) 8000 possible compounds,
among which, say, we are constrained to creating only a
fraction in the laboratory. The response functiony is obtained
in a follow-up experiment after the synthesis of the new
compound.

The SELC Algorithm . In the absence of prior knowledge
about the experiment, the SELC is initialized with an
orthogonal experimental design.18 Ideally roughly one-fourth
of the available resources should be used to conduct the initial
experiment with the remaining resources used for follow-
up runs (i.e., new promising compounds). The data from this
initial experiment are then used to identify runs that are and
are not optimal via a “fitness” measure (i.e., value ofy).
Runs that are optimal are used to generate subsequent runs,
while the runs that are not optimal are placed into aforbidden
array. The purpose of the forbidden array is to prevent
potentially poor compounds from being synthesized in
subsequent experiments and is defined by itsstrengthand
order. (Based on scientific knowledge, chemists can often
identify runs which are unlikely to yield desirable results
prior to the initial experiment. In this case, this information
can be placed into the forbidden array before the initial
experiment.) The number of runs selected for the forbidden
array for each stage defines the array’s strength, while the
number of level combinations prohibited from appearing in
future runs defines the array’s order. For example, a
forbidden array of orderk means that any combinations of
k or more levels from any run in the forbidden array will be
eliminated from consideration of being created in future
experiments. Thus, as the order decreases, the number of
forbidden design points increases.

After constructing the forbidden array, SELC starts search-
ing for better level settings using GAs. Typically the two
best runs are chosen, with probability proportional to the
“fitness”, i.e. the value ofy, to generate potentially better
candidates. These two runs, called “parents”, are split at a
random position, and the top fragment of one is combined
with the bottom of the other and vice versa to produce two
new runs called “offspring” (i.e., crossover). The next step
of generating new runs is called “mutation”, where a factor

Figure 3. Combinatorial scaffold. In this example, there are 5
possible substructures at position A, 34 at position B, and 241 at
position C.
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is randomly selected and its level is randomly changed to
another permissible level. In a generic GA, factors mutate
with an equivalent specified probability. Hence, the mutation
rate does not incorporate other information gathered from
prior knowledge about the system. For the SELC, we propose
the use of prior information for generating mutation prob-
abilities. For instance, suppose we know that the factorx1

has a significant main effect andno significant two-factor
interactions. Then, we will change the level of this factor to
a new level,l, with probabilitypl, where

Next, suppose that factorsx1 and x2 have a significant
interaction. Then, the mutation should have a joint probability
on x1 andx2. That is, the mutation will occur if eitherx1 or
x2 is randomly selected. Factorx1 will be set to levell1 and
factor x2 to level l2 with probability ql1l2, where

If the selected factor does not have significant main effects
or interactions, then its value is changed to any admissible
levels with equal probability. Note that, by theeffect sparsity
principle, only a few factors turn out to be important, and,
by theeffect hierarchyprinciple,18 main effect and two-factor
interactions are more important than others, which justifies
the weighted mutation. A Bayesian variable selection strat-
egy19 is used to identify the significant effects.

Once a new run (or set of runs) is identified, it is created
in the laboratory to evaluate the response functiony, unless
it is prohibited by the forbidden array. If a newly identified
run is prohibited, then it is discarded, and another new
offspring is generated.

ILLUSTRATION

To illustrate the SELC method, we have chosen a
combinatorial library for which a number of compounds have
already been created and percent inhibition values have been
determined for an enzyme targeted in an antibacterial drug
discovery program.

Overall, the combinatorial space has five possible sub-
structures at position A, 34 at position B, and 241 at position
C, spanning a total of 40 970 compounds (Figure 3). To
explore this space, an initial combinatorial subset of 2114
compounds was created and screened. Using the results from
this initial screen and scientific knowledge about the target,
three subsequent combinatorial subsets were created and
screened. In total, 2483 compounds (6% of the total
combinatorial space) were created. Table 2 summarizes the
new substructure space explored by each iteration and
provides insight into the historical optimization process. In

general, each iteration explored small rectangular subsets of
the combinatorial space. Notice, in iteration 1 all five
substructures were explored for position A, 26 of 34
substructures were explored for position B, and 164 of 241
substructures were explored for position C. However, only
9.9% of the compounds from the 5× 26 × 164 space were
created. In iteration 2, no new substructures were explored
for position A (all were explored in iteration 1), but seven
new substructures were explored for position B, and nine
new substructures were explored for position C.

For the response of interest, compounds are considered
active if their percent inhibition values are greater than 40.
In addition to finding active compounds, we seek to find
compounds that fall within the constraints of Table 3. These
constraints include the chemical properties: chemical reac-
tivity, occurrence of toxicologically risky chemical features,
molecular weight, number of rotatable bonds, violations of
the Rule of 5,20 aromatic rings, calculated polar surface area,
and LogP (hydrophobicity).

Of the 2483 compounds that were created, 69% have all
desired characteristics, while 31% have one or more undesir-
able characteristics. While the second iteration successfully
finds 26 active compounds, only 6 of these have all of the
desired characteristics (Table 4). And overall, the number
of active compounds found that meet all desired character-
istics is low (0.5%). Using the SELC method, we will attempt
to identify substructures associated with active compounds
and with the scientific intuition used to generate compounds
in iterations 2, 3, and 4.

Implementing the SELC Method. As recommended in
Mandal et al.,15 we will initialize the experiment using an
orthogonal array.21 An orthogonal array of strengtht, denoted
by OA(N, s1

m1s2
m2...sγ

mγ, t), is anN × m matrix, m ) m1 + m2

+ ... + mγ, in which mi columns havesi(g2) levels such
that, for anyt columns, all possible combinations of levels
appear equally often in the matrix. Usually when we refer
to an array of strength 2, the indext ) 2 is dropped for
notational simplicity. An orthogonal array has two primary
benefits. First, an OA is efficient because it requires fewer
units (compounds) to precisely estimate factor (substructure)
effects. An OA can also effectively estimate interactions
among factors. From Table 2, iteration 1 explored 5

Table 2. New Substructure Space Explored by Each Historical
Iteration

iteration
no. of compds

created A B C A× B A × C B × C

1 2114 5 26 164 75 286 1168
2 208 0 7 9 17 18 102
3 128 0 1 41 1 41 120
4 33 0 0 27 0 27 32
overall 2483 5 34 241 93 372 1422

pl ∝ yj(x1 ) l)

ql1l2
∝ yj(x1 ) l1,x2 ) l2)

Table 3. Desired Compound Characteristics for Combinatorial
Chemistry Example

reactive matched <1
risky matched <3
molecular weight <500
rotatable bonds <10
rule of 5 <2
aromatic ring count <5
polar surface area <140
cLogP <5

Table 4. Number of Active Compounds by Each Historical
Iteration

iteration
no. active

(total)
no. of active with all

desired characteristics

1 3 (2114) 2
2 26 (208) 6
3 11 (128) 5
4 0 (33) 0
overall 40 (2483) 13
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substructures for A, 26 for B, and 164 for C. Due to these
constraints, we use a 625 run 25× 25× 25 orthogonal array,
spanning positions A, B, and C, respectively. Because
position A has only 5 levels, we collapse the 25 levels at
position A of the orthogonal array down to five levels
through merging.18 For positions B and C, we chose the 25
substructures with the highest frequency of occurrence. Of
the 625 substructure combinations suggested by this OA, 241
compounds have been created in iteration 1. Moreover, only
173 of these meet the requirements in Table 3, and we will
use this constrained subset as our initial information for the
SELC algorithm. Although this subset contains information
for only 28% of compounds from the original OA, these
contain similar information about substructure importance
as the entire compound set from iteration 1. Table 5 presents
a regression analysis on both the entire set of compounds
from iteration 1 and the subset by the OA. Clearly, positions
A and C are identified as significant factors in explaining
the response for both the iteration 1 data and the OA subset.

Upon conducting the initial analysis, we construct the
forbidden array. Ultimately, we desire to find highly active
compounds that meet the desired characteristics presented
in Table 3. As a surrogate to a scientist’s knowledge, we
have used the historical data to identify undesirable combina-
tions of characteristics. Hence, our forbidden array includes
the worst compound and all compounds from the historical
screen with two or more undesirable characteristics (n)70).

The forbidden array will also have order 2, which means
that any pairwise interactions present in the forbidden array
will not be allowed to be created in future experiments. For
example, the worst compound in the initial experiment has
substructure 3 in position A, substructure 10 in position B,
and substructure 3 in position C. Hence, in future experiments
we will not allow any compounds with substructure 3 in
position A and 10 in position B, 3 in position A and 3 in
position C, and 10 in position B and 3 in position C.

After selecting the forbidden array, we choose mutation
probabilities for each substructure at each position. These
probabilities are weighted according to the average substruc-

ture performance in iteration 1 (see Table 6). Each substruc-
ture receives the same baseline weighted mutation probability
(0.2 × 1/4). Then, for those substructures with a positive
average response, an additional weight is added. For example,
the additional weight added to substructure 2 is (0.92/(0.92
+ 0.8) ) 0.53). Substructures for positions B and C are
treated similarly. Using the forbidden array and these
weighted mutation probabilities, we now use the SELC
method to suggest 200 new compounds to create and screen.

Of the 200 compounds suggested by the SELC, 113
(56.5%) were screened in the original experiment, which is
a substantial enrichment over the percent that we would
expect by random selection (5.2%) (2114/40970)× 100)
(Table 2). Hence, the enrichment provided by the SELC is
strong evidence that the method is identifying meaningful
information. Of the 113 compounds identified by the SELC
that had been screened, 102 were from iteration 1, 8 were
from iteration 2, and 3 were from iteration 3 (Table 7).
Additionally, 88 (77.9%) of these compounds had all of the
desired characteristics. Moreover, both actives that were
selected had all desired characteristics.

While the SELC identified only two active compounds, it
has identified substructures associated with highly active
compounds. For the 113 compounds that were screened, all
3 substructures of position A that are associated with the
observed highly active compounds were identified, 11 of 12
substructures for position B were identified, and 6 of 16
substructures for position C were identified. These ratios were
even better for the substructures associated with highly active
compounds that met all of the desired characteristics. For
these compounds, SELC identified all 3 substructures for
position A, all 6 substructures for position B, and 5 of 10
substructures for position C. Because the SELC uses a
weighted mutation scheme for each position, it will be able
to efficiently create highly active compounds with desired
characteristics.

In this example, we were able to use the SELC method to
identify substructures associated with highly active com-
pounds, identify highly active compounds, and improve upon
the percent of compounds with desirable characteristics. Most
importantly, this example illustrates that the SELC has the
potential to save a significant amount of resources: only 15%
of the original resources (100× (173 + 200)/2483) were
used to find active compound matter and to enrich our
knowledge of the chemical space.

Table 5. Regression Analysis of Substructure Position for the
Original Combinatorial Data and for the Orthogonal Array Subset

estimate SE t value Pr(>|t|)
Original Data

(intercept) 1.10 0.31 3.50 0.000
A -36.16 12.30 -2.94 0.003
B -0.22 6.86 -0.03 0.975
C 69.87 16.31 4.29 0.000
A2 -1264.76 413.31 -3.06 0.002
B2 -387.17 296.81 -1.30 0.192
C2 -1115.25 385.72 -2.89 0.004
AB -638.24 315.01 -2.03 0.043
AC -260.33 417.99 -0.62 0.533
BC -170.85 352.54 -0.49 0.628

Orthogonal Array Subset
(intercept) 1.58 0.65 2.41 0.017
A -12.37 6.16 -2.01 0.046
B 4.06 5.94 0.68 0.495
C 37.88 13.22 2.87 0.005
A2 -268.62 88.29 -3.04 0.003
B2 42.40 93.70 0.45 0.651
C2 -135.48 65.85 -2.06 0.041
AB -43.05 78.49 -0.55 0.584
AC 78.24 75.94 1.03 0.304
BC -85.42 76.15 -1.12 0.263

Table 6. Average Response and Weighted Mutation Probabilities
for Each Substructure at Position A

substructure av response weighted mutation probability

1 -1.77 ) 0.2× 1/4 + 0 × 3/4
2 0.92 ) 0.2× 1/4 + 0.53× 3/4
3 0.80 ) 0.2× 1/4 + 0.47× 3/4
4 -1.30 ) 0.2× 1/4 + 0 × 3/4
5 NA ) 0.2× 1/4 + 0 × 3/4

Table 7. Breakdown of SELC Suggested Compounds by the
Original Iteration Number

iteration
no. active

(total)
no. of active with all

desired characteristics

1 0 (102) 0
2 2 (8) 2
3 0 (3) 0
overall 2 (113) 2
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CONCLUSIONS

Improvements in technologies have enabled scientists to
create compounds more efficiently and screen compounds
more rapidly, providing a wealth of information about a wide
range of chemical space for which to make decisions. Despite
the improvement in technology, constraints still exist for
allowing scientists to fully utilize these technologies and the
information generated by them. For example, a large com-
binatorial array can be designed, but resources are often
limited to creating only a fraction of the desired space.
Compounds can also be screened across a number of arrays,
but the ability to fully understand complex underlying
relationships is limited. Hence, there is an immediate need
to couple these new technologies with statistical and
optimization tools to enable scientists to harness the maxi-
mum amount of information and make informed decisions.

Both methods suggested in this work, desirability functions
and SELC, can be quickly and easily implemented and
coupled to existing technology to enhance decision making.
Moreover, both methods can incorporate expert knowledge
to allow the procedures to identify more relevant compounds.
The desirability function, for instance, can be weighted to
emphasize information from some screens, while de-
emphasizing information from other screens. Likewise, the
SELC method incorporates prior knowledge through the
forbidden array, which is a unique characteristic of this
optimization technique. In addition, the SELC method is
guided by learned information through the weighted mutation
scheme. Because modified desirability functions and the
SELC incorporate expert knowledge to guide the optimiza-
tion process, each can be easily influenced. For desirability
functions, we suggest that the user select a scientifically
defendable range of parameter values prior to calculating
the desirabilities. In the case of SELC, we suggest that the
user select only compounds that are scientifically defendable
for placement into the forbidden array.

In both of the practical examples presented here, desir-
ability functions and the SELC effectively identified impor-
tant compounds and characteristics of important compounds.
In the case of the SELC, significantly fewer resources were
required to find potent chemical matter.

These tools combined with appropriate scientific knowl-
edge have the potential to improve the efficiency of identify-
ing effective and safe chemical entities with desirable ADME
properties. Moreover, both methods can be used to enrich
compounds libraries.
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