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The online quality monitoring procedure for attributes proposed by Taguchi has been critically studied
and extended by a few researchers. Determination of the optimum diagnosis interval requires estimation
of some parameters related to the process failure mechanism. Improper estimates of these parameters
may lead to an incorrect choice of the diagnosis interval and thus huge economic penalties. We propose
a Bayesian approach to estimate the process parameters under two different process models, commonly
called as the case II and case III models in the literature. We discuss a systematic way to use available
engineering knowledge in eliciting the prior for the parameters, and demonstrate the performance of the
proposed method using extensive simulation and a case study from a hot rolling mill.
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1. INTRODUCTION

Determination of the most economic sampling interval for
control of defective items is a highly relevant problem to man-
ufacturing processes that produce a continuous stream of prod-
ucts at high speed. On one hand, frequent inspection requires
more cost, time, and manpower, whereas on the other hand, re-
duced frequency of inspection may lead to the risk of rejection
of a large number of items. The problem of developing eco-
nomically based online control methods for attributes has been
addressed in detail by Taguchi (1981, 1984, 1985), Taguchi, El-
sayed, and Hsiang (1989), and Nayebpour and Woodall (1993).
The basic idea is to inspect a single item after every m units of
production, with a process adjustment made as soon as a defec-
tive item is found. The value of m is to be determined to mini-
mize the long-term expected cost per item under the assumption
of fixed costs for each inspection, each defective item, and each
process adjustment.

Primarily two typical patterns of arrival of special causes
were considered. In the first case (referred to as case I in the
literature), the process shifts from producing no defective items
to producing all defective items. A detailed case study on a hot
rolling process pertaining to an extension of case I has been
given by Dasgupta (2003). In the second case (case II), the
process shifts from producing no defective items to 100π% de-
fective items, where 0 < π < 1. Note that case I is a special
case of case II with π = 1. Nandi and Sreehari (1997) consid-
ered a combination of these two cases, designated case III, in
which there are two types of assignable causes, termed minor
and major, which appear according to a geometric pattern with
parameters p1 and p2. The process shifts from a no-defective
producing state to 100π% or 100% defective producing state
according as the minor or the major cause occurs.

Among other approaches, Adams and Woodall (1989) and
Srivastava and Wu (1991, 1994, 1995, 1996) used random-walk
models to analyze Taguchi’s procedure. The problem of deter-
mination of optimal inspection intervals by minimizing the ex-
pected cost per unit of time over an infinite time span also has

been studied in reliability literature (Barlow and Proschan 1965,
chap. 4).

Whereas Taguchi did not explicitly assume a specific process
failure mechanism (PFM), Nayebpour and Woodall (1993) con-
sidered a geometric PFM with a parameter p. This means that
the duration of the process in the in-control state, measured by
the number of items produced before a process shift occurs, is a
geometric random variable with parameter p. The expected loss
per item, E(L), is a function of p in case I and (p,π) in case II.
Thus the task of obtaining the optimal sampling interval com-
prises of the following two stages:

a. Estimate the parameters associated with the PFM from
historical data.

b. Plug in these estimates into the expression for E(L) and
minimize it with respect to m.

Therefore, the solution to the optimization problem is strong-
ly dependent on the estimate of the process parameters p and π .
Biased estimation may lead to improper choice of the inspec-
tion interval and, consequently, huge economic penalties.

For both case II and case III, some prior information is avail-
able about one or more of the process parameters. This infor-
mation may or may not be very accurate, but nonetheless it
can be used to develop a Bayesian procedure for estimating the
parameters. The Bayesian approach is natural in situations in
which some experience-based prior knowledge exists. Harness-
ing such knowledge or information is likely to increase effi-
ciency of the estimation. In this article we propose a Bayesian
approach for estimating process parameters in cases II and III.

In Section 2 we review the underlying statistical model and
optimization procedure associated with case II and introduce
the notations used in the rest of the article. We devote Section 3

© 2008 American Statistical Association and
the American Society for Quality

TECHNOMETRICS, MAY 2008, VOL. 50, NO. 2
DOI 10.1198/004017008000000118

167



168 TIRTHANKAR DASGUPTA AND ABHYUDAY MANDAL

to a brief discussion of the existing estimation procedures and
the problems associated with them. In Section 4 we develop
the Bayesian estimation procedure for case II and evaluate its
performance using simulated examples. We also illustrate the
approach with a case study. We propose and illustrate an es-
timation procedure for case III in Section 5 and present some
concluding remarks in Section 6.

2. THE STATISTICAL MODEL AND OPTIMIZATION
PROBLEM FOR CASE II

It is important to note that, as in the method of Taguchi (1981,
1984, 1985), the situation is different than typical control chart-
ing. Process monitoring is done not with control limits, but
rather through individual product inspection. We also assume
that the inspection error is negligible. Later, in Section 4.3, we
briefly discuss how the estimation procedure may be affected
by presence of type I and type II errors.

We assume that a cycle starts with the beginning of pro-
duction or after an adjustment and ends with removal of the
assignable cause. Let m denote the sampling interval. The fol-
lowing four components of cost are considered:

• Cd , the cost of producing one unit of defective product
• CI , the cost of sampling and inspecting one unit of product
• Ca, the process adjustment cost expressed as Ca = C1t +

C2, where C1 is the cost of stopping the process for one
unit of time, t is the expected time for the adjustment, and
C2 is the direct recovery cost (See Nayebpour and Woodall
1993 for more details.)

• CD, the cost of a defective item if it is sent to later stages of
production or to the customer. Note that measurement of
this cost component may not be straightforward. A short
discussion of this issue is included in the concluding sec-
tion.

We now introduce some notations that we use throughout the
rest of the article. For the ith production cycle, i = 1,2, . . . , we
use the following:

• Ui, the number of products manufactured until the appear-
ance of the first defect

• Xi = �Ui/m� + 1, the number of inspections from the be-
ginning of the cycle to the first one immediately after the
appearance of the first defect (Note that �X� denotes the
greatest integer contained in X [floor function].)

• Yi, the number of additional inspections needed to detect
the assignable cause after Xi

• l, the number of units produced from the time at which a
defective item is sampled until the time that the production
process is stopped for adjustment

• Si = Xi + Yi + �l/m�, the number of products inspected in
the cycle

• Ti = m(Xi + Yi) + l, the total length of a cycle or, in other
words, the number of products manufactured in a cycle

• Ci, the total cost incurred in the cycle.

We assume that Ui and Yi (i = 1,2, . . .) are geometric ran-
dom variables with parameters p and π so that

P(Ui = u) = pqu−1, u = 1,2, . . . ,where q = 1 − p,

and

P(Yi = y) = π(1 − π)y, y = 0,1,2, . . . .

It readily follows that the probability mass function (PMF) of
Xi is given by

P(Xi = x) = P
(
(x − 1)m < Ui ≤ mx

)

= q(x−1)m(1 − qm), x = 1,2, . . . . (1)

Let us consider a simple example (Fig. 1) to better character-
ize these variables. Suppose that the current sampling interval m
is 10. The 17th item is the first defective item, after which the
process starts producing 100π% defectives. The 20th item is
nondefective; thus the second inspection is unable to detect the
assignable cause. The defect appears in the 30th item and is de-
tected. But the process can be stopped after 4 more items have
been manufactured, that is, after only the 34th item; thus in this
cycle, U = 17, X = 2, Y = 1, l = 4, T = 34, and S = X + Y = 3.

Note that cases I and III also can be explained with the fore-
going process model. As noted earlier, case I is a special case
of case II where π = 1 and thus Y = 0 and S = X + �l/m�. In
case III we have two possibilities—either the minor assignable
cause (after which the process starts producing 100π% defec-
tives) or the major assignable cause (after which the process
starts producing 100% defectives) appears first. Thus in this
case U = min(U1,U2), where U1 ∼ Geometric(p1) and U2 ∼
Geometric(p2); consequently, U ∼ Geometric(p), where p =
p1 + p2 − p1p2.

The sequence (T1,C1), (T2,C2), . . . represents a renewal re-
ward process (Ross 1996). Thus, by the renewal reward theo-
rem, the long-term expected loss per product, E(L), converges
to E(C)

E(T)
, where E(Ci) = E(C) and E(Ti) = E(T) for i ≥ 1. Under

the geometric PFM with a given p, explicit expressions for E(C)

and E(T) can be computed (Nayebpour and Woodall 1993), and
E(L) can be expressed as a convex function of m for given p

Figure 1. An illustration of case II (•, nondefective item; ×, defective item; 1, inspected item).
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and π ; we denote this function by L(m,p,π). Note that the ex-
pression for the loss function L depends on whether or not retro-
spective inspection is performed. To be specific, we can use the
notation L1(m,p,π) in the case when retrospective inspection
is performed and L2(m,p,π) when it is not. From Nayebpour
and Woodall (1993), we have

L1(m,p,π) = E1(C)/E(T)

and

L2(m,p,π) = E2(C)/E(T),

where

E1(C) =
((

m − q

1 − q
+ mqm

1 − qm

)
π2

+ mπ(1 − π) + lπ

)
Cd

+
((

m − q

1 − q
+ mqm

1 − qm

)
π(1 − π)

+ m(1 − π)2
)

CD

+
(

m/(1 − qm) + m(1 − π)/π

m
+

⌊
l

m

⌋)
CI + Ca,

E2(C) =
((

m − q

1 − q
+ mqm

1 − qm

)
π + lπ + m(1 − π)

)
Cd

+
(

m/(1 − qm) + m(1 − π)/π

m
+

⌊
l

m

⌋)
CI + Ca,

and

E(T) = m

1 − qm
+ m(1 − π)

π
+ l.

Note that although both of the foregoing expressions include
the adjustment cost component Ca, they are actually differ-
ent in the two cases. The cost component Ca in the expres-
sion for L1(m,p,π) includes the cost of retrospective inspec-
tion, whereas that in L2(m,p,π) does not (see Nayebpour and
Woodall 1993).

The moment estimator of p is given by

p̂ = 1 −
(

1 − mc

T − (l + mc(1 − π)/π)

)1/mc

, (2)

where T is the average of observed realizations T1,T2, . . . ,TN ,
and mc denotes the current sampling interval. Note that we need
an estimate of π , say π̂ , to obtain p̂; consequently, the optimum
sampling interval is to obtained as

m∗ = arg min L(m, p̂, π̂). (3)

Note that, to ensure that the estimate of p obtained from (2)
is a real number satisfying 0 < p̂ < 1, we must have

π >
mc

T − l
. (4)

We denote this lower bound of π by πbound . This bound will
be particularly useful because, from a practical standpoint, an
engineer is more likely to have a preliminary knowledge of the
range of π than of p, and, consequently, one we must use (2) to
convert such knowledge to meaningful information on p.

3. EXISTING ESTIMATION METHODS

In case I the problem of estimation of p is straightforward,
because we have an explicit expression for its maximum likeli-
hood estimate (MLE) given by

p̂ = 1 −
(

1 − mc

T̄ − l

)1/mc

. (5)

In case II the moment estimator of p given by (2) involves π ,
and biased estimation of π may lead to an erroneous estimate
of p. Of course, estimation of π , becomes trivial if retrospec-
tive inspection is performed to trace back the starting point of
the assignable cause, for example, if a defect is detected at the
40th product, and when traced back with 100% inspection (ret-
rospective), the first defect is seen to occur in the 27th product.
Then the 14 products (27–40) were produced after the occur-
rence of the special cause. This means that 14 is a realization
of Y , which is a geometric random variable with parameter π . If
more data on Y are generated in this way through retrospective
inspections (with each production cycle generating one value
of Y), then π can be estimated as 1/(1 + Ȳ). Nayebpour and
Woodall (1993) suggested that π should be estimated from such
retrospective data.

But retrospective inspection is a costly affair; a company
will do it only if it believes that a fairly high percentage of
undetected defects likely will be passed on to the customer;
that is, they perceive that the value of π is fairly high. Indeed,
Nayebpour and Woodall (1993) recommended performing ret-
rospective inspection if CI ≤ πCD, where CI denotes the cost
of sampling and inspecting one unit of product and CD denotes
the cost of a defective item if it is sent to later stages of pro-
duction or to the customer. This may appear as a “chicken first
or egg first” type of problem—retrospective inspection data are
needed to estimate π and, on the other hand, an estimate of π

is needed to determine whether or not to perform retrospective
inspection.

To summarize, estimation of p and π is trivial if we perform
retrospective inspection; however, the decision of whether or
not to do retrospective inspection is not so trivial and ideally
should depend on the value of π . Thus a direct (using the avail-
able data on cycle lengths) estimation method of the process
parameters will have two advantages: It will help prevent eco-
nomic penalties, as well as assist managers in making better
decisions regarding whether or not to implement retrospective
inspection.

The issue of optimal inspection policy for system failures,
primarily from the standpoint of preventive maintenance, has
been addressed in the reliability literature. The mathemati-
cal framework of case II described herein corresponds to the
imperfect-inspection model discussed by Brown and Proschan
(1983), Elsayed and Okumoto (1983), and Nakagawa (1988)
for a single unit system. The probability of detecting failure in
the imperfect-inspection model, β , is an analog of π , the prob-
ability of a defect occurring after the failure in case II.

A method of parameter estimation in an imperfect-inspection
model was proposed by Srivastava and Wu (1993). They ob-
tained a first-order binomial autoregressive model using an ap-
proximate likelihood filtering method under the assumption that
1 − β is small. Note that this is a good surrogate to case I,
whereas in case II, 1 − π (or, equivalently, 1 − β) is not small.
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The method works as follows. Let xk denote the number of
failures detected out of n components by the kth inspection,
k = 1,2, . . . ,K and let ψk = p(1 − (1 − β)

xk−1
n ). Then, using

the binomial autoregressive model given by

K∑

k=1

xk ln(ψk) + (n − xk) ln(1 − ψk),

p and β are estimated by solving the following equations itera-
tively:

1

K

K∑

k=1

xk/n

ψk
= 1 (6)

and

1

K

K∑

k=1

1 − xk/n

1 − ψk
= 1. (7)

In the present scenario, we have n = 1, with each xk binary.
Note that xk = 1 if the kth inspection is the last inspection of a
cycle and 0 otherwise. Assuming that l = 0, minN

i=1 si ≥ 2, and
substituting π for β , after some algebra (see App. A), we ob-
tain p̂ = N/

∑N
i=1 si and π̂ = 1. Observe that the estimator of

p is the same as its MLE in case I given by (5) when mc = 1
and l = 0. This is expected, because case I is a special case of
case II when π = 1. Thus, although the method works well for
multiple-unit systems and large π , it may not be very appro-
priate for the generic case II problem, where 1 − π usually is
not small, as seen in most real-life case examples in the quality
control literature. The assumption minN

i=1 si ≥ 2 (which means
that in the observed data, the first inspection of any new cycle
does not detect a defect) is not very strong and holds well, for
example, in the case study described in Section 4.4.

Moreover, it may be noted that conceptually, there is a dif-
ference between the inspection described in the reliability lit-
erature and that described in the quality control literature. In-
spection for preventive maintenance involves inspecting system
units or elements of the functional process, whereas the kind
of inspection discussed here involves an inspection of prod-
uct quality merely for symptoms of failure. Process monitoring
in quality control usually comprises the following two stages:
(a) detecting symptom of a failure through product inspection
and (b) pinpointing the root cause by repeated checking of sys-
tem components (see Dasgupta 2003 for a practical example).
The optimal inspection policy described in the reliability liter-
ature can be successfully used in stage (b) whereas the current
scenario deals with stage (a).

For case III, Nandi and Sreehari (1997) simply derived an
expression for the expected loss and use it for optimizing the
inspection interval, but did not discuss estimation of p1,p2,
and π , which is a tricky problem. An analogy of case III with
preventive maintenance in the reliability literature can be found
by considering this case as a multiple shock model (Esary,
Marshall, and Proschan 1973), in which both minor and major
causes can occur independently. Estimation of process parame-
ters in such a situation has not been discussed, however.

4. ESTIMATION OF p AND π IN CASE II

Suppose that we observe N production cycles and have the
data on their lengths as T1,T2, . . . ,TN , or, equivalently, on the

number of products inspected in each cycle s1, s2, . . . , sN . The
objective is to estimate π and p from this data set. To do this,
we first consider the likelihood function of the parameters given
by the following proposition (the proof of which is in App. A).

Proposition 1. The log-likelihood function of p and π is
given by

log L(p,π; s1, s2, . . . , sN)

= N logπ + N log (1 − qm) − N log |1 − π − qm|

+
N∑

i=1

log |(1 − π)ri − qmri |, where r = s − �l/m�.

Clearly, the log-likelihood does not yield a straightforward
expression for the MLE. Thus we must use numerical methods
to solve the optimization problem; however, owing to the com-
plex nature of the nonlinear function, its direct optimization is
not very easy.

It is highly likely that in most cases, process engineers
will have some reasonable idea about π , which may not be
good enough to check the condition CI ≤ πCD and determine
whether retrospective inspection should be done, but may pro-
vide the analyst with a reasonable prior distribution for π . If
similar information is available for p, then we may elicit a prior
distribution for p as well. But, practically speaking, an engineer
is more likely to answer the question of what percentage of de-
fects the process produces when the process shifts with more
conviction than the question of how long it takes for a process
shift to occur.

The information obtained is usually in the form of an interval.
In the next section we develop a formal methodology for trans-
lating such information into prior distributions for π and p. In
the absence of prior information on p, we use (3) to convert the
available knowledge about π to meaningful information on p.

4.1 Elicitation of Priors

Suppose, based on their past experience and/or a pilot study,
that the process engineers are able to specify a reasonable range
for π as [πL,πU]. Let T denote the mean cycle length as ob-
served from the given data. Recalling from (4) that π must sat-
isfy π > πbound , we would assign a negligibly small mass of
the prior distribution below πbound . Therefore, we can elicit a
Beta(απ ,βπ) prior for π where the hyperparameters can be ob-
tained by solving

�(απ + βπ)

�(απ)�(βπ)

∫ πbound

0
παπ−1(1 − π)βπ−1 dπ = ε (8)

and

�(απ + βπ)

�(απ)�(βπ )

∫ πU

max(πbound,πL)

παπ−1(1 − π)βπ−1 dπ = 1 − γπ .

(9)

Clearly, (8) implies that there is a negligibly small probabil-
ity, ε, that π will be less than πbound , and (9) ensures that the
probability of π lying beyond the stated interval equals a pre-
assigned value γπ . Note that 1 − γπ can be interpreted as the
degree of belief associated with the stated range. This degree of
belief may be 100% if, for example, the engineer emphatically
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states that “I can guarantee that under no circumstances will π

exceed 20%.” In such a case, we can elicit a uniform prior for
π over [max(πbound,πL),πU].

Even when there is no available prior information on p, we
can elicit a prior distribution for p based on the knowledge of π .
Let pL and pU be the lower and upper limits of p obtained by
substituting πU and max(πbound,πL) in (2). Note that for π >

πbound , p and π are inversely related.
The hyperparameters αp and βp of a suitable beta prior dis-

tribution for p may be obtained by solving

�(αp + βp)

�(αp)�(βp)

∫ (pL+pU)/2

0
pαp−1(1 − p)βp−1 dp = 1

2
(10)

and

�(αp + βp)

�(αp)�(βp)

∫ pU

pL

pαp−1(1 − p)βp−1 dp = 1 − γp. (11)

Note that (10) implies that the median of the distribution
is taken at the midpoint of the interval [pL,pU]. Interpretation
of (11) clearly is the same as that of (9).

4.2 Bayesian Estimation

Assuming that p ∼ Beta(αp, βp) and π ∼ Beta(απ ,βπ), it
follows from Proposition 1 that for observed s1, s2, . . . , sN , the
logarithm of the joint posterior density is given by

log f (p,π; s1, . . . , sn)

∝

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(αp − 1) log p + (βp − 1) log q + (N + απ − 1) logπ

+ (βπ − 1) log(1 − π) + N log(1 − qm)

− N log |1 − π − qm| +
N∑

i=1

log |(1 − π)ri − qmri |

for 0 ≤ p ≤ 1, 0 ≤ π ≤ 1

0 otherwise.

If we choose uniform priors U(ap,bp) and U(aπ ,bπ ) for p
and π , then the logarithm of the joint posterior density is given
by

log f (p,π; s1, . . . , sn)

∝

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

N logπ + N log (1 − qm) − N log |1 − π − qm|

+
N∑

i=1

log |(1 − π)ri − qmri |

for ap ≤ p ≤ bp, aπ ≤ π ≤ bπ

0 otherwise.

Because E(p,π |s), the Baye’s estimate of (p,π), cannot be
computed, we use Markov chain Monte Carlo (MCMC) meth-
ods (Gelman, Carlin, Stern, and Rubin 2004, chap. 11) to de-
termine the parameter estimates. The target stationary distribu-
tion here is f (p,π; s1, . . . , sn). We cannot use Gibbs sampling,
because it is not possible to derive the full conditional distrib-
utions of either of the parameters. We can use an appropriate
Metropolis–Hastings algorithm to obtain the estimates, how-
ever.

We can choose π(0), the initial value of π , as the midpoint
of the interval [πL,πU] or [max(πbound,πL),πU]. The initial

value of p can be obtained similarly, or by substituting π = π(0)

in (4).
Alternatively, we may obtain maximum aposteriori (MAP)

estimates by maximizing the posterior density (Gelman et al.
2004, chap. 12). However, the complexities involved in this op-
timization are likely to be at least equal to those involved with
optimization of the original likelihood function. In fact, with
uniform priors, the problem of maximization of the posterior
likelihood becomes identical to direct maximization of the like-
lihood with tighter constraints.

4.3 A Simulated Example

Consider a process in which we have p = .000339, as in
the case I example of Nayebpour and Woodall (1993). Let
mc = 500, π = .10, and l = 0. We simulate 200 production cy-
cles from the foregoing process, thereby generating data of the
form s1, s2, . . . , s200.

Regarding the available prior information, we consider the
following two situations:

• The process engineer, based on his or her experience,
states that “when the process goes out of control, it pro-
duces at most 15% defectives on an average. I have no
idea about p.”

• The process engineer states that “as per my experience,
the appropriate range for π is 12 ± 5%. p usually doesn’t
exceed .0005.”

To obtain estimates of p and π in each of these two situa-
tions, we use three different priors: (a) uniform prior, a tight
Beta prior with γπ = γp = .05, and a flatter Beta prior with
γπ = γp = .25. To obtain the hyperparameters, we proceed as
follows. In situation 1, we have πL = 0 and πU = .15. Noting
that s = 15.275, we obtain πbound ≈ .07. All of the methods re-
quire some starting values of p and π . As stated in Section 4.2,
we can choose (πL + πU)/2 = .075 as the starting value π(0),
because it is greater than πbound . An appropriate range for π to
set up the priors thus would be [max(πL,πbound),πU], which in
this case is [.07, .15]. Although we have no prior information
on p, plugging the foregoing limits into (2), we obtain the in-
terval [.0002, .0009]. The starting value p(0) can be taken as the
midpoint of this interval, that is, .00055.

In situation 2, we have πL = .07 and πU = .17. Because
s = 15.275, we obtain πbound ≈ .07. The midpoint of the stated
range .12 can be chosen as a starting point for π . The initial
value of p can be chosen as .00025. To set up the priors, appro-
priate ranges for π and p will be [.07, .17] and [.0002, .0005].

The prior distributions with hyperparameters for the six cases
(two situations, with three priors corresponding to each) are
given in Table 1. Note that the hyperparameters for the Beta
priors are derived from (8)–(11), taking ε = .001.

For each of the six cases listed in Table 1, two different esti-
mators of p and π were used, an MCMC-based estimator and
the MAP estimator. To obtain the former, the mcmc library in R,
which uses a Metropolis algorithm, was used to perform the
MCMC simulations. Each MCMC run consisted of 10,000 it-
erations with a burn-in of 1,000. To obtain the posterior mode,
the posterior likelihood was maximized using the optim func-
tion in R (R Development Team 2006).
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Table 1. Prior distributions for p and π for the Bayesian methods

Degree of belief
1 − γ

Situation 1 Situation 2

Prior Prior for p Prior for π Prior for p Prior for π

Uniform U[.0002, .0009] U[.07, .15] U[.0002, .0005] U[.07, .17]
Beta Tight 95% Beta(9,16355) Beta(25,196) Beta(20,56500) Beta(20,144)

Flat 75% Beta(3,5000) Beta(19,125) Beta(6.75,18550) Beta(11,76)

The simulation was repeated 100 times; the results are sum-
marized in Tables 2 and 3. Denoting the estimate of p from the
ith simulation (i = 1,2, . . . ,100) by p̂i and the true value by p0,
the tables report the mean, median, mode, and standard devia-
tion of p̂1, p̂2, . . . , p̂100, and percentage relative bias, given by

relative bias = (1/100)
∑100

i=1 p̂i − p0

p0
× 100%.

From these results, we can make the following observations:

1. The MAP estimates were poor in both situations, irrespec-
tive of the prior distributions. Table 4 shows that the like-
lihood had multiple maxima even in the small exploration
range .00025 ≤ p ≤ .00060 and .07 ≤ π ≤ .14. This led
to multiple modes in the posterior distribution. Conver-
gence of the optimization algorithm is seen to depend on
the initial choices of the parameters.

2. The Bayes estimates obtained using MCMC performed
better and were more robust to the varying levels of avail-
able preliminary information on the parameters.

3. For the MCMC-based estimates, the relative bias and vari-
ance of p̂ corresponding to almost every method were
generally seen lower in situation 2 compared with situ-
ation 1, which shows that, as expected, with better and
more accurate prior information, more efficient estimates
can be obtained with lower bias.

Effect of Current Sampling Interval (mc). In the foregoing
simulation example, the parameter mc (current sampling inter-
val) was taken as 500, because the optimal interval for this case

(Nayebpour and Woodall 1993) was around 500. We now ex-
tend our simulation to cases in which mc is different than 500
and study the robustness of the proposed estimation method
against variations in the initial sampling interval. Note that a
statistician usually will have no control over mc, because it de-
notes the current practice adopted by the process engineers. Ta-
ble 5 gives simulation results for mc = 50, 100, 500, 1,000, and
5,000. Except for the last case (i.e., mc = 5,000), the results
were more or less satisfactory. Of course, 5,000 is an unrealis-
tic value of mc in this example. In general, we found that as mc
increased, the precision (inverse of the sampling error) of the es-
timate of p decreased, whereas that of π increased. An intuitive
explanation can be provided for such behavior. If mc = 1 (i.e.,
every item is sampled), then we would obtain a very precise es-
timate of p but a poor estimate of π , because the very first defect
will be detected. The reverse would occur if mc were very large.
Note that Table 5 includes only the MCMC estimates, because
the MAP estimates are not recommended based on the results
in Tables 2 and 3.

Effect of Sample Size (N). Although from a practical stand-
point, the issue of sample size is usually important in most es-
timation problems, it may not be very important here, because
the estimation procedure does not require generation of fresh
data, but needs only historical data. The quality department of
any organization will have plenty of past inspection records that
can be used for estimation.

Clearly, it is difficult to provide a theoretical solution to the
problem of determination of optimal sample size in the present
context. To obtain an idea of the optimal sample size in the

Table 2. Summary of simulation output in case II: Estimation of p

Estimate of p

mean(p̂) median(p̂) mode(p̂) relative sd(p̂)

Available info Method ×10−4 ×10−4 ×10−4 bias(p̂)% ×10−5

0 ≤ π ≤ .15 Uniform MCMC 3.64 3.35 3.02 7.39 9.1
No info on p MAP 5.94 5.93 5.99 75.13 4.9

Beta

Tight MCMC 3.80 3.69 3.44 12.10 6.2
MAP 2.08 2.00 2.00 −38.57 7.3

Flat MCMC 3.04 2.86 2.71 −10.28 6.7
MAP 2.08 2.00 2.00 −38.53 7.6

.07 ≤ π ≤ .17 Uniform MCMC 3.16 3.05 2.92 −6.91 4.3
0 < p ≤ .0005 MAP 4.89 5.00 5.00 44.25 5.7

Beta

Tight MCMC 3.19 3.14 3.06 −6.04 2.6
MAP 4.97 5.00 5.00 46.72 2.8

Flat MCMC 3.20 3.10 2.86 −8.55 6.2
MAP 4.99 5.00 5.00 47.49 1.9
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Table 3. Summary of simulation output in case II: Estimation of π

Estimate of π

mean(π̂) median(π̂) mode(π̂) relative sd(π̂)

Available info Method ×10−2 ×10−2 ×10−2 bias(π̂)% ×10−3

0 ≤ π ≤ .15 Uniform MCMC 10.12 10.21 11.04 1.25 11.2
No info on p MAP 8.26 8.38 8.52 −17.41 5.4

Beta

Tight MCMC 9.83 9.90 10.11 −1.65 7.2
MAP 7.12 7.00 7.00 −28.84 9.2

Flat MCMC 11.31 11.57 11.68 13.07 8.9
MAP 7.10 7.00 7.00 −29.04 8.7

.07 ≤ π ≤ .17 Uniform MCMC 10.80 10.93 11.38 7.97 10.2
0 < p ≤ .0005 MAP 16.72 17.00 16.99 67.20 16.5

Beta

Tight MCMC 10.70 10.72 10.76 6.98 6.9
MAP 16.92 17.00 16.99 69.18 8.9

Flat MCMC 10.68 10.66 10.64 6.80 10.4
MAP 16.96 17.00 17.00 69.60 6.3

current simulation example, we study the effect of sample size
on the mean squared error (MSE) of the estimates. Recall that
from 100 simulations, we had estimated the relative bias and
standard error for the estimated parameters. Now we vary the
sample size N (number of cycles) from 10 to 300 in steps of 10
and compute the MSE as the sum of squared absolute bias and
variance. Figure 2 shows the plot of estimated MSE(p̂) ver-
sus N, corresponding to situation 1 with a uniform prior. From
the continuous curve fitted through these points, we conclude
that a sample size of about 150 should be good enough, be-
cause the reduction in MSE after 150 is not very significant.
On the other hand, MSE(π̂) (not shown here) stabilizes much
faster. The results are similar for situation 2 and the Beta priors.

Effect of Inspection Error. Although in the development of
the Bayesian estimation methodology, we have assumed that
the inspection error is negligible, this may not be the case in all
situations. Borges, Ho, and Turnes (2001) developed an exten-
sion of the problem in the presence of diagnostic errors. As they
showed, extension of the results of Nayebpour and Woodall
(1993) requires the development of a new model. The optimal
monitoring procedures are more sensitive to changes in type I
error than to changes in type II error. But Borges et al. (2001)
assumed that p and π are known. Here we show how the pres-
ence of type I and type II inspection errors affect the estimation
of p and π and thus the optimal monitoring procedure.

We simulated the same process as described in Section 4.3
with type I error (denoted by a) ranging from .001 to .05 and
type II error (denoted by b) ranging from .005 to .10. The de-
tailed results are given in Tables A.1 and A.2 in Appendix B.
For both p and π , the bias of the estimators was more signifi-
cantly affected by type I error than by type II error. Therefore,
in a situation in which a significant inspection error is expected,
the estimation method should be modified. This is a topic for
future research.

4.4 Case Study

Although quite a few case studies on the case II problem
(Taguchi et al. 1989, p. 111) have been reported, none of these
has reported the complete raw data on the cycle lengths. Owing
to the absence of such published raw data that pertain exactly
to the stated scenario, we consider the hot rolling case study
reported by Dasgupta (2003). Certain defects do not appear in
each hot-rolled product after the process shifts. For example,
when a guide connecting two successive rolling stands becomes
old or worn out, every product passing through it will not nec-
essarily be defective; however, there is a moderately high prob-
ability, π , that it will. Therefore, a hot rolling process perfectly
fits into the case II setup as well.

Table 4. Likelihood with multiple maxima

π

p .07 .08 .09 .10 .11 .12 .13 .14

.00025 −752.08 −743.38 −737.38 −733.39 −730.89 −729.49 −728.90 −728.91

.00030 −744.20 −736.81 −732.23 −729.74 −728.81 −729.04 −730.13 −731.83

.00035 −739.17 −732.93 −729.59 −728.42 −728.91 −730.66 −733.35 −736.71

.00040 −735.86 −730.62 −728.34 −728.32 −730.06 −733.15 −737.27 −742.17

.00045 −733.65 −729.25 −727.89 −728.87 −731.67 −735.92 −741.30 −747.55

.00050 −732.16 −728.49 −727.91 −729.74 −733.46 −738.70 −745.16 −752.58

.00055 −731.14 −728.10 −728.20 −730.76 −735.28 −741.37 −748.76 −757.19

.00060 −730.44 −727.95 −728.64 −731.84 −737.04 −743.88 −752.06 −761.35
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Table 5. Summary of simulation output: Effect of mc

Estimate of p Estimate of π

mean(p̂) relative sd(p̂) mean(π̂) relative sd(π̂)

mc Available information Method ×10−4 bias(π̂)% ×10−5 ×10−2 bias(π̂)% ×10−3

50 0 ≤ π ≤ .15
No information on p

Uniform 3.41 .68 2.50 10.51 5.09 13.99

Beta
Tight 3.44 1.44 2.40 10.69 6.90 9.51

Flat 3.35 −1.04 2.32 12.03 20.28 12.39

.07 ≤ π ≤ .17
0 < p ≤ .0005

Uniform 3.38 −.16 2.44 11.01 10.14 17.61

Beta
Tight 3.32 −2.19 2.25 12.52 25.17 17.46

Flat 3.36 −.81 2.18 11.37 13.70 11.65

100 0 ≤ π ≤ .15
No information on p

Uniform 3.44 1.34 2.96 10.35 3.45 14.04

Beta
Tight 3.45 1.91 2.72 10.47 4.66 9.77

Flat 3.33 −1.79 2.69 11.47 14.71 12.91

.07 ≤ π ≤ .17
0 < p ≤ .0005

Uniform 3.38 −.40 2.93 10.74 7.43 18.06

Beta
Tight 3.26 −3.89 2.54 12.04 20.45 17.47

Flat 3.34 −1.45 2.38 11.05 10.52 11.77

500 0 ≤ π ≤ .15
No information on p

Uniform 3.59 5.88 8.81 10.14 1.36 11.24

Beta
Tight 3.76 10.91 5.90 9.83 −1.68 7.15

Flat 3.04 −10.22 6.60 11.35 13.53 9.04

.07 ≤ π ≤ .17
0 < p ≤ .0005

Uniform 3.16 −6.93 4.20 10.82 8.15 10.41

Beta
Tight 2.68 −21.01 2.80 12.26 22.64 6.01

Flat 3.18 −6.29 2.65 10.67 6.73 6.99

1000 0 ≤ π ≤ .15
No information on p

Uniform 3.87 14.01 11.02 10.04 .39 9.74

Beta
Tight 4.00 17.94 7.74 9.95 −.50 7.08

Flat 3.49 2.88 10.76 10.54 5.44 10.54

.07 ≤ π ≤ .17
0 < p ≤ .0005

Uniform 3.39 −.05 5.69 10.29 2.91 9.41

Beta
Tight 3.16 −6.85 6.89 10.76 7.65 10.92

Flat 3.32 −2.12 3.73 10.30 3.01 7.05

5000 0 ≤ π ≤ .15
No information on p

Uniform 5.00 47.46 11.16 9.99 −.09 6.61

Beta
Tight 4.98 46.78 6.46 10.06 .61 5.94

Flat 4.89 44.36 16.05 10.22 2.20 6.56

.07 ≤ π ≤ .17
0 < p ≤ .0005

Uniform 3.47 2.39 4.11 10.10 .97 6.94

Beta
Tight 3.43 1.21 6.00 10.28 2.77 6.80

Flat 3.46 2.05 2.47 10.22 2.17 6.41

Although this process is actually an extended version of
case I, we can visualize it as a case II example with π = pv

and Y = V . In the original problem, V is defined as the number
of items produced starting from detection of the defect to iden-
tification of the specific process fault, and it follows a geometric
distribution with parameter pv. Although we have separate data
on X and Y for each of the 100 production cycles, we assume
that we observe only T , that is, the total cycle length. Table 6
gives the complete data. Note the following:

a. Because only T is assumed to be observed, we obtain S =
[T−l

mc
].

b. Because [l/mc] = 0, we have S = X + Y .
c. l actually is a random variable, which is seen to vary be-

tween 3 and 5; however, we assume it to be a constant equal
to 4.

We assume that when asked about π , the process engineer
states that “it doesn’t exceed 12%.” Because we have no lower
bound for π , we take πL = πbound ≈ .06. Substituting πL and
πU in 2, we get pL = .0095 and pU = .046.

Using the Bayesian algorithm with a uniform prior over the
intervals [.06, .12] and [.0095, .046], we obtain the estimates
of π and p as π̂ = .0888 and p̂ = .0132. Because no ret-
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Figure 2. Sample size versus estimated MSE of p̂.

rospective inspection is performed, we use the loss function
L2(m, p̂, π̂) for optimization. Substituting CI = 21,CD = 138,
and Ca = 100, we obtain the optimum diagnosis interval as
m∗ = 3. The result remains the same if we take πL = .07 in-
stead of .06.

Note that if we use the data on X and Y separately, then we
can easily obtain that π̂ = .0857, p̂ = .0139, and subsequently,
m∗ = 3.

5. ESTIMATION OF PARAMETERS IN CASE III

Case III, discussed by Nandi and Sreehari (1997), deals with
a scenario in which there are two types of assignable causes,
termed minor and major, and their appearances follow geomet-
ric patterns with parameters p1 and p2. The occurrence of a ma-
jor assignable cause leads to a situation like case I, in which all
subsequent items produced are defective. A minor assignable
cause leads to a situation like case II, that is, the process starts
producing 100π% defective products after the occurrence of
such a cause. Although Nandi and Sreehari (1997) derived ex-
pressions for the expected loss, they completely ignored the es-
timation of p1,p2, and π .

Once again, a real-life example can be given from a hot
rolling mill consisting of a sequence of rolling stands. A prob-
lem in any of the rolling stands generally would lead to 100%
defectives, whereas if a guide or a roller were worn out, this
could result in a defective product with a certain probability.

Note that for this case, we can use exactly the same notation
as in Section 2 if we define p = p1 +p2 −p1p2, that is, q = q1q2,
where qi = 1 − pi for i = 1,2. We assume that as in case II, the
data would be of the form s1, s2, . . . , sN , that is, the number of
inspections conducted in each of N production cycles.

5.1 Bayesian Estimation of p1, p2, and π

To develop the Bayesian algorithm, we need the following
result, the proof of which is in Appendix A.

Table 6. Data from the hot rolling case study

Cycle Cycle
number X Y T S number X Y T S

1 4 20 243 24 51 1 4 53 5
2 10 10 203 20 52 2 23 254 25
3 1 2 35 3 53 10 4 144 14
4 2 13 155 15 54 9 0 94 9
5 7 1 85 8 55 1 9 104 10
6 32 6 384 38 56 5 38 435 43
7 1 25 264 26 57 2 17 194 19
8 2 0 25 2 58 11 30 414 41
9 6 20 264 26 59 18 16 345 34

10 1 5 64 6 60 4 5 94 9
11 23 20 435 43 61 1 6 74 7
12 2 32 344 34 62 1 26 274 27
13 8 12 204 20 63 7 11 185 18
14 1 3 45 4 64 6 40 463 46
15 3 5 84 8 65 3 14 173 17
16 1 0 14 1 66 7 0 74 7
17 6 18 243 24 67 2 0 25 2
18 23 24 474 47 68 14 10 243 24
19 4 6 104 10 69 5 28 333 33
20 4 7 113 11 70 26 48 743 74
21 12 7 193 19 71 3 9 124 12
22 26 16 424 42 72 14 8 225 22
23 2 3 53 5 73 7 2 93 9
24 6 9 155 15 74 1 3 43 4
25 5 4 95 9 75 3 5 85 8
26 14 10 244 24 76 3 0 34 3
27 16 0 165 16 77 13 2 153 15
28 5 11 164 16 78 6 14 204 20
29 14 9 235 23 79 4 0 45 4
30 17 7 244 24 80 12 7 193 19
31 4 3 75 7 81 33 17 505 50
32 1 11 123 12 82 2 10 125 12
33 6 18 243 24 83 20 14 344 34
34 3 0 34 3 84 2 13 153 15
35 1 5 64 6 85 12 9 213 21
36 1 3 43 4 86 2 18 204 20
37 6 7 135 13 87 21 3 244 24
38 2 4 64 6 88 11 4 154 15
39 2 18 205 20 89 5 2 73 7
40 16 7 234 23 90 11 12 233 23
41 2 6 84 8 91 1 7 83 8
42 7 6 133 13 92 19 25 444 44
43 6 5 115 11 93 24 10 343 34
44 14 14 284 28 94 19 8 273 27
45 2 46 483 48 95 1 13 145 14
46 3 9 124 12 96 1 8 94 9
47 1 4 54 5 97 9 1 104 10
48 1 10 114 11 98 14 9 234 23
49 5 2 73 7 99 6 7 134 13
50 4 5 93 9 100 7 10 175 17

Proposition 2. The probability mass function of S is given
by

P(S = s) = (1 − qm)

[
α(1 − π)(πqm

2 + 1 − qm
2 )

× 	

( {(1 − π)qm
2 }r−1 − qm(r−1)

(1 − π)qm
2 − qm

)
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+ qm(r−1)(1 − 	α(1 − π))

]
, s = 1,2, . . . ,∞,

where

r = s − �l/m�,
p = p1 + p2 − p1p2,

α = p1 − p1p2

p
,

and

	 = q2.
1 − q1

1 − qm
1

.
qm

2 − qm
1

q2 − q1
.

We assume that pi ∼ Beta(αi, βi), i = 1,2, and π ∼ Beta(α3,

β3). Then Proposition 2 leads to the following corollary.

Corollary 1. Let g(p1,p2,π |s1, . . . , sN) denote the joint pos-
terior distribution of (p1,p2,π), where the priors are the Beta
distributions defined earlier. Let r, p, and 	 be as defined in
Proposition 3. Then

log g(p1,p2,π |s1, . . . , sN)

∝ N log(1 − qm)

+
N∑

i=1

log

[
α(1 − π)(πqm

2 + 1 − qm
2 )

× 	
{(1 − π)qm

2 }ri−1 − qm(ri−1)

(1 − π)qm
2 − qm

+ qm(ri−1){1 − 	α(1 − π)}
]

+
2∑

j=1

(αj − 1) log pj + (α3 − 1) logπ

+
2∑

j=1

(βj − 1) log qj + (β3 − 1) log(1 − π).

Like case II, here we need to elicit prior distributions for all
three parameters p1,p2, and π . Assuming that we have some
lower and upper bounds for each of the three parameters, the
hyperparameters αi, βi, i = 1,2,3, can be obtained in the same
way as discussed in Section 4.1. If the engineers are more or
less certain about the limits and are unable to say anything more
about the prior distributions, then uniform priors could be a pos-
sible choice again.

Considering the complications involved in finding the poste-
rior modes, we use MCMC methods only to simulate the pos-
terior density of each parameter.

5.2 Simulation Results

We consider the same numerical example used by Nandi and
Sreehari (1997) where π = .10, p1 = .002, and p2 = .001. As
in case II, we generate 200 cycles in each simulation of the
process.

The following two levels of prior information are considered:

• “Strong” (reasonably accurate information): .001 ≤ p1 ≤
.003, 0 < p2 ≤ .02, .07 ≤ π ≤ .13

• “Weak” (moderately accurate information): 0 < p1 ≤
.005, 0 < p2 ≤ .003, 0 < π ≤ .25

To study the sensitivity of the method with respect to the
choice of the prior distributions, we consider the following three
priors:

• Beta priors tightly distributed in the stated intervals with
γp1 = γp2 = γπ = .05, where γ is defined in the same way
as in (9) and (11)

• Flatter Beta priors with γp1 = γp2 = γπ = .25
• Uniform priors in the stated intervals.

We carried out 100 simulations for each of the 6 cases. The
results, along with the hyperparameters of the prior distribu-
tions, are summarized in Table 7. Each estimate is the median
of its simulated posterior distribution (10,000 MCMC iterations
with burn-in of 1,000). Based on the results in Table 7, the fol-
lowing observations are:

1. The method works satisfactorily even when the prior in-
formation is not quite accurate.

2. As expected, the accuracy of prior information increases
the efficiency of the parameter estimates. This is sup-
ported by the fact that the variances of the estimators
are much lower with “strong” prior information than with
“weak” information.

3. The method seems to be not very sensitive to the nature
of prior distribution, as also seen in case II. If the prior
information on π is of the form π0 ± δ, then it might be
easy to elicit a Beta prior with mean close to π0. But, if
this prior information is simply in the form of an interval
πL,πU , then it would be more pragmatic to consider a
uniform prior.

6. CONCLUDING REMARKS

In research into determining the optimum diagnosis interval
for online monitoring of attributes, the issue of estimation of
process parameters has not been given its just due. We have
considered three different process models, designated case I,
case II, and case III. Noting that the estimation problem is
trivial for case I, we highlighted the problems associated with
the estimation of the process parameters in case II (p and π )
and case III (p1,p2, and π ) and proposed a Bayesian method
for this problem. We demonstrated the suitability of the pro-
posed method in the two cases with extensive simulations and
also through application to a real-world problem. The proposed
method includes concrete guidelines for constructing prior dis-
tributions based on the available engineering knowledge.

Numerous authors have discussed the advantages and dis-
advantages of an economic approach to the design of con-
trol schemes. Woodall (1986, 1987) in particular has identified
problems with the economic approach, criticizing it from two
angles. First, most economic models of control charts have a
high probability of type I error, thereby increasing the probabil-
ity of false alarms. Second, economic models usually assign a
cost to passing a defective characteristic, which includes liabil-
ity claims and customer dissatisfaction costs, and it is counter
to Deming’s philosophy that these costs cannot be measured
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Table 7. Case III: Summary of simulation results

Level of π p1 p2
information Prior distribution ×10−2 ×10−3 ×10−3

Strong High-belief Beta Mean 10.11 2.08 .88
α1 = 22, α2 = 4, α3 = 40, Median 10.10 2.07 .88
β1 = 9980, β2 = 4000, β3 = 350 Mode 9.99 2.06 .88

Relative bias (%) 1.1 4.0 −12.0
SD .43 .22 .14

.001 ≤ p1 ≤ .003, Low-belief Beta Mean 9.69 2.06 .93
0 ≤ p2 ≤ .002, α1 = 5, α2 = .55, α3 = 12, Median 9.59 2.04 .94
.07 ≤ π ≤ .13. β1 = 2500, β2 = 400, β3 = 110 Mode 9.27 2.03 .94

Relative bias (%) −3.1 3.0 −7.0
SD 1.14 .38 .24

Uniform Mean 9.82 2.00 .95
Median 9.75 2.00 .97
Mode 9.60 2.06 1.04
Relative bias (%) −1.8 0 −5.0
SD .74 .37 .22

Weak High-belief Beta Mean 10.00 2.17 .94
α1 = 22, α2 = 4, α3 = 40, Median 9.71 2.10 .94
β1 = 9980, β2 = 4000, β3 = 450 Mode 8.86 2.09 .95

Relative bias (%) 0 8.5 −6.0
SD 2.88 .55 .22

0 ≤ p1 ≤ .005, Low-belief Beta Mean 10.05 2.43 .89
0 ≤ p2 ≤ .003, α1 = 5, α2 = .55, α3 = 12, Median 8.87 2.26 .91
0 ≤ π ≤ .25. β1 = 2500, β2 = 400, β3 = 110 Mode 6.88 2.15 .99

Relative bias (%) .5 21.5 −11.0
SD 4.83 .77 .31

Uniform Mean 9.63 2.45 .94
Median 8.68 2.27 .95
Mode 7.32 2.15 1.00
Relative bias (%) −3.7 22.5 −6.0
SD 4.32 .75 .29

and that customer satisfaction is necessary to staying in busi-
ness.

The cost component CD may be difficult to measure, par-
ticularly when it relates to an external customer. This cost is
an external failure cost and may include warranty claims, war-
ranty repairs/replacements, product recalls, and product liabil-
ity (Ross 1993), which usually are available from accounting
records. Measuring external failure cost associated with lost
sales or customer dissatisfaction is not straightforward, how-
ever. A few authors have addressed the issue of estimating these
costs. One approach is to use Taguchi’s loss function (Ross
1993; Margavio, Fink, and Margavio 1994). Giakatis, Enkawa,
and Washitani (2001) classified external failure cost as quality
loss, further establishing this link. Taguchi’s (1986) quadratic
loss function is a nice way of quantifying the financial loss a
customer incurs when a nonacceptable product is passed on.
Several authors have proposed alternatives to Taguchi’s loss
functions; for example, Joseph (2004) derived a set of loss func-
tions for nonnegative variables and discussed how these func-
tions can be estimated. Other approaches of quantifying cus-
tomer dissatisfaction cost include projection (projecting the fi-
nancial impact of customer problem experiences) and method
of direct linkage (Vavra 1997). But such approaches may not

be capable of assessing the financial impact of a single defec-
tive item in terms of customer dissatisfaction, but may help in
estimating hidden components of customer dissatisfaction.

Recalling the two assumptions stated at the beginning of Sec-
tion 2, it is clear that we have considered situations in which
neither type I nor type II errors are likely to occur. Therefore,
the control problem discussed here is different from the classi-
cal control charting problem.

The biggest advantage of economic model is perhaps its abil-
ity to convince top management by projecting the benefits of
process improvement in terms of hard cash. As emphasized by
Taguchi et al. (1989) and Nayebpour and Woodall (1993), such
a study should pave the way for continuous improvement.

An interesting topic of future research in this area is to de-
velop a generic framework with k types of assignable causes
that would have cases I, II, and III as special cases. This is en-
countered in several industrial situations.
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APPENDIX A: TECHNICAL RESULTS

Estimation of p and π Following Srivastava
and Wu (1993)

Let us assume that l = 0 and si ≥ 2 for i = 1,2, . . . ,N.
Note that K denotes the total number of inspections, which, ac-
cording to our notation, is

∑N
i=1 si. Because n = 1, we have

that

ψk =
{

p if xk−1 = 0
pπ if xk−1 = 1.

From (6), we get

1 = 1
∑N

i=1 si

( ∑

{k:xk=1}

1

ψk

)

= 1
∑N

i=1 si

( ∑

{k:xk=1,xk−1=0}

1

ψk

)

[because by the assumption min(si) ≥ 2,

it follows that xk = 1 ⇔ xk−1 = 0]

= 1
∑N

i=1 si

( ∑

{k:xk=1,xk−1=0}

1

p

)
.

Noting that cardinality of the set {k : xk = 1} is N, we get

p̂ = N
∑N

i=1 si
. (A.1)

Again, from (7), it follows that

1 = 1
∑N

i=1 si

( ∑

{k:xk=0}

1

1 − ψk

)

= 1
∑N

i=1 si

×
[ ∑

{k:xk=0,xk−1=0}

1

1 − ψk
+

∑

{k:xk=0,xk−1=1}

1

1 − ψk

]

= 1
∑N

i=1 si

×
[ ∑

{k:xk=0,xk−1=0}

1

1 − p
+

∑

{k:xk=0,xk−1=1}

1

1 − pπ

]
.

Again, by the assumption min(si) ≥ 2, the cardinalities of the
sets {k : xk = 0, xk−1 = 1} and {k : xk = 0, xk−1 = 0} are (N − 1)

and (
∑N

i=1 si − 2N + 1). Thus
∑N

i=1 si − 2N + 1

1 − p
+ N − 1

1 − pπ
=

N∑

i=1

si, (A.2)

and, substituting p̂ = N∑N
i=1 si

, we get π̂ = 1.

Proof of Proposition 1

For s ≥ 1, we have

P(S = s|p,π) = P(X + Y + [l/m] = s|p,π)

=
r∑

k=1

P
(

X = k ∩ Y = r − k
)
,

where r = s − [l/m]

=
r∑

k=1

P(X = k)P(Y = r − k)

=
r∑

k=1

qkm−m(1 − qm)π(1 − π)r−k

= (1 − qm)π(1 − π)r−1
r∑

k=1

q(k−1)m

(1 − π)k−1

= π(1 − qm)
(1 − π)r − qrm

1 − π − qm
.

Because for r > 0, (1 − π)r − qrm � 0 according as (1 − π) −
qm � 0, the result follows immediately.

Proof of Proposition 2

Before deriving the likelihood of the data, we introduce some
additional notation.

• E, the event that the first defect was one of the minor
type [Note that P(E) = (p1 − p1p2)/(p1 + p2 − p1p2) =
α, say.]

• ξy,1, the probability that a minor defect is detected at the
yth sampled observation after the defect had occurred,
given that the first defect was one of the minor type

• ξy,2, the probability that a major defect is detected at the
yth sampled observation after the defect had occurred,
given that the first defect was one of the minor type

• ξy, the probability that the defect is discovered at the yth
sampled observation after the defect had occurred, given
that the first defect was one of the minor type [Note that
ξy = P(Y = y − 1|E) and ξy = ξy,1 + ξy,2.]

• By, the event that the major defect occurs in the yth diag-
nosis interval given that the first defect was of the minor
type.

Now,

P(S = s) =
r∑

k=1

P(X = k)P(Y = r − k), where r = s − [l/m]

=
r∑

k=1

P(X = k)
(
P(Y = r − k|E)P(E)

+ P(Y = r − k|E)P(E)
)
. (A.3)
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Noting that

P(Y = y|E) =
{

1 for y = 0
0 for y > 0,

from (A.3), we can write

P(S = s) =
r−1∑

k=1

P(X = k)P(Y = r − k|E)P(E)

+ P(X = r)
(
P(Y = 0|E)P(E) + P(E)

)

=
r−1∑

k=1

P(X = k)ξr−k+1P(E)

+ P(X = r)(ξ1P(E) + P(E))

= α

r−1∑

k=1

P(X = k)ξr−k+1

+ P(X = r)(αξ1 + 1 − α). (A.4)

Using the results of Nandi and Sreehari (1997), we obtain

P(X = x) = qxm−m(1 − qm), where q = q1q2; (A.5)

P(B1) = 1

1 − qm
1

m−1∑

k=0

qk
1p1(1 − qm−k

2 )

= 1 − p1q2(qm
2 − qm

1 )

(1 − qm
1 )(q2 − q1)

= 1 − 	; (A.6)

P(By) = 1

1 − qm
1

m−1∑

k=0

qk
1p1q(y−1)m−k

2 (1 − qm
2 )

= p1q2(1 − qm
2 )(qm

2 − qm
1 )

(1 − qm
1 )(q2 − q1)

q(y−2)m
2 for y = 2,3, . . . ;

= 	(1 − qm
2 )q(y−2)m

2 for y = 2,3, . . . ; (A.7)

ξy,1 = (
1 − P(B1) − P(B2) − · · · − P(By)

)
(1 − π)y−1π,

y = 1,2, . . . ; (A.8)

and

ξy,2 = (1 − π)y−1P(By), y = 1,2, . . . . (A.9)

Therefore,

ξy,1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

	π for y = 1

	

(
1 − 1 − qm

2

p2

(
1 − q(y−1)m

2

))
(1 − π)y−1π

for y > 1,

ξy,2 =
{1 − 	 for y = 1

	(1 − qm
2 )q(y−2)m

2 (1 − π)y−1 for y > 1,

and, consequently,

ξy =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 − 	(1 − π) for y = 1

	(1 − π)y−1
[
π

(
1 − 1 − qm

2

p2

(
1 − q(y−1)m

2

))

+ (1 − qm
2 )q(y−2)m

2

]
for y > 1.

Plugging in the foregoing expression for ξy and (A.5) into (A.4),
the result follows after some tedious algebraic manipulations.

APPENDIX B: EFFECT OF INSPECTION ERROR ON THE ESTIMATION

Table A.1. Summary of simulation output for π : Effect of inspection error

b

.005 .010 .050 .100

Mean SD Mean SD Mean SD Mean SD
a Available information Method ×10−2 ×10−2 ×10−2 ×10−2 ×10−2 ×10−2 ×10−2 ×10−2

.001 0 ≤ π ≤ .15
No information on p

Uniform 10.33 1.04 10.37 1.13 9.82 1.09 9.15 .96

Beta
Tight 10.04 .67 10.09 .74 9.69 .73 9.19 .68

Flat 10.72 1.04 10.76 1.15 10.65 1.11 10.11 1.12

.07 ≤ π ≤ .17
0 < p ≤ .0005

Uniform 10.34 .94 10.41 1.04 9.89 .86 9.62 .96

Beta
Tight 10.41 .70 10.44 .74 10.04 .63 9.80 .76

Flat 10.94 .99 10.78 .99 10.24 1.02 9.84 1.00

.005 0 ≤ π ≤ .15
No information on p

Uniform 10.41 1.07 10.35 .97 10.08 1.12 9.42 .96

Beta
Tight 10.20 .66 10.15 .67 9.92 .75 9.44 .67

Flat 10.97 1.06 10.76 1.15 10.66 1.15 10.21 1.21

.07 ≤ π ≤ .17
0 < p ≤ .0005

Uniform 10.86 1.07 10.93 1.09 10.18 1.01 9.84 1.02

Beta
Tight 10.86 .77 10.91 .77 10.31 .74 10.01 .79

Flat 10.81 .94 10.84 1.00 10.49 .99 10.13 1.06

TECHNOMETRICS, MAY 2008, VOL. 50, NO. 2



180 TIRTHANKAR DASGUPTA AND ABHYUDAY MANDAL

Table A.1. (Continued)

b

.005 .010 .050 .100

Mean SD Mean SD Mean SD Mean SD
a Available information Method ×10−2 ×10−2 ×10−2 ×10−2 ×10−2 ×10−2 ×10−2 ×10−2

.010 0 ≤ π ≤ .15
No information on p

Uniform 10.60 1.04 10.59 1.06 10.33 1.12 10.12 1.05

Beta
Tight 10.45 .67 10.45 .69 10.21 .75 10.01 .73

Flat 11.28 .98 11.23 1.06 10.75 1.07 10.53 1.11

.07 ≤ π ≤ .17
0 < p ≤ .0005

Uniform 11.40 1.10 11.46 1.12 10.85 .97 10.29 .99

Beta
Tight 11.32 .81 11.35 .77 10.90 .74 10.41 .76

Flat 11.41 1.09 11.39 1.03 10.73 .99 10.42 1.06

.050 0 ≤ π ≤ .15
No information on p

Uniform 13.47 .60 13.42 .57 13.10 .76 12.80 .77

Beta
Tight 13.39 .77 13.33 .75 13.01 .88 12.67 .75

Flat 13.45 1.09 13.51 .97 13.22 1.07 13.03 .93

.07 ≤ π ≤ .17
0 < p ≤ .0005

Uniform 15.40 .68 15.37 .77 15.11 .79 14.69 .96

Beta
Tight 15.06 .97 14.99 .94 14.77 .95 14.27 1.09

Flat 14.55 1.08 14.65 1.18 14.14 1.01 13.77 1.16

Table A.2. Summary of simulation output for p: Effect of inspection error

b

.005 .010 .050 .100

Mean SD Mean SD Mean SD Mean SD
a Available information Method ×10−4 ×10−5 ×10−4 ×10−5 ×10−4 ×10−5 ×10−4 ×10−5

.001 0 ≤ π ≤ .15
No information on p

Uniform 3.54 9.26 3.59 10.28 3.67 10.81 3.82 10.46

Beta
Tight 3.79 6.72 3.78 6.98 3.80 7.64 3.83 7.43

Flat 3.36 10.31 3.41 9.97 3.11 8.28 3.19 9.87

.07 ≤ π ≤ .17
0 < p ≤ .0005

Uniform 3.40 5.44 3.36 5.63 3.44 5.62 3.39 5.92

Beta
Tight 3.33 3.44 3.32 3.64 3.33 3.71 3.27 3.86

Flat 3.07 6.19 3.15 6.10 3.19 6.57 3.21 6.90

.005 0 ≤ π ≤ .15
No information on p

Uniform 4.10 11.82 3.88 9.67 3.98 11.43 4.11 11.46

Beta
Tight 4.20 7.78 4.06 6.41 4.08 7.56 4.08 7.89

Flat 3.57 10.10 3.74 10.40 3.54 11.20 3.59 10.46

.07 ≤ π ≤ .17
0 < p ≤ .0005

Uniform 3.44 5.73 3.43 5.47 3.58 5.49 3.56 5.66

Beta
Tight 3.39 3.51 3.39 3.44 3.45 3.65 3.41 3.72

Flat 3.56 6.12 3.55 6.97 3.47 6.93 3.36 8.02

.010 0 ≤ π ≤ .15
No information on p

Uniform 4.56 11.98 4.56 12.90 4.42 12.09 4.22 11.37

Beta
Tight 4.57 7.82 4.54 8.65 4.42 7.50 4.30 7.66

Flat 3.87 9.68 3.93 11.52 4.08 11.00 3.86 11.96

.07 ≤ π ≤ .17
0 < p ≤ .0005

Uniform 3.62 5.95 3.57 5.82 3.67 5.43 3.63 5.51

Beta
Tight 3.60 4.29 3.53 3.68 3.57 3.73 3.50 3.82

Flat 3.61 7.75 3.59 7.22 3.73 6.68 3.69 7.99

.050 0 ≤ π ≤ .15
No information on p

Uniform 7.25 8.20 7.22 7.63 7.21 7.13 7.06 8.09

Beta
Tight 7.00 10.85 6.95 9.95 6.92 8.96 6.80 9.63

Flat 7.52 18.76 7.60 20.19 7.25 17.72 7.34 18.39

.07 ≤ π ≤ .17
0 < p ≤ .0005

Uniform 4.55 1.92 4.56 1.84 4.51 1.75 4.51 2.04

Beta
Tight 4.67 4.39 4.68 4.14 4.55 3.51 4.63 3.86

Flat 5.53 9.64 5.35 8.44 5.58 8.62 5.56 9.62
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