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an efficient approach to find optimal experimental designs for event-related
functional magnetic resonance imaging (ER-fMRI). We consider multiple objectives, including estimating the
hemodynamic response function (HRF), detecting activation, circumventing psychological confounds and
fulfilling customized requirements. Taking into account these goals, we formulate a family of multi-objective
design criteria and develop a genetic-algorithm-based technique to search for optimal designs. Our proposed
technique incorporates existing knowledge about the performance of fMRI designs, and its usefulness is
shown through simulations. Although our approach also works for other linear combinations of parameters,
we primarily focus on the case when the interest lies either in the individual stimulus effects or in pairwise
contrasts between stimulus types. Under either of these popular cases, our algorithm outperforms the
previous approaches. We also find designs yielding higher estimation efficiencies than m-sequences. When
the underlying model is with white noise and a constant nuisance parameter, the stimulus frequencies of the
designs we obtained are in good agreement with the optimal stimulus frequencies derived by Liu and Frank,
2004, NeuroImage 21: 387-400. In addition, our approach is built upon a rigorous model formulation.

© 2008 Elsevier Inc. All rights reserved.
Introduction

ER-fMRI is one of the leading technologies for studying human
brain activity in response to mental stimuli (Josephs et al., 1997;
Rosen et al., 1998; Dale, 1999; Bandettini and Cox, 2000). Before
conducting an ER-fMRI experiment, a design sequence consisting of
stimuli of one or more types interlaced with rests is prepared. This
sequence is presented to an experimental subject, while the MR
scanner measures changes in the subject's blood oxygenation level
dependent (BOLD) response for the end purpose of statistical
inference. The design issue here is to best allocate the stimuli so
that inference is precise and valid.

Two common statistical goals in ER-fMRI are to estimate the HRF
(the noise-free BOLD time series triggered by a single, brief
stimulus), and to detect brain activation; see also Buxton et al.
(2000) and Birn et al. (2002). Considering both goals in one
experiment is not uncommon, but it requires a good multi-objective
design that simultaneously achieves high efficiencies on both
dimensions. However, statistical efficiency is not the only concern
for planning ER-fMRI design sequences. Psychology plays an
important, even crucial, role. When a design sequence is patterned
or easy to predict, psychological effects such as habituation or
anticipation may occur to confound stimulus effects (Dale, 1999).
Therefore, a good design should provide safeguards against the
rights reserved.
psychological confounds while retaining a high efficiency for
statistical inference. Moreover, customized requirements such as a
required frequency for each stimulus type might also arise to further
complicate the design problem. As a consequence, the search for a
good, multi-objective design is inevitable and a well-defined multi-
objective design criterion (or MO-criterion for short) is needed to
evaluate competing designs. In addition, the design space, consisting
of all possible ER-fMRI designs, is enormous and irregular (Buračas
and Boynton, 2002; Liu, 2004). Searching over this huge space for an
optimal design is an arduous task, thus an efficient search algorithm
is as well crucial.

Wager and Nichols (2003), referred to as WN henceforward,
propose a framework for finding multi-objective optimal ER-fMRI
designs. They formulate the MO-criterion as aweighted average of the
design criteria for the individual objectives of interest. A modified
genetic algorithm (or WN's GA) is also introduced to search for
optimal or near-optimal multi-objective designs. This trailblazing
work has been applied in many studies over the last few years (e.g.,
Callan et al., 2006; Ramautar et al., 2006; Summerfield et al., 2006;
Wang et al., 2007).

Inspired by WN's pioneering work, we develop an efficient
approach to search for optimal multi-objective designs. Our approach
has two major advantages. First, we incorporate well-known fMRI
designs in our algorithm to facilitate the search. Second, we define a
family of MO-criteria that allows consistent design comparisons.
While crucial to the success of a search algorithm,WN's criteria do not
always achieve this. Furthermore, our algorithm is simple and easy to
implement, yet effective.
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The efficiency and effectiveness of our approach are demonstrated
through simulations under two popular cases, one focuses on
individual stimulus effects and the other on pairwise contrasts. We
also discuss the situation when both cases are simultaneously of
interest. While taking less computation time thanWN's approach, our
algorithm achieves designs with significantly higher efficiencies. We
also demonstrate that our designs form an advantageous trade-off
between estimation efficiency and detection power, and we find
designs yielding higher estimation efficiencies than m-sequences.
Moreover, under the model with white noise and a constant nuisance
parameter, the stimulus frequencies of the designs we obtained are in
good agreement with the optimal stimulus frequencies derived by Liu
and Frank (2004).

In this technical note, our proposed algorithm is introduced, and its
performance is demonstrated via simulations. Other details and
additional simulations are presented in (Kao et al., 2007). The rest of
the article is organized as follows. Section 2 presents our proposed
approach. Simulations are provided in Section 3. Conclusions and a
discussion are in Section 4.

Methodology

We propose an efficient and effective approach to search for
optimal multi-objective designs for ER-fMRI. Four objectives are
considered: 1) estimating the HRF, 2) detecting brain activation, 3)
avoiding psychological confounds, and 4) maintaining the desired
stimulus frequency in the design sequence. By assigning weights to
these objectives based on the researcher's discretion, our algorithm
finds a design best suited to the researcher's needs. We briefly
introduce our approach in this section. The approach is general
enough that other objectives, beside the four listed above, could be
accommodated as well.

Underlying model and design criteria

To find an optimal design, we need to specify the underlyingmodel
for the two primary statistical objectives, namely estimation and
detection. As in WN and Liu and Frank (2004), two popular linear
models are considered (Friston et al., 1995; Worsley and Friston, 1995;
Dale, 1999):

Y = Xh + Sγ + e; and ð1Þ

Y = Zθ + Sγ + η; ð2Þ
where Y is the voxel-wise BOLD time series, h=(h1′,…hQ′)′ is the
parameter vector for the HRFs of the Q stimulus types, X=
[X1⋯XQ] is the design matrix, θ=(θ1,…,θQ)′ represents the response
amplitudes, Z=Xh0 is the convolution of stimuli with an assumed
basis, h0, of the HRF, Sγ is a nuisance term describing the trend
or drift of Y, and e and η are noise. Following WN, we assume a
known whitening matrix, V, such that Ve and Vη are white
noise.

Model (1) is typically used for estimating the HRF and model (2)
for detecting activation. Under these models, the A- or D-optimal
design criteria can be applied to evaluate competing designs with
respect to the objectives of estimation and detection. Both of these
criteria are widely accepted and the choice between A- and D-
optimality depends on individual preference. A-optimality aims at
minimizing the average variance of estimators of parametric
functions. In our simulations, these will be individual stimulus effects,
or pairwise contrasts. On the other hand, a D-optimal design
minimizes the generalized variance of estimators of linearly inde-
pendent parametric functions, or, under normality, it minimizes the
volume of simultaneous elliptical confidence regions for these
parametric functions at any specified confidence level. For our
problem, these parametric functions will be either individual stimulus
effects, or (Q-1) linearly independent pairwise contrasts. For further
details, see Atkinson et al. (2007).

For technical reasons, we formulate these design criteria as “larger-
the-better” criteria, and designs maximizing them help to optimize
statistically meaningful functions of the parameter estimators as
previously described. The value of the design criterion for estimation,
referred to as “estimation efficiency”, is denoted by Fe. Likewise, the
term “detection power” and the notation Fd are used to indicate the
value of the design criterion for detection. These two criteria are
defined to have one of the following two forms:

Fi =
rc=trace Mð Þ; for A−optimality;
det Mð Þ−1=rc ; for D−optimality;

�
ð3Þ

where M=C[W′V′(I-PVS)VW]−C′, W≡X for Fe, W≡Z for Fd, I is an
identity matrix, PA=A(A′A)−A′ is the orthogonal projection on the
vector space spanned by the column vectors of A, A− is a generalized
inverse matrix of A, C is a matrix of linear combinations of the
parameters, and rc is the number of rows of C.

The third objective is to avoid psychological confounds. We would
like a sequence that makes it difficult for a subject to anticipate future
stimuli based on past stimuli. To achieve this, the Rth order counter-
balancing property of WN is considered, where R is a given integer.
This property is defined on a sub-design of the original design
obtained by keeping only the stimuli but deleting all rests. For any
r∈ {1,…,R}, we count the pairs of stimuli that appear in positions
(t,t+ r) in the sub-design, t=1,…,(n-r); n is the length of the sub-design.
The Rth order counterbalancing aims at having each pair appear a
number of times that is proportional to the product of the specified
proportions for the stimuli. The corresponding design criterion can be
written as:

Fc = ∑
R

r = 1
∑
Q

i = 1
∑
Q

j = 1
tjn rð Þ

ij − n−rð ÞPiPjj⌋;

where nij
(r) is the number of occurrences of a type-i stimulus being the

tth element and a type-j stimulus being the (t+ r)th element, t=1,…,
(n-r), Pi is the specified proportion for the type-i stimulus in the sub-
designwhich may be taken as 1/Q if there is no preference, and ⌊|a|⌋ is
the integer part of the absolute value of a. This criterion measures the
departure from counterbalancing and is a “smaller-the-better”
criterion.

The fourth design criterion is also defined on the sub-design. It is
Ff =∑

Q
i = 1⌊jni−nPij⌋;where ni is the number of the type-i stimulus in the

sub-design. This criterion helps to maintain the desired stimulus
frequency and is a “smaller-the-better” criterion.

An MO-criterion is defined as a convex combination of the above
four individual criteria. To ensure comparability, they are standardized
before combining. We use the following standardization:

F4i =

Fi−min Fið Þ
max Fið Þ−min Fið Þ ; i = d; e;

1−
Fi−min Fið Þ

max Fið Þ−min Fið Þ ; i = c; f :

8>><
>>:

Our family of MO-criteria is then defined as {F⁎=wcFc⁎+wdFd⁎+we

Fe⁎+wfFf⁎:wi≥0,i=c,d,e,f;∑iwi=1}; wis are weights selected based on
the researcher's emphasis in a given study.

By contrast, WN standardize each Fi by its mean and standard
deviation over designs within the current generation of their GA.
Since designs change with successive generations, so do these
means and standard deviations. The resulting MO-criteria are
moving targets during the search. Thus, fair, consistent design
comparisons may not be achieved. Our MO-criteria are free from
this drawback.

With the MO-criterion for evaluating the “goodness” of competing
designs, we propose a GA-based algorithm to search for the optimal
ER-fMRI design.
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Search algorithm

GAs (Holland, 1975, 1992) are popular for solving optimization
problems, in which good solutions (parents) are used to generate
better ones (offsprings). To efficiently apply this technique, we take
advantage of well-known results about good fMRI designs so that our
search over the huge design space can be carried out more efficiently.
The outline of our algorithm is as follows:

Step 1. (Initial designs) Generate G initial designs consisting of
random designs, an m-sequence-based design, a block design and
their combinations. Use the objective function to evaluate the
fitness of each initial design.
Step 2. (Crossover) With probability proportional to fitness, draw
with replacement G/2 pairs of designs to crossover — select a
random cut-point and exchange the corresponding fractions of
“genetic material” in paired designs. See (Wager and Nichols,
Fig. 1. Achieved values of design efficiency vs. generation for (A) wc=wd=we=wf, (B) we=1
2003) for a nice graphical presentation. Here, the “genetic
material” is the design sequence.
Step 3. (Mutation) Randomly select q% of the events from the G
offspring designs. Replace these events by randomly generated
ones. Here, an event is a stimulus or a rest.
Step 4. (Immigration) Add to the population another I
designs drawn from random designs, block designs and
their combinations.
Step 5. (Fitness) Obtain the fitness scores of the offsprings and
immigrants.
Step 6. (Natural selection) Keep the best G designs according to
their fitness scores to form the parents of the next generation.
Discard the others.
Step 7. (Stop) Repeat steps 2 through 6 until a stopping rule is met
(e.g., after Mg generations). Keep track of the best design over
generations.
, and (C) wd=1. CPU times for completing 10,000 generations are presented.



Fig. 1 (continued).
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We describe below some details of our GA. MATLAB code
implementing this algorithm can be found at http://www.stat.uga.
edu/∼amandal.

Initial designs and immigrants
In Step 1,m-sequence-based designs orm-sequences are generated

following Liu (2004); see also Buračas and Boynton (2002). These
designs are well-known for their high estimation efficiencies. Since
they are not always available, concatenations or truncations of the
existing ones are also considered. We include the one yielding the
highest estimation efficiency as one of the initial designs.

The initial block design has the highest detection power among
designs of differing numbers of blocks and of two different patterns.
In this pool of candidate block designs, the number of blocks for
each stimulus type ranges among one to five, 10, 15, 20, 25, 30, and
40. The two patterns include repetitions of NABC and NANBNC,
where N is a block of rests and A, B and C represent blocks of
stimuli of different types. In addition to the initial block design,
immigrants in Step 4 ensure a steady supply of blocks of different
sizes.

The combination of a block design with an m-sequence-based
design or a random design is obtained through crossover. Thesemixed
designs constitute a portion, e.g., one-third, of the initial designs. The
remaining initial designs are formed by random designs.

Objective function
The objective function used in Step 1 and Step 5 of our GA

evaluates the fitness or “goodness” of the designs. Based on the goal of
the search, the objective function can be taken as a single Fi or as an
MO-criterion with weights selected by the researcher's interest. Note
that the extreme values of the Fis are required to use our MO-criteria.

Theoretical values of max(Fe) and max(Fd) are generally not
available. They can be approximated by performing a “pre-run” of
our GA using the non-standardized function Fe (or Fd) as the objective
function. The values of min(Fe) and min(Fd) are set to zero,
corresponding to designs for which the parameters of interest are
non-estimable. Both min(Fc) and min(Ff) are zero. Their maximal
values are attained by the design containing only the stimulus type
with the smallest specified proportion Pi. With these extreme values
and given weights, an MO-criterion F⁎ is well-defined and serves as
the objective function for finding optimal multi-objective designs.

Simulations

In the following illustrative simulations, we consider designs with
three stimulus types (Q=3) and L=255 events. The ISI (inter-stimulus
interval, time between consecutive event onsets) and the TR (time to
repetition, or sampling rate) are both set to two seconds.

For Fe and Fd, we use the A-optimality criterion and consider two
popular situations, namely individual stimulus effects and pairwise
contrasts. For the former situation, the C matrix described after (3) is
the identity matrix. For the latter case, the rows of C correspond to the
Q(Q-1)/2 pairwise contrasts between stimulus types. The canonical
HRF, a combination of two Gamma distributions (SPM2, http://www.
fil.ion.ucl.ac.uk/spm), is used as h0 in model (2). In the first two
simulations, the drift, described by Sγ, is assumed to be a second-
order Legendre polynomial, and the noise follows a stationary AR(1)
process with a correlation coefficient of 0.3. In the last simulation,
white noise is assumed and S is taken to be a vector of ones. As for Fc
and Ff, we require a third-order counterbalancing property (R=3) and
equal frequencies for the three stimulus types; i.e., Pi=1/3, i=1,2,3.

Unless otherwise specified, the algorithmic parameters are G (size
of population)=20, q (percentage of mutation)=1%, I (number of
immigrants)=4 and Mg (number of generations)=10,000. A larger
value of Mg does not seem to lead to significantly better designs. The
simulations are performed on a PentiumDual 3.20/3.19 GHz computer
with 3.5 Gb of RAM.

Simulation 1
We first consider three weighting schemes, namely (A) wc=wd=

we=wf=0.25, (B) we=1, and (C) wd=1, with the C matrix being the
identity matrix. The first weighting scheme finds a multi-objective
design, whereas the latter two schemes search for the best designs for
estimation and detection, respectively. The achieved values of the
design criterion over the 10,000 GA generations are presented in Fig.1.
For weighting scheme (A), the value of the MO-criterion is presented.
The estimation efficiency, Fe, and detection power, Fd, are reported for
weighting schemes (B) and (C), respectively.

http://www.stat.uga.edu/amandal
http://www.stat.uga.edu/amandal
http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm


Fig. 2. Normalized estimation efficiency vs. detection power for different designs: (A) individual stimulus effects; (B) pairwise contrasts.
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Our GA is compared to WN's GA. For comparison, we include 24
designs in each generation of their GA since they do not allow
immigration. As shown in Fig. 1A, our GA achieves a value of the MO-
criterion of 0.873 while WN's GA attains 0.812. In addition, our
algorithm uses less CPU time than their GA. Significant improvements
made by our GA are also observed in Fig. 1 for the other twoweighting
schemes. Note that the efficiency curve for the MO-criterion in WN's
GA is not monotone, a result of the inconsistency of their normal-
ization method that was pointed out in Subsection 2.1.
Table 1
The Fe-values and the proportions of the stimuli: individual stimulus effects

Number of types (Q) 2 3 4 6
Length of design (L) 242 255 624 342

Fe-value
our GA 41.17 33.34 68.39 26.7
m-sequence 40.43 31.80 63.08 24.3

Stimulus proportion
our GA (min-max) 0.29 0.21-0.23 0.17 0.1
approximated optimum 0.29 0.21 0.17 0.1
CPU time (hours) 0.07 0.11 0.46 0.3
Under weighting scheme (B), our GA finds a design yielding a
higher estimation efficiency than the m-sequence-based design. The
estimation efficiency is 31.96 for our design compared to 29.12 for the
m-sequence-based design. Our design, featuring small off-diagonal
elements in the information matrix (not shown), possesses a property
similar to the “decorrelation” property described in Buračas and
Boynton (2002). In their paper, random designs with this property are
observed to yield higher estimation efficiencies than m-sequence-
based designs when correlated noise is assumed. In addition to
7 8 10 12
511 728 1330 2196

6 36.20 46.68 72.73 105.18
3 31.94 40.72 61.38 85.39

2-0.13 0.10-0.11 0.09-0.10 0.08 0.06-0.07
2 0.10 0.09 0.08 0.06
7 0.68 1.35 4.51 13.09



Table 2
The Fe-values and the proportions of the stimuli: pairwise contrasts

Number of types (Q) 2 3 4 6 7 8 10 12
Length of design (L) 242 255 624 342 511 728 1330 2196

Fe-value
our GA 56.52 39.04 75.19 25.59 33.38 42.02 62.43 86.56
m-sequence 38.74 30.23 61.70 23.57 31.42 39.95 60.00 84.14

Stimulus proportion
our GA (min-max) 0.49 0.32-0.33 0.24-0.25 0.16-0.17 0.14 0.12-0.13 0.10 0.08-0.09
approximated optimum 0.50 0.33 0.25 0.17 0.14 0.13 0.10 0.08
CPU time (hours) 0.06 0.11 0.47 0.43 0.87 1.70 5.70 16.49
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correlated noise, our algorithm can also take into account the second-
order polynomial drift, Sγ.

Another feature held by our design pertains to the stimulus
frequency. While the stimulus proportion of the m-sequence-based
design is always 1/(Q+1), that of our design concurs with the
approximated optimal proportion of Liu and Frank (2004). The
relative frequencies of the three stimulus types in our design are
0.21, 0.22, and 0.22, and the approximated optimal proportion is 0.21.
As shown in Simulation 3, this agreement is reached consistently.

When focusing on weighting scheme (C), our GA finds a design
close to a block design; see Fig. 4A in the Appendix. Although this
design looks similar to the initial block design, our algorithm does not
always yield designs that are similar to the initial ones. For example,
when considering the pairwise contrasts between stimulus types, the
design found by our GA contains only blocks of stimuli while the initial
block design includes also rests; see Fig. 4B in the Appendix. Our GA
tends to converge to a block design when detecting activation is the
only concern. The design parameters, including block sizes, number of
blocks and the design pattern, are tuned to yield a high efficiency
along the evolution of our GA.

Simulation 2
This simulation focuses on the two statistical objectives —

detection and estimation. By letting wd increase from 0 to 1 in steps
of 0.05 and keepingwc=wf=0 (we decreases accordingly), our GA finds
designs providing an advantageous trade-off between estimation
efficiency and detection power. Fig. 2A provides the result for
individual stimulus effects and Fig. 2B for pairwise contrasts. Again,
we compare our designs to WN's designs. Our designs significantly
outperform theirs.
Fig. 3. Normalized estimation efficiency vs. detection power for different designs
In addition, design efficiencies of mixed designs, clustered m-
sequences and permuted block designs obtained from Liu (2004) are
also presented. We also show in Fig. 2 the initial m-sequence-based
designs of our algorithm, presented as ⁎, and the initial block designs,
denoted by ■.

As demonstrated by (Liu, 2004), mixed designs, clustered m-
sequences and permuted block designs can offer advantageous trade-
offs between estimation efficiency and detection power when
individual stimulus effects and pairwise contrasts are simultaneously
of interest. Results for this case are presented in Section 4.

Simulation 3
In this simulation, we follow Buračas and Boynton (2002) to work

on white noise and set S in model (1) to a vector of ones, accounting
for the overall mean of the fMRI time series. We focus on two separate
cases, namely estimating h and estimating hi-hj for 1≤ ib j≤Q. Different
combinations of Q and L used by Liu (2004) are considered. Our GA
then finds designs optimizing the estimation efficiency; i.e., we=1. For
this comparison, we include only random designs as initial designs in
our GA. Due to the computation time, herewe let the algorithm run for
only 2,000 generations at each combination.

We compare our designs to m-sequence-based designs, which are
demonstrated by Buračas and Boynton (2002) to have high estimation
efficiencies. The values of Fe achieved by our designs and by m-
sequence-based designs are presented in Tables 1 and 2. The CPU time
spent by our GA is also provided. Even without the help of the m-
sequence-based design, our GA consistently finds better designs. As
shown in Tables 1 and 2, the stimulus proportions of our designs are
again in good agreement with those optimal values approximated by
Liu and Frank (2004).
when both individual stimulus effects and pairwise contrasts are of interest.
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Conclusions and discussion

In this technical note, we propose an algorithm to search for
optimal ER-fMRI designs. Our proposed algorithm works for any
combination of the four popular objectives in ER-fMRI, but is flexible
enough to accommodate other goals as well. Through simulations, we
show that our algorithm outperforms others currently in use by
researchers when either the individual stimulus effects or pairwise
contrasts are of interest.

Conceptually, our algorithm follows Holland's (1975) notion of
building blocks; see also (Goldberg, 1989). Rooted in the fundamental
theorem of GAs, also known as the schema theorem, the building
block hypothesis views these constructs as the driving engine for GAs
(Goldberg, 1989). Ensuring a good supply of these building blocks is
thus one of the key steps for developing good GAs (Goldberg, 2002;
Ahn, 2006). The inclusion of good ER-fMRI designs as both initial
designs and immigrants follows this concept. Furthermore, using good
ER-fMRI designs as initial designs also means that our algorithm starts
from a good position.

The m-sequence-based design is not included as an initial design
in Simulation 3 because our design is compared to this design. For
Simulation 3 and quite a few other situations, we can find designs
yielding higher estimation efficiencies than m-sequence-based
designs without the benefit of an m-sequence-based design among
the initial designs. However, this can be hard when both h and
pairwise contrasts between his are of interest, and the model is with
white noise but with neither drift nor trend. For that particular
situation, the optimal stimulus proportion is 1/(Q+1) and the m-
sequence-based design is known to be (near-)optimal (Liu and Frank,
2004; Liu, 2004). Note that the m-sequence-based design are known
to exist only when Q+1 is a prime or a prime power. In contrast, our
GA is flexible enough to accommodate any number of stimulus types.

While good initial fMRI designs help to expedite the search, the
well-defined design criterion ensures that our GA, when it evolves,
finds a better design. As pointed out previously, WN's design criterion
is a moving target during the search. Achieving a better design is thus
not guaranteed. By contrast, our MO-criterion provides a stable, clear
target for the search algorithm.

Our algorithmapproximatesmax(Fe) andmax(Fd) that are needed for
ourMO-criterion. A possible alternative is to follow Liu and Frank (2004)
to find analytical approximations. For the special cases of the Simulation
2, we apply their approach to find the bound for Fe. It is 34.16 when
focusing on individual stimulus effects and is 42.50 for pairwise
contrasts. These analytical approximations are larger than ournumerical
Fig. 4. Best designs for detection found by our GA: (A)
ones, which are 31.96 and 38.21, respectively. However, it is unknown
whether their approximated max(Fe) can actually be achieved by any
design. Also, the analytical approximation to max(Fd) depends on a
parameter θmin; see Liu and Frank (2004) for details. Deciding the value
of θmin suitable for each situation can be hard. Furthermore, the requisite
bounds should adapt to a wide range of conditions, such as different
correlation structures and nuisance terms. While these situations can
easily be accommodated in our approach, it can be difficult to
analytically derive bounds best suited to each circumstance.

Our algorithm can also be applied when individual stimulus effects
and pairwise contrasts are simultaneously of interest. For illustration,
consider the same conditions as in Simulation 2 of Section 3, where a
second-order polynomial drift and AR(1) noise are assumed; such
assumptions are closer to reality, compared to the model with white
noise and without drift or trend. Fig. 3 presents the Fe⁎-value versus the
Fd⁎-value achievedbyourdesigns,WN's designs, and thedesigns studied
by (Liu, 2004). Note that, in the case of detection, thematrix C after (3) is
the identitymatrix for Fig. 2A, and the rows of C for Fig. 2B represent the
pairwise contrasts. Following (Liu, 2004), thematrixC for Fig. 3 combines
all of these rows into one matrix. Similar comments apply for the
estimation problem. Again, our algorithm yields better designs.

We note that it should be possible to find clustered m-sequences
and permuted block designs to reach efficiencies as high as those of
our designs. However, unlike our algorithm, the procedures to
generate these designs do not attempt to maximize a design
optimality criterion, so that finding good designs of these types
using existing algorithms depends on luck. One may be able to
develop an effective algorithm that uses the concepts on which these
designs are based for finding efficient designs, but that would also
require some procedures to hone in on the optimal stimulus
frequencies. Pursuing this is beyond the scope of the current work.

One additional advantage of our GA that is not elaborated here, but in
Kaoet al. (2007), is the formulationof the statisticalmodelwhen ISI≠mTR
for any integerm. Our approach applies the discretization interval of Dale
(1999) for theHRFparametrization.Denoting the lengthof this interval as
ΔT, we set ΔT to the greatest value dividing both the ISI and TR. The
resulting linear models agree with those of WNwhen ISI=mTR for some
integer m, but our parameters remain interpretable when ISI≠mTR for
any integer m. Specifically, the ith HRF parameter in WN's model
corresponds to the height of the HRF at the ith scan after the stimulus
onset. Each parameter in their models may simultaneously represent
more than one height of the HRF when ISI≠mTR. By contrast, our
underlying model faithfully reflects the fluctuation in the HRF, and thus
results in a more rigorous model formulation.
individual stimulus effects; (B) pairwise contrasts.



856 M.-H. Kao et al. / NeuroImage 44 (2009) 849–856
Acknowledgments

The research of Nicole Lazar was in part supported by NSF Grant
DMS-07-06192, and that of John Stufken by NSF Grant DMS-07-06917.
The authors are thankful to the anonymous referees for their
comments and suggestions, which resulted in an improvement of
this work.

Appendix A

We provide in Fig. 4 the best designs for detecting activation
found by our GA, assuming a second-order Legendre polynomial
drift and a stationary AR(1) noise with a correlation coefficient of
0.3; for details see Section 3. Fig. 4A shows the design when the
interest lies in individual stimulus effects and Fig. 4B is for pairwise
contrasts. Different shades indicate different stimulus types with
white representing rest. The number above each shaded bar
presents the number of stimulus types included in that block. Both
designs look like block designs. While rest is included in the first
design, it is expelled by our GA when the interest lies only in
pairwise contrasts. Note that the initial block designs for both
searches contain rests.
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