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Model Selection by Testing for the Presence of
Small-Area Effects, and Application to Area-Level Data
Gauri S. DATTA, Peter HALL, and Abhyuday MANDAL

The models used in small-area inference often involve unobservable random effects. While this can significantly improve the adaptivity
and flexibility of a model, it also increases the variability of both point and interval estimators. If we could test for the existence of the
random effects, and if the test were to show that they were unlikely to be present, then we would arguably not need to incorporate them
into the model, and thus could significantly improve the precision of the methodology. In this article we suggest an approach of this type.
We develop simple bootstrap methods for testing for the presence of random effects, applicable well beyond the conventional context of the
natural exponential family. If the null hypothesis that the effects are not present is not rejected then our general methodology immediately
gives us access to estimators of unknown model parameters and estimators of small-area means. Such estimators can be substantially more
effective, for example, because they enjoy much faster convergence rates than their counterparts when the model includes random effects. If
the null hypothesis is rejected then the next step is either to make the model more elaborate (our methodology is available quite generally)
or to turn to existing random effects models. This article has supplementary material online.
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1. INTRODUCTION

Demand for small-area statistics has seen exponential growth
in the thirty years since the publication of the landmark pa-
per by Fay and Herriot (1979). Many government agencies in
the United States, Canada, Australia, and elsewhere, and many
private sector companies, need reliable estimates of small-area
characteristics defined by a state, county, or district at a ge-
ographic level, or by age, race, and other variables at demo-
graphic level. Since direct estimates at the small-area level are
usually not reliable, production of reliable but indirect small-
area statistics using suitable administrative records and other
surveys, in conjunction with the direct estimates, has necessi-
tated a rapid growth of methodological research in small-area
estimation. Models have been proposed connecting the direct
estimates (or sometimes the data from surveys producing the
direct estimates) with auxiliary variables obtained from other
surveys or administrative sources. There are two basic types
of small-area models: area-level models and unit-level mod-
els (see Rao 2003, chapter 5). While the Fay–Herriot model is
a popular area-level model, the nested error regression model,
first proposed by Battese, Harter, and Fuller (1988), is a popular
unit-level model. Reviews of major developments in small-area
estimation include those by Ghosh and Rao (1994), Rao (1999,
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2003, 2006), Pfeffermann (2002), Jiang and Lahiri (2006), and
Datta (2009).

For reasons of privacy, unit-level data are often not avail-
able. For this and other reasons, area-level models enjoy pop-
ularity in model-based small-area inference. Area-level models
usually model the traditional survey estimators, also known as
direct estimators, which are typically computed using survey
weights. Most authors using unit-level models in small-area es-
timation ignore survey weights when developing model-based
small-area estimates. See, for example, the work of Battese,
Harter, and Fuller (1988), Prasad and Rao (1990), Datta and
Ghosh (1991), Singh, Stukel, and Pfeffermann (1998), Datta
and Lahiri (2000), Hall and Maiti (2006a, 2006b), and Chatter-
jee, Lahiri, and Li (2008). Important exceptions include Pfef-
fermann et al. (1998), Prasad and Rao (1999), and You and Rao
(2002, 2003). Bell (2008) and Li and Lahiri (2010) addressed
cases where the Fay–Herriot model is entirely model depen-
dent.

Model-based small-area estimates have been developed by
shrinking the direct estimates towards synthetic estimates
which are formed by fitting suitable regression models. An in-
genious approach suggested by Ghosh and Maiti (2004) demon-
strates that progress can be made in the case of natural expo-
nential families of distributions (Morris 1982, 1983), which en-
compass the binomial, negative binomial, Poisson, gamma with
known shape parameter, hyperbolic secant, and normal distri-
bution with known variance.

However, other distributions seem out of reach. Moreover,
particularly when the number of areas, k say, is only modest in
size, this approach to inference can be quite restrictive. The es-
timators generally converge only at rate k−1/2, regardless of the
number of sampled units, ni, per area. However, if the role of
small-area random effects Vi could be dispensed with, and the
small-area means modeled solely in terms of the design vec-
tor xi, then, as we show in this article, the convergence rate
would change to K′−1/2, where K′ = ∑

i ni. In practical prob-
lems many of the ni’s are similar in size to k, and so K′−1/2 is
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often much smaller than k−1/2; it is never larger than k−1/2. For
example, if each ni = n then K′ = kn. In relatively balanced set-
tings such as this, K′ is of the same order as K = k2/(

∑
i n−1

i ),
and in those cases K is generally a more natural way of rep-
resenting the convergence rate of estimators. For example, the
asymptotic variance of estimators in balanced cases is typically
equal to a constant multiple of K−1, where the constant does
not depend on k or the ni’s.

Therefore, especially when k is relatively small, inference
would be aided significantly if we could test for the presence
of the small-area effects Vi, and determine whether they are
present. In particular, if those effects could be rendered unnec-
essary through choice of a suitable model, perhaps a model that
did not lie in the natural exponential family, then improvements
in performance could be achieved. Moreover, insight into the
nature of the data could be gained by showing empirically that
it is unnecessary to include the extra layer of complexity re-
quired to accommodate the Vi’s.

These problems are tackled in the present article. We develop
simple bootstrap approaches to hypothesis testing, enabling us
to determine whether the small-area effects Vi have a detectable
impact on the goodness of fit of the model. Our approach to in-
ference, which is of a new type and is based on simple prop-
erties of cumulants, allows quite general models to be consid-
ered, well beyond the confines of the natural exponential fam-
ily. If the bootstrap test fails to reject the null hypothesis of
no small-area effects then our methodology for general mod-
els immediately gives us estimators of unknown model param-
eters and estimators of small-area means. Should the null hy-
pothesis be rejected, one could either make the model without
small-area effects more elaborate (our methodology is avail-
able very generally), so as to extract as much information as
possible from the design vectors, or turn to existing methods
under additional assumptions on the model, for example, those
of Ghosh and Maiti (2004), for inference when small-area ef-
fects are present. We experimented with alternative tests based
on AIC, BIC, and Wald-type statistics, but found that they had
relatively little power.

We are sensitive to the fact that, in the majority of cases
where small-area data are analyzed outside national statisti-
cal offices, the data are available only in summary form, as
weighted averages from more extensive surveys. In fact, the
weights themselves are often not accessible; only the sums
of the first few powers of the weights may be available. Our
cumulant-based approach, and our bootstrap methodology, are
not inhibited by this restriction, and so our techniques are ap-
plicable quite widely.

Importantly, we believe that testing for the presence of ran-
dom effects is of interest principally because it can lead to more
accurate inference, through permitting the random effects com-
ponent of a model to be dropped. It is of intellectual inter-
est in its own right, but arguably not of great practical value.
In fact, testing for significance of random effects is related to
model selection in mixed effects models. In this context, con-
sistent model selection procedures are developed in Jiang and
Rao (2003), Jiang et al. (2008), and Jiang, Nguyen, and Rao
(2010).

There is a broad range of other contexts, outside small area
inference, where testing for random effects could be useful and

effective. It includes many applications in econometrics, gen-
eral problems in longitudinal data analysis, and problems ad-
dressing censorship, the analysis of panel data, and probit re-
gression modelling. These typically involve purpose-built mod-
els. That makes it difficult to develop, in a single article, an
attractive and general methodology for testing for random ef-
fects, applicable across a large class of problems. Nevertheless,
versions of the methodology suggested in this article, and more
generally our viewpoint that testing for random effects is a valu-
able precursor to modeling, could be investigated in a wide va-
riety of settings.

The organization of our article is as follows. In Section 2 we
provide a very general model for unit-level data. The cumulant-
based approach suggested there is particularly flexible, and for
area-level data by using a suitable discrepancy statistic we de-
velop a test for the absence of small-area effects. We conduct
the test using the bootstrap, which introduces further flexibility.
Applications and simulations are presented in Section 3; theo-
retical properties, including convergence rates, are established
in Section 4; and formulae useful for practical implementation,
as well as technical arguments, are outlined in an Appendix A.
Further details are provided in Appendix B of the online sup-
plement.

2. MODEL, ESTIMATORS, AND HYPOTHESIS TESTS

2.1 Data and Model

The random data pairs (Xi,Yij), for 1 ≤ i ≤ k and 1 ≤
j ≤ ni, comprise observations at the unit level. Here, Xi =
(Xi1, . . . ,Xip)

T is a p-vector and denotes an area-level covariate
for the ith small area, and Yij is a scalar. Although we conduct
inference conditional on the values of X1, . . . ,Xk, in theoretical
work it is convenient to suppose that those random variables are
independent and identically distributed. That condition gives us
access to properties of large numbers of design variables. We
further assume that each pair (Xi,Yij) is distributed as (Xi,Yi),
say, and that, conditional on Xi, the variables Yij, for 1 ≤ j ≤ ni,
are independent and identically distributed as Yi given Xi. This
hypothesis is typically correct in the absence of small-area ran-
dom effects, denoted by Vi in the previous paragraph, but gen-
erally not if those effects are present.

We may not, for reasons of confidentiality, have access to
unit-level data, but it is assumed that we observe area-level data
in the form of means:

Ȳi =
ni∑

j=1

wijYij, 1 ≤ i ≤ k, (2.1)

where the wijs are nonnegative weights and satisfy
∑

j wij = 1.
When applying the bootstrap we need to know the individual
weights wij, but in all other aspects of our work, only the sums

Wir =
ni∑

j=1

wr
ij, 1 ≤ r ≤ q,

are required. Here q, satisfying 1 ≤ q ≤ p, denotes the number
of moments or cumulants that we use to construct our estimator
of the model parameters.

If the small-area effects Vi were present then the distribution
of Yij, given that Xi = xi and Vi = vi, would depend on xi, vi
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and a vector of parameters ξ , say, the latter not depending on i.
By arguing that the Vis can be eliminated, and testing this hy-
pothesis, we are in effect saying that Vi can be replaced by a
fixed number v, which we then adjoin to the parameter vector
ξ by using η to denote the concatenation of v and ξ . A sim-
ple way in which this can come about is through a regression
model, Yij = βTZi +Vi +εij, where β is an unknown vector, not
including the intercept which is accommodated via Vi, and Zi is
a design vector. We replace Vi by v, adjoin v to ξ to obtain the
p-vector η, and adjoin the number 1 to the components of each
Zi, thereby obtaining Xi. Of course, there are many other ways
in which Vi can appear in a model, and be eliminated through
replacing it by a constant; our aim is to construct an empirical
test of the appropriateness of this narrowing of the model.

In the absence of small-area effects the data pairs (Xi,Yij)

are assumed to be generated by a model for which

κr(Y|X = xi) = λr(xi,η), (2.2)

where (X,Y) denotes a generic value of (Xi,Yi), κr(Y|X = xi)

is the rth cumulant of the distribution of Y , conditional on
X = xi, and λr(xi,η) is a known function of xi and the unknown
p-vector η = (η1, . . . , ηp)

T. Note too that if Ȳi is given by (2.1)
then, in view of the the conditional independence and identi-
cal distribution of the Yijs given Xi, and a standard property of
cumulants,

κr(Ȳi|Xi = xi) = Wirκr(Y|Xi = xi) = Wirλr(xi,η). (2.3)

2.2 Properties of Cumulants

For a general random variable U we can write

E(Ur) =
r∑

�=1

∑
s1,...,s�

νs1,...,s� (r)κs1(U) · · ·κs� (U), (2.4)

where κs(U) denotes the sth cumulant of the distribution of U,
the coefficients νs1,...,s� (r) are known integers, and the sums are
over � and s1, . . . , s� are such that each sj ≥ 1 and s1 +· · ·+s� =
r. In particular, νr(r) = ν1,1,...,1(r) = 1 for all r, and special
cases of (2.4) are E(U) = κ1(U), E(U2) = κ2(U) + κ1(U)2 and
E(U3) = κ3(U) + 3κ1(U)κ2(U) + κ1(U)3. In the absence of
small-area effects, on combining (2.2)–(2.4) we see that we can
write

E(Ȳr
i |Xi = xi) =

r∑
�=1

∑
s1,...,s�

νs1,...,s� (r)
�∏

t=1

{
Wistλst(xi,η)

}
.

(2.5)

Similar properties hold for centred moments. In particular,
replacing Ȳr

i by {Ȳi − λ1(Xi,η)}r on the left-hand side of (2.5)
we obtain instead the relation

E
[{Ȳi − λ1(Xi,η)}r|Xi

]
=

r∑
�=1

∑
s1,...,s�

ν̌s1,...,s� (r)
�∏

t=1

{
Wistλst(Xi,η)

}
, (2.6)

where r ≥ 2, the sums are over � and s1, . . . , s� such that each
sj ≥ 2 and s1 + · · · + s� = r, and the quantities ν̌s1,...,s� (r) are
known integers.

One of the attractions of (2.6) over (2.5) is the greater sim-
plicity of the right-hand side. For example, the versions of (2.6)
when r = 2, 3, and 4 are

E
[{Ȳi − λ1(Xi,η)}2|Xi

] = Wi2λ2(Xi,η), (2.7)

E
[{Ȳi − λ1(Xi,η)}3|Xi

] = Wi3λ3(Xi,η), (2.8)

E
[{Ȳi − λ1(Xi,η)}4|Xi

]
= Wi4λ4(Xi,η) + 3{Wi2λ2(Xi,η)}2, (2.9)

respectively. The analogous expressions for the uncentred mean
E(Ȳr

i |Xi) contain two, three, and five terms, respectively, on the
right-hand side. On the other hand, the left-hand side of (2.5)
does not involve η, which can simplify inference.

2.3 Methods for Estimating η

The relation (2.5) motivates us to estimate η by, essentially,
equating the right-hand side of (2.5) to Ȳr

i . For example, we
could solve the following p equations for the p unknowns
η1, . . . , ηp:

k∑
i=1

Ȳr
i =

k∑
i=1

r∑
�=1

∑
s1,...,s�

νs1,...,s� (r)
�∏

t=1

{
Wistλst(Xi,η)

}
,

1 ≤ r ≤ p. (2.10)

More generally, defining

Qir(η) =
r∑

�=1

∑
s1,...,s�

νs1,...,s� (r)
�∏

t=1

{
Wistλst(Xi,η)

}
,

(2.11)
Rir = Ȳr

i − Qir,

we can form the q-vector Ri = (Ri1, . . . ,Riq)
T, multiply Ri on

the left by an appropriate p × q matrix Ai(Xi,η) which is a
function of Xi and η alone, sum over i, and equate to zero, to
obtain an estimator η̂ of η. That is, η̂ solves

k∑
i=1

Ai(Xi,η)Ri(η) = 0. (2.12)

Analogously to the definitions of Qir(η) and Rir at (2.11), put

Q̌ir(η) =
r∑

�=1

∑
s1,...,s�

ν̌s1,...,s� (r)
�∏

t=1

{
Wistλst(Xi,η)

}
,

(2.13)
Řir = {Ȳi − λ1(Xi,η)}r − Q̌ir.

Define the q-vector Ři = (Ři1, . . . , Řiq)
T, and, as at (2.12), let

Ai(Xi,η) denote a p × q matrix which is a function of Xi and η

alone. We replace (2.12) by

k∑
i=1

Ai(Xi,η)Ři(η) = 0, (2.14)

which is a system of p equations in the p unknowns η1, . . . , ηp.
The estimator η̂ is now taken to be the solution of (2.14) rather
than (2.12).

In the contexts of (2.12) and (2.14), specific versions of
Ai are motivated by the optimal estimating function ideas of
Godambe and Thompson (1989). In particular, in the case of
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(2.14) we can define the p-vector Ďir(η) = −E{∂Řir(η)/∂η|X },
the p × q matrix Ďi = (Ďi1, . . . , Ďiq) and the q × q matrix
�i = var(Ři|X ), where X = {X1, . . . ,Xk}. Let

Ai(Xi,η) = Ďi(Xi,η)�i(Xi,η)−1. (2.15)

To assist with calculation we note that

(�i)rs = Q̌i,r+s − Q̌irQ̌is. (2.16)

Our definitions here have been informed by discussion in Ghosh
and Maiti (2004, pp. 98, 99). In a longer version of this article
it is shown that, if Ai is defined by (2.15), then in cases of prac-
tical importance the components of n−1

i Ai are bounded.
The approaches based on (2.12) and (2.14) are equivalent, in

the sense that each includes the other, albeit with quite different
versions of Ai. The reason for working with both of them is
that they motivate different ways of thinking about the problem.
In particular, (2.14) is more natural than (2.12) in the setting
treated by Godambe and Thompson (1989).

2.4 Bootstrap Methods

To implement the bootstrap we must know the values of the
weights wij. Importantly, we do not need the values of Yij. First
we develop bootstrap tests for the presence of the small-area
effects Vi. Indeed, if we have good explanatory information via
the Xis then we may not need a small-area effect in our model.
Since the only data available are the weighted survey averages
Ȳi and the design variables Xi, then the test statistic, T below,
is founded on the differences of the Ȳis from their means, under
the null hypothesis that small-area effects are not present:

T =
k∑

i=1

{Ȳi − λ1(Xi, η̂)}2

Wi2λ2(Xi, η̂)
.

The denominator on the right-hand side takes account of the
respective variances of the differences Ȳi −λ1(Xi, η̂). We reject
H0 if T is too large, and we use the parametric bootstrap to
calibrate the test, simulating under the null hypothesis when the
“true” parameter value is replaced by η̂. Specifically, we draw
resamples (Xi,Y∗

ij), for 1 ≤ j ≤ ni and 1 ≤ i ≤ k, from the fitted
distribution with parameter η̂, and we compute the versions η̂∗
and T∗, of η̂ and T , respectively, for these resampled data. In
particular, T∗ = ∑

i{Ȳ∗
i − λ1(Xi, η̂

∗)}2/{Wi2λ2(Xi, η̂
∗)}. Since

inference is based on conditioning on the design vectors Xi then
we keep those values fixed in the simulation.

In the context of hypothesis testing we can use either the
parametric bootstrap or the “structural” bootstrap, the latter re-
ferring to cases where the mean, but not the error, is modeled
parametrically. In both approaches we fit a model, for exam-
ple as discussed in the paragraph containing (2.2) and (2.3). In
the fully parametric case we also fit a specified distribution for
the error (e.g., normally distributed). When using the structural
bootstrap we capture the error distribution by resampling from
a set of residuals. These approaches are relatively standard, and
so we discuss them further only in our numerical work; see par-
ticularly Section 3.3.

Using repeated simulation, and given a nominal significance
level α for the test, we compute the nearest solution, t = t̂α say,
of the equation P(T∗ > t|X ) = α, where X denotes the set of
all data (Xi,Yij) for 1 ≤ j ≤ ni and 1 ≤ i ≤ k. The calculations

here are based on repeated numerical simulation, which can be
thought of as a computational device for capturing the distribu-
tion of T∗ conditional on the actual data. The test consists of
rejecting H0 at the α level if T > t̂α . Standard double bootstrap
methods can be used to improve the test’s level accuracy.

If k and the value of α that would lead to rejection of H0 are
not too small then we can be reasonably confident that small-
area effects are not present in proportions that would require
them to be included in the fitted model. Standard paramet-
ric bootstrap methods, based on the estimator η̂, can then be
used to construct confidence intervals for μ(Xi) = E(Yij|Xi) =
λ1(Xi,η

0), for any given value of i, and also to compute esti-
mates of the mean squared error of either Ȳi or λ1(Xi, η̂) as an
estimator of μ(Xi). Here η0 is the true unknown parameter. The
conventional double bootstrap can be used to improve coverage
accuracy of the confidence interval and to reduce bias of the
mean squared error estimator.

Depending on the outcome of the test we either use the syn-
thetic estimator or we use the standard small area estimator. In
particular, if the null hypothesis of no random effects is not re-
jected then we use the standard regression synthetic estimator
for inference.

3. APPLICATIONS AND SIMULATION RESULTS

3.1 Introduction

In Section 3 we consider two applications of our methodol-
ogy to estimating small-area means. Subsection 3.2 treats esti-
mation of proportions of individuals in different income seg-
ments for various states of the United States, based on data
obtained from the Current Population Survey (CPS) and other
administrative programs in the United States, and Section 3.3
considers an alternative to the Fay–Herriot model for develop-
ing small-area estimates to compare 23 hospitals in terms of
care (in this example, successful kidney transplants) that they
provide to their patients.

3.2 Small Area Estimation of Poverty Statistics

First we consider estimating the proportion, pi, of individuals
with income below low-income level for each of the 13 western
states of the United States. The 13 states are placed together in
this category by the Current Population Survey. This is a rela-
tively homogeneous portion of the nation, and comprises more
than a quarter of the U.S. population. Data on all 50 states and
Washington DC are available, and that larger dataset will be an-
alyzed later in this section in a sampling experiment. If we use
all 50 states and DC, a goodness-of-fit test indicates a lack of
fit of the regression, suggesting the presence of an unexplained
error term. However, when considering only 13 western states
the proposed model fits well to the data, and the test statistic
does not lead to rejection.

Response variables were drawn from the Annual Social and
Economics (ASEC) Supplement of CPS data collected in 2004
based on income year 2003 for the k = 13 states: Washington,
Oregon, Idaho, Montana, Wyoming, Colorado, Utah, Nevada,
California, Arizona, New Mexico, Alaska, and Hawaii. The
CPS sample sizes (values of ni) for these states are all in the
thousands. Based on the CPS data the U.S. Census Bureau has
considered estimating poverty ratios for different segments of
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Table 1. CPS data and estimation of poverty statistics

Binomial Trinomial

CI CIv̂ar(p̂i) v̂ar(p̂1i)

i niȳ1i niȳ2i ni x1 x2 x3 x4 Left Right ×10−5 Left Right ×10−5 VR

1 215 94 1283 0.616 13.43 19.52 9.22 0.1429 0.1763 4.36 0.1422 0.1750 4.35 0.40
2 219 83 1882 −0.088 11.60 13.30 5.16 0.1145 0.1310 1.74 0.1143 0.1321 1.74 0.32
3 140 58 1031 0.293 14.86 11.37 6.52 0.1371 0.1615 2.43 0.1375 0.1610 2.44 0.23
4 178 63 935 0.481 17.13 10.60 8.30 0.1654 0.2073 9.42 0.1646 0.2085 9.41 0.57
5 236 94 1738 0.415 11.21 15.29 5.23 0.1209 0.1425 2.38 0.1189 0.1407 2.38 0.35
6 222 74 1130 −0.194 19.20 14.86 11.37 0.1759 0.2214 13.27 0.1753 0.2220 13.27 0.95
7 136 45 1111 0.634 13.24 9.48 5.05 0.1092 0.1289 2.70 0.1099 0.1299 2.70 0.28
8 147 62 1195 0.459 13.34 7.89 5.10 0.1041 0.1267 3.59 0.1049 0.1297 3.59 0.40
9 162 58 1266 −0.452 10.99 10.78 6.72 0.1190 0.1413 2.98 0.1197 0.1418 2.98 0.34

10 981 387 6422 0.410 13.63 16.32 5.06 0.1320 0.1736 1.72 0.1334 0.1722 1.72 0.85
11 168 56 1332 −1.825 12.60 11.78 7.51 0.1197 0.1358 1.62 0.1189 0.1360 1.62 0.20
12 200 71 1364 0.318 12.86 15.76 11.63 0.1349 0.1683 6.01 0.1362 0.1687 6.01 0.66
13 221 75 1566 0.870 11.11 12.08 7.15 0.1273 0.1495 3.52 0.1267 0.1501 3.52 0.45

the population (such as 0–4 year old children, 5–17 year old
children, 18–64 year old adults, etc.) in each state. For this pur-
pose the Census Bureau identified a set of covariates which are
available based on past census records (one variable, called the
residual, denoted by x1), and IRS tax returns data (two vari-
ables, called the IRS poverty ratio, denoted by x2, and the per-
centage of nonfilers, denoted by x3) and food stamps data (x4).
Explicit values of the xis are given in Table 1.

To develop our estimates of small-area proportions we con-
sider regression models based on some of these covariates. In
estimating the proportions pi in our case we used area-level
data given in terms of state sample proportions ȳi, and we first
considered if the random small-area effect terms Vi could be
dropped from the logistic mixed model

logit(pi) = η0 + η1xi1 + η2xi2 + η3xi3 + η4xi4 + Vi, (3.1)

where Vi ∼ N(0, σ 2
v ). The absence of small-area effects corre-

sponds to σ 2
v = 0. Based on a total sample size of 22,255 indi-

viduals from these 13 states, the test statistic T for testing the
absence of small-area effects results in a value of T = 12.1689.
Based on 1000 bootstrap simulations, the corresponding p-
value is 0.205. In particular, the null hypothesis was not re-
jected at level α = 0.20. Values of ni range from 1.3 × 106 to
6.4 × 106; see Table 1.

On the other hand, after exploring a more complex logistic
mixed model given by

logit(pi) = η0 + η1xi2 + η2xi3 + η3xi4

+ η4x2
i2 + η5xi2xi4 + Vi, (3.2)

we obtain an even smaller value of the statistic T for testing the
absence of the small-area effects. The corresponding p-value is
only 0.617, and so the evidence in favor of no small-area effects
is quite convincing for the new model. We used this model to
compute estimators of the parameters η, with no Vi, and from
those quantities we computed estimators of logit pi, which we
inverted to construct estimators p̂i of the small-area propor-
tions pi. The estimated mean squared errors (MSEs) of point
estimates and confidence intervals were obtained using formu-
lae in Appendix A.1. The estimated variance associated with the

direct estimate ȳi is given by ȳi(1 − ȳi)/ni ≡ ψi. Model-based
estimates of the pi’s, based on a logistic regression model, have
lower estimated MSE than ψi, and the ratio, VR, of the former
to the latter varies between 0.20 and 0.95 over the small areas.
This ratio is given in the last column of Table 1. The table also
gives endpoints of confidence intervals.

Small-area estimation of the proportions based on a logis-
tic mixed linear model has been considered earlier by MacGib-
bon and Tomberlin (1989), Farrell, MacGibbon, and Tomberlin
(1997), and Jiang and Lahiri (2001). In a recent article Pfeffer-
mann and Correa (2009) considered estimation of a small-area
proportions by the empirical best predictor and the associated
MSE of the predictor.

The ASEC Supplement of the CPS classifies an individual
into one of several income groups: below low-income level,
100%–125% of low-income level, 125%–150% of low-income
level, and above the 150% level. We consider joint estimation of
the proportion of individuals below low-income level (p1i), and
the proportion in the 125%–150% band (p2i), for each of the 13
western USA states. (In the univariate study presented above
we denoted p1i by pi.) Ghosh and Maiti (2004), who suggested
a method based on area-level summary data, modeled only the
univariate case, but our approach permits us to undertake multi-
variate estimation of the proportion vectors (p1i,p2i)

T based on
the area-level summary data ȳji, denoting sample proportion in
the jth category in the ith state for j = 1,2 and i = 1, . . . ,13.

In particular, we consider the multivariate logistic mixed
model with small-area effects

logit(pji) = ηj0 + ηj1xi2 + ηj2xi3 + ηj3xi4

+ ηj4x2
i2 + ηj5xi2xi4 + Vji, j = 1,2, (3.3)

where Vi = (V1i,V2i)
T ∼ N2(0,�v) for i = 1, . . . ,13. We test

for the absence of small-area effects by testing the null hypoth-
esis that �v is a null matrix. The test statistic T corresponds
to Pearson’s deviance statistic for multivariate logistic regres-
sion model. We obtained T = 12.26. Based on 1000 bootstrap
simulations, and for this value of T the null hypothesis was
not rejected even at the level α = 0.40. Computation of the
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Table 2. Lengths, noncoverage probabilities of the 95% CI’s along with eMSE, eRB, and estimated Bias
(averaged over 50 states and DC for p’s)

Noncoverage probabilities

Lengths Bootstrap Normal

Bootstrap Normal Left Right Total Left Right Total eMSE eRB Bias

p 0.1095 0.1040 0.0226 0.0216 0.0442 0.0137 0.0487 0.0624 0.0008 −0.0184 0.0001

η0 2.1846 2.1877 0.0281 0.0266 0.0547 0.0285 0.0252 0.0537 0.3227 −0.0331 −0.0036
η1 0.5864 0.5870 0.0258 0.0265 0.0523 0.0246 0.0284 0.0530 0.0229 −0.0194 −0.0049
η2 0.2114 0.2116 0.0268 0.0265 0.0533 0.0267 0.0257 0.0524 0.0030 −0.0404 0.0000
η3 0.1499 0.1504 0.0273 0.0272 0.0545 0.0256 0.0246 0.0502 0.0015 −0.0261 −0.0006
η4 0.1843 0.1847 0.0246 0.0244 0.0490 0.0236 0.0235 0.0471 0.0023 −0.0198 −0.0008

test statistic or the p-value does not require the normality as-
sumption for Vi. As in the univariate case, we use this model to
obtain point estimates of small area proportions corresponding
to the 13 states. The estimated mean squared errors (MSEs) of
the point estimates and the confidence intervals were obtained
using results presented in Appendix A.2.

Next we summarize results for data from the model at (3.1),
fitted without the small-area effect term Vi to the 87,949 data
points from all 50 states and DC. We used the estimated pi’s
to generate a new dataset of the same size. For these new data,
model (3.1) without the small-area effects is obviously a partic-
ularly good fit. We used the new dataset to evaluate properties
of our proposed estimators in cases where we know the “true”
pi’s. For this purpose we randomly selected a% of the fami-
lies from each of the 50 states and DC, to create a “working
sample,” and applied our methods. We took a = 1 and a = 5.
The results were similar for both of these a’s, and hence, for
the sake of brevity, we present results only for a = 1. We used
the same weight for each unit within a small area. For each
sample we tested the null hypothesis that there are no small-
area effects. As our interest lies in applying the model in cases
where it is appropriate, it is reasonable to not study the model in
cases where it does not seem to be a good fit. Thus, if the null
hypothesis was rejected then we discarded that sample. This
process was repeated until we obtained 10,000 working sam-
ples.

In Table 2 we present the estimated values of the MSEs, bi-
ases, and related quantities of interest. In particular, for each

sample we calculated 90% and 95% confidence intervals for
the pi’s and ηj’s using 1000 bootstrap samples each time, and
we report in the table the noncoverage probabilities of the 95%
intervals. We also compare our bootstrap confidence intervals
with standard confidence intervals obtained from normal ap-
proximation. (Both intervals are explained in Appendix A.1.)
The results for 90% confidence intervals are very similar.

In the following, θ denotes either pi or ηj. We define

eMSE(θ̂) = 1

s

s∑
u=1

(θ̂u − θ)2, V̂(θ̂) = 1

s

s∑
u=1

V̂u(θ̂ ),

eRB{V̂(θ̂)} = V̂(θ̂) − eMSE(θ̂)

eMSE(θ̂)
,

where V̂u(θ̂), the estimated variance of θ̂ for the uth simula-
tion, was obtained using a formula given in Appendix A.1. Here

eMSE(θ̂) and V̂(θ̂ ) are respectively the empirical and model-

based estimators of MSE(θ̂), and eRB{V̂(θ̂)} is a measure of
the relative bias of V̂(θ̂) as an estimator of MSE(θ̂ ).

It is clear from the first panel of Table 2 that the lengths of the
confidence intervals obtained from the normal approximation
and from the bootstrap approximation are similar. However,
from the middle panel of Table 2, and Figure 1, it is clear that
the normal CIs perform much worse than the bootstrap CIs in
terms of noncoverage probabilities. Table 2 and Figure 1 show

Figure 1. Noncoverage probabilities and eRB(V̂) for 50 states and DC. The online version of this figure is in color.
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empirical relative biases of the estimates of the MSE of p̂i small
(not greater than 5% in absolute terms). In the left panel of Fig-
ure 1, the top line represents the right noncoverage probabilities
for the normal approximation and the bottom one represents
the left noncoverage probabilities for the same. The two mid-
dle lines represents the left and right noncoverage probabilities
for the proposed bootstrap method, where the beaded and solid
lines correspond to the left and right noncoverage probabilities,
respectively.

Our estimates and estimated MSEs are valid under the null
hypothesis. To check performance of our estimators when there
is a random effect, we simulated the data with A = D̄ = 0.06
and performed testing using χ2 cutoffs at level α = 0.2. If
the null hypothesis H0 : A = 0 was not rejected, we calculated
the MSE of our estimates and compared it with the “true”
MSE, calculated by simulating in the case where the random
effects are known to be present. In this case the “true” MSE
was the average of the squared difference of the estimator and
the parameter θi = xT

i β + vi. Our estimated MSE was smaller
than the “true” MSE, as expected. This result reflects the high
power of our test procedure; if indeed there is a need for a
random effect, our test indicates that fact with high probabil-
ity.

3.3 An Alternative to the Fay–Herriot Model

Jiang and Tang (2011) analyzed data reported by Morris and
Christiansen (1995) from a medical survey comparing surgery
success rates of several hospitals. Data involve 23 hospitals
(out of a total of 219 hospitals) where each hospital performed
at least 50 kidney transplants during a 27 month period (see
Table 3). They reported failure rates, that is, values of p̂i,
for kidney transplant operations, where p̂i = (number of graft

failures)/ni and ni was the number of kidney transplants at hos-
pital i during the period. The variance of p̂i, denoted by D∗

i ,
is approximated by (0.2)(0.8)/ni, where 0.2 is the observed
failure rate combining all hospitals. A covariate in the form of
severity index xi is also reported for each hospital; it equals
the average fraction of females, African Americans, children
and extremely ill kidney recipients at hospital i. Here the hospi-
tals represent the small areas. The goal is to compare hospitals
based on the true graft failure rates pi, or equivalently, in terms
of logit(pi).

Since the data are proportions then a logit transformation
might offer an appropriate way of implementing the Fay and
Herriot (1979) model in this case. Note that, since individ-
ual ni’s are relatively large, variances of the logit transformed
data can be approximated by the delta method. In particular, if
E(p̂i) = pi and var(p̂i) = D∗

i , then var{logit(p̂i)} ≈ D∗
i /{pi(1 −

pi)}2. We denote logit(p̂i) by yi and D∗
i /{pi(1 − pi)}2 by Di.

For this example, Jiang, Nguyen, and Rao (2010) proposed the
following Fay–Herriot model:

yi = β0 + β1xi + β2x2
i + β3x3

i + Vi + εi,

with i = 1, . . . , k = 23, where βj, for j = 0,1,2,3, are are un-
known coefficients and everything else is as in a Fay–Herriot
model. The Vi’s are usually assumed to be independent, identi-
cally normally distributed random variables. However, our goal
is to test the null hypothesis of whether the random effects Vi

are necessary. For that purpose the normality assumption is not
required. Under this hypothesis our model is

yi = β0 + β1xi + β2x2
i + β3x3

i + ei, i = 1, . . . , k, (3.4)

where ei ∼ N(0,Di).

Table 3. Hospital data of Morris and Christiansen (1995)

Area yi xi Di MSES
i MSEPR

i

1 −0.838 0.112 0.118 0.0084 0.0315
2 −1.815 0.206 0.110 0.0070 0.0299
3 −1.368 0.104 0.106 0.0073 0.0305
4 −0.695 0.168 0.106 0.0047 0.0279
5 −0.632 0.337 0.086 0.0857 0.0947
6 −1.289 0.169 0.083 0.0046 0.0280
7 −1.688 0.211 0.083 0.0085 0.0313
8 −1.791 0.195 0.083 0.0047 0.0280
9 −1.266 0.221 0.076 0.0122 0.0344

10 −1.355 0.077 0.076 0.0086 0.0324
11 −1.331 0.195 0.069 0.0047 0.0279
12 −1.015 0.185 0.066 0.0039 0.0272
13 −1.153 0.202 0.066 0.0060 0.0289
14 −1.036 0.108 0.051 0.0079 0.0299
15 −1.782 0.204 0.051 0.0065 0.0287
16 −2.031 0.072 0.048 0.0117 0.0334
17 −1.380 0.142 0.043 0.0083 0.0294
18 −1.313 0.136 0.040 0.0088 0.0293
19 −1.457 0.172 0.038 0.0043 0.0261
20 −1.313 0.202 0.033 0.0060 0.0262
21 −1.614 0.087 0.033 0.0061 0.0266
22 −1.565 0.177 0.028 0.0040 0.0240
23 −1.621 0.072 0.024 0.0117 0.0268
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Let D = diag{D1, . . . ,Dk}, β̂ = (XTD−1X)−1XTD−1y, and

T =
∑

i

(yi − xT
i β̂)2

Di

= yT[D−1 − D−1X(XTD−1X)−1XTD−1]y. (3.5)

Here xT
i , the ith row of X, is given by (1, xi, x2

i , x3
i ). Under the

model in (3.4), T will be distributed as χ2 with 23 − 4 = 19
degrees of freedom. For these data, Tobs = 23.66 and the cor-
responding p-value is 21.0%. The p-value is large enough to
justify excluding the random effects terms Vi.

We dispensed with the normality assumption on the sampling
errors and used the bootstrap to calculate the p-value of the test
statistic. In particular we defined ˆ̂ei = D−1/2

i (yi − xT
i β̂)/

√
T/k

and chose k e∗
i ’s by simple random sampling, with replacement,

from the set of all ˆ̂ei’s, to get the y∗
i ’s, where y∗

i = xT
i β̂ +D1/2

i e∗
i .

Then we calculated the T∗’s by replacing y with y∗ in Equa-
tion (3.5). We calculated 1000 T∗’s, and found that 13.1% of
them were greater than the value of T calculated from the real
dataset. As this p-value is rather large, there is enough evidence
not to reject the null hypothesis that the random effects Vi are
absent from the model.

Based on the simpler model which does not include any ran-
dom effects for small areas, we estimated the ith small area
mean, namely μi = xT

i β , by xT
i β̂ (= μ̂S

i , say). The associated
estimated mean squared error was MSES

i = xT
i (XTD−1X)−1xi.

In comparison, the estimated mean squared error of the EBLUP
of xT

i β + Vi, based on the Fay–Herriot model, was

MSEPR
i = g1i(σ̂

2
v ) + g2i(σ̂

2
v ) + 2g3i(σ̂

2
v ),

with g1i(σ
2
v ) = σ 2

v Di/(σ
2
v + Di), g2i(σ

2
v ) = {D2

i /(σ
2
v +

Di)
2}xT

i (XT�−1X)−1xi and g3i(σ
2
v ) = {D2

i /(σ
2
v +Di)

3}var(σ̂ 2
v )

where σ̂ 2
v = {yT(I − H)y − ∑

Di(1 − hii)}/(k − 4) is an un-
biased estimator of σ 2

v , the variance of the small-area ef-
fects. Here H = (hij) = X(XTX)−1XT, � = D + σ 2

v Ik, and
var(σ̂ 2

v ) ≈ 2
∑

(σ 2
v + Di)

2/k2. For details the reader is referred
to Prasad and Rao (1990).

For the given data, σ̂ 2
v = 0.0177, and including the random

effects increases the estimated MSE; the percentage increase
is given by 100(MSEPR

i −MSES
i )/MSES

i . In our example, the
percentage increase has a median value of 325%, and so by not
including the small-area effects, which are most likely not con-
tributing to the fit of the Fay–Herriot model, we can obtain sig-
nificantly more accurate estimates of the small-area means of
the hospitals. It should be noted that if indeed a random small
area effect is present, then it is expected that our estimated MSE
will be smaller than the true MSE, which is verified by sim-
ulations. However, we feel that this underestimation is not of
much concern since we decide not to use the random effects
only after testing for its nonsignificance with a large probabil-
ity of Type I error. If indeed there is a need for a random effect,
our test indicates that fact with high probability, and in that case
we recommend using suitable small area methods available in
the literature.

To explore the robustness of our methodology we replaced Yi

by XT
i β̂ +sgn(ri)M ×D1/2

i , where ri was the residual Yi −XT
i β̂;

and we did this for i = 1, . . . ,23, changing only one Yi at a
time and recomputing the test statistic in each instance. When

M = 1.25 the standardized residuals were between −2 and 2,
and even for this moderate perturbation, 13 of the 23 values of
the test statistic were significant at the 20% level. When M = 2
the figure was 22 out of 23. These results indicate that the test
is sensitive to outlying values of Yi. That is not unexpected,
since our simulation studies show that our test is particularly
powerful, and as a result will interpret outliers as evidence of
departure from the null hypothesis. This type of sensitivity is
a general issue with powerful tests. In a different context, Bell
and Huang (2006) discussed the impact of outliers in the con-
text of small area testing.

4. THEORETICAL PROPERTIES OF MODEL
PARAMETERS ESTIMATORS

4.1 Properties When η̂ Is Based on Uncentred Moments

Throughout Section 4 we consider the area sample sizes ni to
be functions of k, which we take to diverge to infinity. In par-
ticular, for each k we choose a new sequence n1(k), . . . ,nk(k),
and so we are in effect addressing a triangular array. Section 4.1
treats the case where η̂ is defined by (2.12), and gives theoret-
ical properties, which we elucidate in Section 4.2. There we
discuss the convergence rates summarized in Section 1. Sec-
tion 4.3 addresses the case of centered moments, where η̂ is
defined by (2.14).

We introduce two matrices, M and L, as follows. Let η0 de-
note the true value of η, and write λ′

s for the p-vector of first
derivatives of λs. Define the p-vector

uir =
r∑

�=1

∑
s1,...,s�

νs1,...,s� (r)

(
�∏

t=1

Wist

)

×
�∑

t=1

{ ∏
u:u
=t

λsu(Xi,η
0)

}
λ′

st
(Xi,η

0)

= (uir1, . . . ,uirp)
T (4.1)

for 1 ≤ i ≤ k and 1 ≤ r ≤ q, and the p × p matrix M = (mst),
where

mst = E(bst) (4.2)

and

bst = 1

k

k∑
i=1

q∑
r=1

aisr(Xi,η
0)uirt. (4.3)

Here aisr denotes the (s, r)th component of the p × q matrix Ai.
Define too the p × p matrix L = (�st), where

�st = bst − E(bst) − 1

k

k∑
i=1

q∑
r=1

{Ȳr
i − Qir(η

0)}

× {∂aisr(Xi,η
0)/∂η0}t (4.4)

and {∂aisr(Xi,η)/∂η}t denotes the tth component of the p-
vector obtained by differentiating the (s, r)th component of
Ai(Xi,η) with respect to η.
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We assume that

λr(x,η) for 1 ≤ r ≤ q, and each component of
Ai(x,η), have two derivatives in η, and those
derivatives are uniformly bounded for x in any
given compact set, for η in some neighbourhood
of η0, and in i ≥ 1; the distribution of X is com-
pactly supported; for each c > 0,E(|Y|c|X = x) is
bounded uniformly in x in the support of the dis-
tribution of X; and the eigenvalues of MTM are
bounded away from zero.

(4.5)

The assumption in (4.5) that the distribution of X is com-
pactly supported can be relaxed in exchange for stronger con-
ditions on the functions λr and Ai and their derivatives, at ex-
treme values of the arguments of those functions. If Ai(x,η)

does not actually depend on η then the assumption in (4.5) that
E(|Y|c|X = x) be bounded in x for each c > 0 can be replaced
by the condition that E(|Y|p|X = x) be bounded in x.

Next we elucidate the condition in (4.5) on the eigenvalues of
MTM. If Ȳi were a simple average, meaning that wij = n−1

i for
each j, then Wir would equal simply n1−r

i . If in addition the area
sample sizes ni were all equal to n, then Wir would equal n1−r

for each i and each r. To simplify some of our discussion we
shall suppose that the weights and sample sizes do not depart
greatly from this norm, in the sense that there exists a function
n = n(k) ≥ 1 such that

for constants C1,C2 satisfying 0 < C1 < C2 <

∞ we have, for each 1 ≤ r ≤ p and all k,C1 ≤
nr−1 min1≤i≤k Wir ≤ nr−1 max1≤i≤k Wir ≤ C2.

(4.6)

The simplest case is that where the matrix Ai does not depend
on i; say, Ai(x,η) is the matrix with (s, r)th component equal
to asr(x,η). Then, if (4.6) holds, mst = E(bst) = m0

st + O(n−1),
where

m0
st =

q∑
r=1

E

{
asr(X,η0)

∂

∂ηt
λ1(X,η)r

∣∣∣∣
η=η0

}
.

For example, when p = q and each Ai = Ip, in which case η̂

is the estimator obtained by solving equations (2.10), we have
simply m0

st = E{(∂/∂ηt)λ1(X,η)s}|η=η0 . More generally, if we

define M0 = (m0
rj) then a sufficient condition for the assumption

in (4.5) that the eigenvalues of MTM are bounded away from
zero is that (4.6) holds with n = n(k) → ∞ as k → ∞, and the
eigenvalues of M0TM0 are bounded away from zero.

Under condition (4.5) the matrices M and M−1 are genuinely
of order 1, in that none of their components diverges to infinity.
In particular, it is not necessary to impose a boundedness con-
dition on M. However, the matrices may not actually converge;
that requires, for example, a degree of regularity in the values
of ni(k) which is not implied by (4.5).

Define the random p-vector

S = 1

k

k∑
i=1

Ai(Xi,η
0)Ri(η

0) = (S1, . . . ,Sp)
T. (4.7)

Theorem 1. Assume that (4.5) holds. Then for each D1 > 0
there exist constants D2,D3,D4 > 0 such that, with probability

at least 1 − D2k−D1 , equations (2.12) have a solution η̂ satis-
fying ‖η̂ − η0‖ ≤ D3, and moreover, any such solution satisfies
‖η̂ − η0 − (M + L)−1S‖ ≤ D4‖S‖2 and ‖η̂ − η0 − M−1S‖ ≤
D4‖S‖(‖S‖ + ‖L‖).
4.2 Elucidation of Theorem 1

First we describe the variance of S, and hence that of η̂, in the
“balanced” case where the area sample sizes ni, and hence also
the matrices Ai, are similar. By its definition, S has zero mean.
It is also clear from the definition of Sr at (4.7) that, if the Ais
are all of approximately the same order (e.g., if the Ais are all
identical), then var(Sr) = O(k−1). However, the variance can
be of strictly smaller order than k−1 if the nis diverge. Indeed,
taking p = q and Ai ≡ I for simplicity, it can be shown that,
under the conditions of Theorem 1 and if min1≤i≤k ni(k) → ∞
as k → ∞,

cov(Sr,Ss) = rsK−1E{λ1(X,η)r+s−2 var(Y|X)}
+ o(K−1), (4.8)

where

K−1 = k−2
k∑

i=1

n−1
i . (4.9)

In particular, if each ni = n then K = kn. Analogous results
hold if the matrices Ai are different but of similar orders for dif-
ferent values of i. In this context, Theorem 1 implies that η̂ =
η0 + (M + L)−1S + Op(K−1). The matrix L converges to zero
only at rate k−1/2, which is potentially much slower than K−1/2.
(The rate k−1/2 for L is concise, not just an upper bound.) As
a result, η̂ = η0 + M−1S + Op{(kK)−1/2}, rather than having
a remainder of K−1. Assumptions (4.5), and the condition that
the Ais are of similar orders and min1≤i≤k ni(k) → ∞, are suffi-
cient to imply that K1/2(η̂−η0) is asymptotically normally dis-
tributed with zero mean and covariance matrix M−1�(M−1)T,
where � is the asymptotic covariance matrix of K1/2S and has
(r, s)th component given by K times the first term in the right-
hand side of (4.8).

Next we address the “unbalanced” setting, where the nis
are quite different and different variance properties can arise.
Cases of this type include those where Ai is of size ni and the
nis take widely differing values. There, var(Sr) = O(t1) where
t1 = k−2 ∑

i ni, the components of the matrix M are of size t2 =
k−1 ∑

i ni, and L = Op(t2t3) where t3 = (
∑

i n2
i )

1/2/(
∑

i ni).
In consequence, provided that t3 = o(t2), which ensures neg-
ligibility of L relative to M, we have η̂ − η0 = Op(t

1/2
1 /t2) =

Op(K′−1/2), where K′ = ∑
i ni. If the integers ni are of simi-

lar sizes then K � K′, that is, the ratio K/K′ is bounded away
from zero and infinity as k diverges (e.g., if each ni = n then
K = K′ = kn). However, if the nis are of widely differing sizes
then K′ can be an order of magnitude larger than K, and then
the corresponding estimator η̂, constructed using Ais of respec-
tive sizes ni, is relatively accurate. To take an extreme case,
if supk;i≥2 ni(k) < ∞, but n1 = n1(k) where n1(k)/k → ∞
as k → ∞, then K � k but K′ � n1(k), which diverges more
rapidly than k, implying that η̂ → η0 more rapidly under the
regime where the Ais are of respective sizes ni. [Note too that
in this case, t3 = o(t2) and so L is negligible relative to M.]
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This context, where the matrices Ai are of order ni, arises
naturally when η̂ is defined in terms of estimating functions;
for discussion, see the paragraph containing (2.15) and (2.16).
The theory we have given in Theorem 1 applies without change
to this context, provided the nis are of similar sizes, in particular
where

sup
k≥1

{
max
1≤i≤k

ni(k)
/

min
1≤i≤k

ni(k)
}

< ∞. (4.10)

Nevertheless, to connect the discussion in the previous para-
graph to the theorem we need to rescale the matrix M. For ex-
ample, in the discussion it was convenient to interpret the com-
ponents of M as being of size t2, rather than 1, so we need to
divide M by t2 to get a matrix for which (4.5) holds. Similar nor-
malisations have to be applied to L and S. Only if the nis are
of very widely different sizes, as in the example where n1(k)/k
diverges, is a different approach to the theorem necessary.

The following corollary to Theorem 1 can also be proved.
It is stated under assumption (4.5), which continues to apply
(after the rescalings discussed in the previous paragraph) if the
matrices Ai are of sizes ni and (4.10) holds. Alternative proofs
give analogues of the corollary in cases where the Ais are of
very different sizes.

Corollary 1. If (4.5) holds, if max1≤i≤k ni = O(kC) for some
C > 0, and if the function f of p variables is bounded and
has two bounded derivatives in a neighbourhood of η0, then
E{f (η̂)} = f (η0) + O(K−1).

An immediate implication is that if we substitute η̂ for η = η0

in a function, f (η), representing the coverage error of a confi-
dence or prediction interval, or a mean squared error; if that
function is bounded and has two bounded derivatives in a neigh-
borhood of η0; and, when the target is a prediction interval, if
the random variable whose value we are predicting is statisti-
cally independent of η̂; then the coverage error, or the expected
value of the mean squared error, is in error by only O(K−1).

4.3 Properties When η̂ Is Based on Centred Moments

Here we treat the estimator defined by (2.14). Let Řir be as at
(2.13). In place of the definition of uir at (4.1), put

ǔir = (ǔir1, . . . , ǔirp)
T = −E

{
∂

∂η
Řir(η)

∣∣∣∣Xi

}∣∣∣∣
η=η0

.

Define b̌st as at (4.3) but with uirt there replaced by ǔirt, and let
m̌st = E(b̌st) and

�̌st = b̌st − E(b̌st) − 1

k

k∑
i=1

q∑
r=1

Řir(η
0){∂aisr(Xi,η

0)/∂η0}t,

as indicated by the first identity in (4.2) and by (4.4). Analo-
gously to (4.7), put Š = (Š1, . . . , Šp)

T = k−1 ∑
i Ai(Xi,η

0) ×
Ři(η

0), and write M̌ for the p × p matrix with (s, t)th compo-
nent mst. Redefine η̂ to be a solution of (2.14) rather than (2.12).
The analogue of Theorem 1 in this setting is the following re-
sult.

Theorem 2. Assume that (4.5) holds, but with the condition
that eigenvalues of MTM be bounded away from zero replaced
by the same assumption on the eigenvalues of M̌TM̌. Then for
each D1 > 0 there exist constants D2,D3,D4 > 0 such that,

with probability at least 1 − D2k−D1 , equations (2.14) have a
solution η̂ satisfying ‖η̂ − η0‖ ≤ D3, and moreover, any such
solution also satisfies ‖η̂ − η0 − (M̌ + Ľ)−1Š‖ ≤ D4‖Š‖2 and
‖η̂ − η0 − M̌−1Š‖ ≤ D4‖Š‖(‖Š‖ + ‖Ľ‖).

The discussion in the paragraph containing (4.10), and in
the paragraph previous to that one, also applies here. Addition-
ally, the analogue of Corollary 1 holds, with an almost iden-
tical proof. If min1≤i≤k ni(k) diverges to infinity as k → ∞,
and if (for simplicity) we take Ai to be the identity and as-
sume (4.10), then the asymptotic covariance of S is given by
cov(Šr, Šs) = o(K−1) if at least one of r and s does not equal 1,
and

var(Š1) = var(S1) = K−1E{var(Y|X)} + o(K−1), (4.11)

where K is given by (4.9). Compare (4.11) with (4.8). At an-
other extreme, if n1,n2, . . . are uniformly bounded as k → ∞,
and if (again for simplicity) we assume that (4.10) holds, p = q
and Ai = I, then cov(Šr, Šs) = crs(k)k−1 + o(k−1) where crs(k)
has a moderately complex formula but is bounded uniformly
in r and s as k → ∞, and, generally, inf1≤r≤q,k≥1 crr(k) > 0.

Next we elucidate the condition, imposed in Theorem 2, that
the eigenvalues of MTM are bounded away from zero. Assume
that (4.6) holds, and recall from the definitions above Theo-
rem 2 that

b̌st = 1

k

k∑
i=1

q∑
r=1

aisr(Xi,η
0)E

{
∂

∂ηt
Řir(η)

∣∣∣∣Xi

}∣∣∣∣
η=η0

= −1

k

k∑
i=1

q∑
r=1

aisr(Xi,η
0)

× E
[
r{Ȳi − λ1(Xi,η

0)}r−1λ′
1t(Xi,η

0) + Q̌′
irt(η

0)|Xi
]
,

where Q̌′
irt(η) denotes the derivative of Q̌ir(η) with respect

to ηt. If r = 1 then Q̌ir , and hence also Q̌′
irt, vanishes. If

r ≥ 2 then it follows from the definition of Q̌ir , at (2.13), and
from (4.6), that E{Q̌′

irt(η
0)} = O(n−1). If r ≥ 2 then E[{Ȳi −

λ1(Xi,η
0)}r−1|Xi] = O(n−1), and when r = 1 the conditional

expected value equals 1. Combining these results we deduce
that when (4.6) holds, m̌st = E(b̌st) = m̌0

st + O(n−1), where
m̌0

st = −k−1 ∑
i E{ais1(X,η0)λ′

1t(X,η0)}. Therefore the condi-

tion that the eigenvalues of M̌TM̌ be bounded away from
zero is, for all sufficiently large n, equivalent to the same
assumption on eigenvalues of M̌0TM̌0, where M̌0 = (m̌0

st).
If the matrix-valued function Ai(x,η) does not depend on
i, and has (r, s)th component equal to ars(x,η), then m̌0

st =
−E{as1(X,η0)λ′

1t(X,η0)}.
Abbreviated proofs of Theorem 1 and Corollary 1 are given

in Appendix A. More detailed arguments, together with proofs
of (4.8) and Theorem 2, appear in Appendix B of the online
supplement.

APPENDIX A: THEOREMS AND PROOFS

A.1 Estimation of MSE and Construction of
Confidence Interval (Binomial Case)

First we use the delta method to obtain an approximate estimator of
the MSE of p̂i. Estimator η̂ satisfies the estimating equation S(η) = 0,
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where from (4.7) S(η) = ∑k
i=1 W−1

i2 (ȳi − pi)xi. Here, ȳi is the pro-
portion of families below low-income level in state i, pi = pi(η) =

exp{xT
i η}

1+exp{xT
i η} and xi is the covariate vector including a one for the inter-

cept. Note that

∂S(η)

∂ηT = −
k∑

i=1

W−1
i2 pi(1 − pi)xix

T
i .

We know that var(ȳi) = Wi2pi(1−pi). Then, var(S(η)) = − ∂S(η)

∂ηT . Let

p̂i = pi(η̂). Then, by delta method,

var(p̂i) = {pi(1 − pi)}2{xT
i var(η̂)xi} + o(K−1).

Estimated variance–covariance matrix of η̂ and of p̂i, respectively, are

v̂ar(η̂) ≈
{(

∂S

∂ η̂T

)−1}[
var(S(η))|η=η̂

]{(
∂S
∂ η̂

)−1}T

=
( k∑

i=1

W−1
i2 p̂i(1 − p̂i)xix

T
i

)−1

,

v̂ar(p̂i) = {p̂i(1 − p̂i)}2xT
i v̂ar(η̂)xi.

Using the estimated variance of p̂i and normal approximation, an
approximate 100(1 − α)% CI for pi is given by p̂i ± zα/2

√
v̂ar(p̂i).

However, we can also create a bootstrap confidence interval. To that
goal, first, using η̂, estimated η from data, we generate B bootstrap
samples {Y∗

ij , j = 1, . . . ,ni, i = 1, . . . , k} and calculate η̂∗ for each

bootstrap sample. Then we calculate p̂∗
i = pi(η̂

∗) and v̂ar∗(p̂∗
i ) =

{p̂∗
i (1 − p̂∗

i )}2{xT
i v̂ar∗(η̂∗)xi} where v̂ar∗(η̂∗) is obtained from the

formula of v̂ar(η̂) by replacing η̂ by η̂∗. Then we calculate the
Bα/2th and B(1 − α/2)th order statistics of the standardized values

(p̂∗
i − p̂i)/

√
v̂ar∗(p̂∗

i ). We call them qli and qui respectively. We define

a 100(1 − α)% CI for pi as {p̂i − qui
√

v̂ar(p̂i), p̂i − qli
√

v̂ar(p̂i)}.
A.2 Estimation of MSE and Construction of

Confidence Interval (Multi/Trinomial Case)

Here pi1 = pi1(η) = exp{xT
i η1}

1+exp{xT
i η1}+exp{xT

i η2} and pi2 = pi2(η) =
exp{xT

i η2}
1+exp{xT

i η1}+exp{xT
i η2} . We write η = (ηT

1 ,ηT
2 )T. Note that

S(η) =
(

S(1)(η)

S(2)(η)

)
=

(∑k
i=1 W−1

i2 (ȳi1 − pi1)xi∑k
i=1 W−1

i2 (ȳi2 − pi2)xi

)
,

with

∂S(η)

∂ηT = −
k∑

i=1

W−1
i2

[
pi1(1 − pi1) −pi1pi2

−pi1pi2 pi2(1 − pi2)

]
⊗ xix

T
i

= − cov(S(η)).

By delta method,

ĉov(η̂) ≈
{(

∂S

∂ η̂T

)−1}[
cov(S(η))|η=η̂

]{(
∂S
∂ η̂

)−1}T

=
(

−∂S(η)

∂ η̂T

)−1
,

ĉov

(
p̂i1

p̂i2

)
≈

[
p̂i1(1 − p̂i1) −p̂i1p̂i2

−p̂i1p̂i2 p̂i2(1 − p̂i2)

]

× V
[

p̂i1(1 − p̂i1) −p̂i1p̂i2

−p̂i1p̂i2 p̂i2(1 − p̂i2)

]T
,

where

V =
[

xT
i 0T

0T xT
i

]
ĉov(η̂)

[
xT

i 0T

0T xT
i

]T
.

A.3 Proof of Theorem 1

Put � = η − η0 and Ai = (aisr), and observe that, by (4.5), for η

within any given but fixed radius of η0,

λs(Xi,η) = λs(Xi,η
0) + λ′

s(Xi,η
0)T�

+ �is(η)‖η − η0‖2,
(A.1)

aisr(Xi,η) = aisr(Xi,η
0) + a′

isr(Xi,η
0)T�

+ �isr(η)‖η − η0‖2,

where a′
isr(Xi,η) = ∂aisr(Xi,η)/∂η and, here and below, �i...(η)

denotes a generic random variable satisfying, with probability 1,
|�i...(η)| ≤ C1 for ‖η − η0‖ ≤ C2 and ‖Xi‖ ≤ C2, for any C2 > 0,
where C1 depends on C2 but not on i. A Taylor expansion argument
can be used to show that Qir(η) = Qir(Xi,η

0) + uT
ir� + �i(η)‖η −

η0‖2. This result and (A.1) imply that

{Ai(Xi,η)Ri(η)}s

= {Ai(Xi,η
0)Ri(η

0)}s

+
q∑

r=1

[{Ȳr
i − Qir(η

0)}a′
isr(Xi,η

0) − aisr(Xi,η
0)uir

]T
�

+ �is(η)(|Ȳq
i | + 1)‖η − η0‖2.

Summing over i, and equating to zero as entailed by (2.12), it can be
shown that η = η̂ satisfies

(M + L)(η − η0) + 	(η)‖η − η0‖2 = S. (A.2)

In (A.2), 	 denotes a p-vector with, as its sth component, a random
variable �s satisfying, with probability 1, |�s(η)| ≤ p−1/2C1 for ‖η−
η0‖ ≤ C2 and C2 sufficiently small, where C1 depends on C2.

It can be shown from (4.5) and Rosenthal’s inequality that for all
C3,C4 > 1,

P(‖L‖ > C3) ≤ C5(C4)
(
C3k1/2)−C4 , (A.3)

where C5(C4) > 0 depends on C4 but not on C3 or k. [In (A.3), and be-
low, we write the norm ‖Q‖ of a p × p matrix to denote the supremum
of ‖Qv‖ over all p-vectors v for which ‖v‖ = 1.]

Let c ∈ (0,1) denote a lower bound to the least eigenvalue of MTM,
and put C3 = 1

3 c. It can be shown that equations (2.12) have a solu-

tion whenever ‖S‖ ≤ C3 min(C−1
1 C3,C2). Hence, the probability of a

solution is not less than πk ≡ 1 − C6k−C4/2, for some C6 > 0. More-
over, it can be deduced from (A.2) that under the same conditions, any
solution η̂ of (A.1) satisfies

‖(η̂ − η0) − (M + L)−1S‖ ≤ (3/2c)C1‖η̂ − η0‖2, (A.4)

and therefore, if ‖η̂ − η0‖ ≤ C3, we can see from (A.2) that

1

2
‖η̂ − η0‖ ≤ ‖η̂ − η0‖{1 − (3/2c)‖η̂ − η0‖}

≤ ‖(M + L)−1S‖ ≤ (3/2c)‖S‖. (A.5)

Together, (A.4) and (A.5) imply that if ‖η̂ − η0‖ ≤ min(C−1
1 C3,C2,

C3) then with probability not less than πk , ‖(η̂−η0)−(M+L)−1S‖ ≤
(3/2c)C1C−2

3 ‖S‖2, from which follows the second-last inequality in
Theorem 1. The last inequality in the theorem follows via a Taylor
expansion, enabled by (A.3).
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A.4 Proof of Corollary 1

Define the event E = {‖S‖ ≤ ε,‖L‖ ≤ ε}, and let Ẽ denote the
complement of E . Let ε > 0, let C > 0 be as in the condition
max1≤i≤k ni = O(kC) in the statement of the corollary, and note that

(sup |f |)−1E
{|f (η̂)|I(Ẽ )

} ≤ P(Ẽ ) ≤ P(‖S‖ > ε) + P(‖L‖ > ε)

= O(K−1). (A.6)

Assume that f has two bounded derivatives within radius C7 of η0,
where C7 > 0, and let D4 be as in Theorem 1. Let c ∈ (0,1) be a lower
bound to the least eigenvalue of MTM, and write f ′ for the p-vector of
first derivatives of f . By choosing ε = ε(C7) sufficiently small we can
show, as in the proof of Theorem 1, that when E obtains we have ‖η̂ −
η0‖ ≤ 1

2 C7, ‖{(M+L)−1S}Tf ′(η0)‖ ≤ 1
2 C7 and D4‖S‖2 ≤ 1

2 C7, and

that the least eigenvalues of (M + L)T(M + L) and (I + LM−1)T(I +
LM−1) exceed 1

2 c. Hence, by Taylor expansion of f (η̂) about η0, we
deduce from Theorem 1 that there exists a constant C8 > 0 such that,
provided E obtains, |f (η̂)− f (η0)−{(M+L)−1S}Tf ′(η0)| ≤ C8‖S‖2.
Therefore,∣∣E{f (η̂)I(E )} − f (η0)P(E ) − E

[{(M + L)−1S}TI(E )
]
f ′(η0)

∣∣
= O(K−1). (A.7)

Let j0 ≥ 1 denote an integer. The properties discussed in the previ-
ous paragraph can be applied to prove that

E{(M + L)−1SI(E )}

= M−1
j0∑

j=0

[
E{(−LM−1)jS} − E{(−LM−1)jSI(‖S‖ > ε)}]

+ O

{ j0∑
j=0

[
E
{‖L‖2jI(‖L‖ > ε)

}]1/2
(E‖S‖2)1/2

+ E{‖L‖j0+1‖S‖I(E )}
}

, (A.8)

where, here and below, order-of-magnitude expressions for vectors are
interpreted component by component. We can further expand terms
in L, writing L = L1 + L2 where L1 is the p × p matrix with (s, t)th
component equal to bst − E(bst), and L2 = L − L1 [see (4.4) for a
definition of L]. Condition (4.5) implies that E‖L1‖j = O(k−j/2) and
E‖L2‖j + E‖S‖j = O(K−j/2) for all integers j, and so we can deduce
from (A.8) that the same expansion holds if we replace L by L1, re-
place ε by 1

2 ε in one place, and add O(K−1 + k−(j0+1)K−1/2) to the
right-hand side:

E{(M + L1)−1SI(E )}

= M−1
j0∑

j=0

[
E{(−L1M−1)jS} − E

{
(−L1M−1)jSI(‖S‖ > ε)

}]

+ O

{ j0∑
j=0

[
E

{
‖L1‖2jI

(
‖L1‖ >

1

2
ε

)}]1/2
(E‖S‖2)1/2

+ E{‖L1‖j0+1‖S‖I(E )}
}

+ O
(
K−1 + k−(j0+1)K−1/2)

. (A.9)

The result E{‖L1‖j0+1‖S‖I(E )} = O{(E‖L1‖2(j0+1))1/2K−1/2}
follows from the property E(‖S‖2) = O(K−1). Using the argu-
ment leading to (A.6) we can show that if j0 is sufficiently large,
E(‖L1‖2(j0+1)) = O(k−(j0+1)) = O(K−1), and therefore,
E{‖L1‖j0+1‖S‖I(E )} = O(K−1). Moreover, E(S|FX) = 0, where FX

denotes the sigma field generated by X1,X2, . . . , and so we have
E{(−L1M−1)jS} = E{(−L1M−1)j E(S|FX)} = 0. Also, for j ≥ 1,

E{(−L1M−1)jSI(‖S‖ > ε)} = O
[
E
{‖L1‖jE(‖S‖2|FX)

}]
= O(K−1).

Using (A.3) we deduce that E{‖L1‖2jI(‖L1‖ > 1
2 ε)} = O(k−2j ×

k−C4/2), provided that C4 ≥ 2(C + 1); see (A.6). Additionally, by
(A.6), P(E ) = 1 − P(Ẽ ) = 1 − O(K−1). Combining the results in this
paragraph, (A.7) and (A.9), we deduce that |E{f (η̂)I(E )} − f (η0)| =
O(K−1). The corollary follows from the latter identity and (A.6).

SUPPLEMENTARY MATERIALS

Appendix B: It contains the additional proofs. (supplement.
pdf)
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