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Summary. Functional magnetic resonance imaging (MRI) is an advanced technology for study-
ing brain functions. Owing to the complexity and high cost of functional MRI experiments, high
quality multiobjective functional MRI designs are in great demand; they help to render precise
statistical inference and are keys to the success of functional MRI experiments. Here, we pro-
pose an efficient approach for obtaining multiobjective functional MRI designs. In contrast with
existing methods, the approach proposed does not require users to specify weights for the
different objectives and can easily handle constraints to fulfil customized requirements. More-
over, the underlying statistical models that we consider are more general. We can thus obtain
designs for cases where brief, long or varying stimulus durations are utilized.The usefulness of
our approach is illustrated by using various experimental settings.
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1. Introduction

Functional magnetic resonance imaging (MRI) is one of the most dominant brain mapping
techniques. This pioneering technology has many important clinical potentials such as early
identification of Alzheimer’s disease (Wierenga and Bondi, 2007) and preneurosurgical plan-
ning (Bookheimer, 2007); see also Brown (2007). In a functional MRI experiment, an MRI
scanner is used to measure non-invasively cerebral haemodynamic changes following brain
activity due to mental tasks or stimuli (Ogawa et al., 1990). Specifically, the scanner acquires
functional MRI signals from a three-dimensional grid of boxes that covers (some region of) the
subject’s brain; these boxes are called voxels and are of size, say, 3:15 × 3:15 × 5 mm3 (see, for
example, section 2.1.1. of Lazar (2008)). At each voxel, a time series consisting of functional
MRI signals collected over time is obtained and is analysed to make statistical inference about
brain functions. Two common statistical goals are

(a) detection of active brain voxels and
(b) the estimation of the haemodynamic response function (HRF), which is a function of time

describing the fluctuations of the functional MRI signals evoked by one single stimulus.
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Detection allows the identification of brain regions activated by the stimuli. Estimation helps
to understand the effect of a stimulus on the brain. Here, we aim at obtaining good designs that
help to achieve both goals while taking into account practical constraints. Other relevant issues
and overviews of functional MRI can be found in Lazar (2008) and Lindquist (2008).

Well-planned designs are crucial to the success of functional MRI experiments. However,
obtaining high quality functional MRI designs is not an easy task. It requires careful consider-
ation regarding study objectives, statistical models, psychological constraints and MRI machine
settings. Taking into account these practical issues, existing approaches utilize discrete optimiza-
tion techniques to search over the enormous design space for good designs. Wager and Nichols
(2003) proposed a genetic algorithm framework that targets multiobjective designs achieving
high statistical efficiencies in detection and estimation and avoiding possible psychological con-
founds such as anticipation and habituation. Their genetic algorithm has been applied in many
studies over the last few years (e.g. Summerfield et al. (2006), Wang et al. (2007) and Rameson
et al. (2010)). Following this work, Kao, Mandal, Lazar and Stufken (2009) developed a more
efficient approach that takes advantage of current knowledge about functional MRI designs.
Their approach largely improves the efficiency in searching for good functional MRI designs
and was demonstrated to outperform previous methodologies.

Previous studies deal with the multiobjective nature of functional MRI experiments by using
an objective function that is a weighted sum of criteria that target each objective separately.
When weights are available, the genetic algorithm of Kao, Mandal, Lazar and Stufken (2009) is
most efficient, and thus recommended. However, assigning weights can be arduous in practice
(Deb, 2001; Ding et al., 2004). One reason is that the mapping between the assigned weights
and the performance of the resulting design under the various criteria is usually unclear. The
design may fail to meet the experimenter’s expectation (Marler and Arora, 2004, 2010). For
example, assigning equal weights is common when seeking a design with equal efficiencies for
all objectives. However, the result can be far from this requirement; see, for example, Cook and
Wong (1994) and Section 4 of this paper.

In this paper, we consider an alternative approach for obtaining multiobjective designs when
information about weights is vague. The idea is to obtain not only one, but a class of diverse,
(near) Pareto optimal designs; a design is Pareto optimal if no other designs perform better
in one or more objectives while being equivalent in all other objectives. The designs in this
class approximate the Pareto frontier and, hence, offer optimal trade-offs between different
objectives. Experimenters can then scrutinize the characteristics of the designs obtained and
select one that suits their needs best. To achieve such a design class efficiently, we propose the
non-dominated sorting genetic algorithm II (NSGA II) (Deb et al., 2002), but with the improve-
ment of including well-known functional MRI designs in the first step, just as in Kao Mandal,
Lazar and Stufken (2009).

The approach proposed belongs to the class of ‘a posteriori’ methods, in which a set of solu-
tions is obtained for users to select from on the basis of their preferences (Miettinen, 1999). The
weighted sum method can also be used to achieve this. In our context, this is done by repeat-
edly using the genetic algorithm of Kao, Mandal, Lazar and Stufken (2009) to obtain designs
for systematically changed weights. Compared with this weighted sum method, our proposed
approach requires much less central processing unit (CPU) time and achieves good designs. More
importantly, the designs that we obtain have greater diversity in the objective space. This diver-
sity facilitates design selection and is viewed as an important property to achieve (Zitzler et al.
(2003) and references therein). Furthermore, our proposed approach can handle constraints
easily and generates designs satisfying experimenters’ requirements. By contrast, the weighted
sum method is clumsy in this regard. We also compare the modified NSGA II approach with
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the original approach. With a slightly increased CPU time, our approach achieves designs with
better ability to detect brain activation.

Moreover, the underlying statistical models that we consider are more general than those used
in previous studies. Our models accommodate cases considering brief stimuli (about 1 s), stim-
uli lasting several seconds or stimuli with durations varying across types. Such cases are quite
common. For example, Murphy et al. (2006) used a 1-s flashing checkerboard to detect active
voxels and to estimate the HRF, whereas Birn et al. (2004) and Brendel et al. (2010) considered
stimuli of varying durations. Martin et al. (2005) employed 5-s pictures and detected activated
brain regions on stroke patients with aphasia. The models that we consider also allow cases
where event-related regressors are used to replace epoch regressors as advocated by Mechelli
et al. (2003). With these important improvements, our approach provides a flexible and power-
ful tool for obtaining good functional MRI designs. A MATLAB program implementing this
approach is available on request from the first author.

The remainder of the paper is organized as follows. In Section 2, we briefly introduce back-
ground information about functional MRI designs. We then present our proposed approach
in Section 3, including the statistical models, design criteria and search algorithm. In Sec-
tion 4, our proposed approach is compared with the weighted sum method and the NSGA
II approach under various experimental settings. The paper closes with a brief discussion in
Section 5.

2. Background and terminology

A functional MRI design is a sequence of mental stimuli (e.g. pictures or sounds) of one or more
types interlaced with a control (e.g. rest or fixation). Such a sequence is presented to an experi-
mental subject while an MRI machine scans the subject’s brain to collect functional MRI time
series from each brain voxel. When being presented, each stimulus may last from several milli-
seconds to a few seconds. Times between consecutive stimulus onsets may vary across stimuli;
they are assumed to be multiples of a prespecified time which is termed the interstimulus interval
in this paper. The control fills in the time when no stimulus is being presented. Such a functional
MRI design is typically written as a finite sequence of finite numbers, e.g. s ={101210. . . 1}. A
number q . /=0/ at the kth position of a design indicates an onset of a qth-type stimulus at time
.k − 1/τISI, where τISI is the specified interstimulus interval. A ‘0’ means no stimulus onset at
that time point.

Well-known functional MRI designs include block designs, m-sequences, random designs,
mixed designs, permuted block designs and clustered m-sequences. A block design is a pat-
terned sequence in which stimuli of the same type are clustered. For example, a block design
with block size 4 may consist of repetitions of {111122220000}. An m-sequence can be gener-
ated from primitive polynomials for a Galois field (MacWilliams and Sloane, 1977; Godfrey,
1993; Buračas and Boynton, 2002). Although systematically generated, m-sequences look rather
random with no perceivable patterns. Random designs are randomly generated and typically
have no perceivable patterns. A mixed design is obtained from concatenating a fraction of a
block design with a fraction of an m-sequence or a random design. Permuted block designs
are generated by repeatedly exchanging elements of a block design to make the resulting design
increasingly random. In contrast, a clustered m-sequence is generated by clustering (through
permutation) stimuli of the same type in an m-sequence. See Liu (2004) for detailed descriptions
of these designs.

Different designs are recommended for different purposes. Friston et al. (1999) demonstrated
a high performance of the block design in detecting activations. For estimating the HRF, Dale
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(1999) advocated the use of random designs, and Buračas and Boynton (2002) recommended
m-sequences owing to their low auto-correlation property. Buxton et al. (2000), Liu et al. (2001),
Liu and Frank (2004) and Liu (2004) further investigated efficiencies of designs with respect to
these two dimensions. They observed that

(a) block designs have high efficiencies in detection, but have low estimation efficiencies,
(b) random designs and m-sequences are efficient for estimating the HRF, but they are not

as good as block designs in detection, and
(c) designs containing both ‘blocky’ and ‘random’ components can reach good compromises

between the two objectives;

such designs can be selected from mixed designs, permuted block designs and clustered m-
sequences. Liu et al. (2001) and Liu and Frank (2004) concluded that there is a trade-off between
efficiency for detection and efficiency for estimation. In addition, Liu and colleagues emphasized
the importance of perceived randomness (or unpredictability) of designs. Patterned designs such
as block designs are easy to predict by the experimental subject. They may give rise to psycho-
logical confounds such as anticipation and expectation; see also Dale (1999). Designs that are
not patterned tend to avoid such confounds and are thus favourable.

Although study objectives are important considerations at the design stage, other experi-
mental conditions such as time between consecutive MRI scans of the same voxel (or time to
repetition), interstimulus interval and duration of the experiment are also key factors. These con-
ditions can vary across experiments. To achieve tailor-made designs for each unique experiment,
Wager and Nichols (2003) proposed a genetic algorithm framework to search for good designs
with respect to user-specific experimental settings. Following this framework, Kao, Mandal,
Lazar and Stufken (2009) took advantage of current knowledge about functional MRI designs
to develop a more efficient approach. Their approach has also been adapted to cases involving
multiple scanning sessions (Kao, Mandal and Stufken 2009), and studies where both stimulus
effects and pairwise comparisons are of interest (Kao et al., 2008). Maus et al. (2010a) also
applied this approach for investigating the robustness of designs against misspecified temporal
auto-correlation of functional MRI noise. They also used it to study the efficiency of D-optimal
designs under the A-optimality criterion, and vice versa.

One difficulty of the previously mentioned genetic algorithms is that they require user-specific
weights on study objectives for a multiobjective approach. The interpretation of these weights is
almost always unclear, so there is almost never a meaningful choice. To tackle this issue, we pro-
pose an alternative approach. Our approach is described in Section 3 including the underlying
statistical models, design criteria and a search algorithm; current knowledge about the mecha-
nism behind the observed functional MRI response, which underpins the statistical models, is
also briefly presented.

3. Methodology

3.1. Dual general linear models
In a functional MRI experiment, stimuli are presented to a subject in an order that is determined
by a selected design. Each stimulus evokes neuronal firings at an activated brain voxel. Because
of increased metabolic demands, oxygenated blood flows into the cerebral blood vessels around
the active voxel and changes the ratio of oxyhaemoglobin to deoxyhaemoglobin. This change
affects the local magnetic field, and leads to a fluctuation in the signal intensity that is collected
by an MRI scanner; see also Cabeza and Kingstone (2006). It takes a few seconds for the MRI
signal intensity to rise and decay. The process is sluggish and is typically described by an HRF.
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When stimuli occur in close succession, the evoked HRFs overlap and accumulate to form the
functional MRI time series, which also involves nuisance signals and noise.

Linear models are the most popular for analysing the functional MRI time series (Friston
et al., 1995; Worsley and Friston, 1995; Lindquist, 2008). These models commonly assume a
linear time invariant system, in which each stimulus of the same type evokes the same HRF
throughout the experiment, and overlapping HRFs accumulate additively. For detection prob-
lems, the HRF is typically assumed to be the product of an unknown amplitude parameter
θq and an assumed HRF shape hÅ

q . Here, q = 1, . . . , Q, and Q is the total number of types of
stimulus. With these assumptions, the linear model that we consider for detection has the form

y =
Q∑

q=1
XqhÅ

q θq +Sγ +ε: .1/

Here, y is a T ×1 vector representing the functional MRI time series of a voxel acquired every
τTR s, where τTR is the time to repetition. XqhÅ

q θq represents the contribution to the accumulated
HRFs evoked by the qth-type stimulus. Xq is a 0–1 design matrix corresponding to occurrences
of the qth-type stimulus (see Appendix A for further details). Sγ is a nuisance term representing
the drift or trend of y with a parameter vector γ, and ε is noise. The noise is typically auto-cor-
related and is commonly assumed to follow an auto-regressive AR(1) process. Although other
models may be considered, AR(1) seems to provide satisfactory results in many functional MRI
studies; see also Bullmore et al. (1996), Worsley et al. (2002) and Zhang and Yu (2008).

The main focus of detection problems is on the amplitudes θq of model (1) or, more generally,
their linear combinations Cθθ, where Cθ is a coefficient matrix for linear combinations of inter-
est, and θ = .θ1, . . . , θQ/′. For example, if Cθ = .1, −1, 0, . . . , 0/, the focus is on the difference
between the HRF amplitudes evoked by the first two types of stimulus.

Model (1) is general in that it accommodates many practical situations. For example, when
the study involves only brief stimuli, we could choose hÅ

q from the double-gamma function
of the popular statistical parametric mapping software package for functional MRI analysis
(http://www.fil.ion.ucl.ac.uk/spm/). Specifically, we would take the jth element of
hÅ

q as hÅ
q,j =g{.j −1/ ΔT}=maxt{g.t/}, where

g.t/=
⎧⎨
⎩

t5 exp.−t/

5!
− 1

6
t15 exp.−t/

15!
, t ∈ [0, 32],

0, otherwise,

is a double-gamma function (Fig. 1(a)), ΔT is the greatest real value making both τISI=ΔT and
τTR=ΔT integers, j =1, 2, . . . , 1+�32=ΔT �, and �a� is the integer part of a.

When the stimulus lasts several seconds, hÅ
q may be chosen as a convolution of a boxcar

function and the function g.t/. In such a case, hÅ
q,j =h{.j − 1/ ΔT}=maxt{h.t/}, where h.t/=∫ t

0 b.t − τ /g.τ /dτ is the convolution of b.t/ and g.t/,

b.t/=
{

1, t ∈ [0, τdur],
0, otherwise,

.2/

is a boxcar function for a stimulus with duration τdur, and j =1, . . . , 1+�.32+τdur/=ΔT �. Box-
car functions of 3, 6 and 12 s are presented in Fig. 1(b); their convolutions with g.t/, normalized
to have a maximum of 1, are presented in Fig. 1(c). We note that τdur should ideally be deter-
mined by the duration of the underlying neuronal activity evoked by the stimulus. However,
this duration may not be known; see also Loh et al. (2008). Here, we follow a common practice
to set τdur to the duration of stimulus, and we assume that the neuronal activity and stimulus
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Fig. 1. (a) Function g.t/, normalized to have a maximum of 1, (b) boxcar functions of 3 s ( ), 6 s
( ) and 12 s ( ), and (c) convolutions, normalized to have a maximum of 1, of the function g.t/ and
the boxcar functions ( , 3 s; , 6 s; , 12 s)

durations are the same. In Section 4, we investigate the robustness of designs when these two
durations do not match, i.e. τdur is misspecified.

Model (1) can also be considered when one chooses to follow Mechelli et al. (2003) to consider
event-related regressors in lieu of epoch-related regressors. This can be done by replacing the pre-
viously described boxcar function b.t/ by a spike train 1Γ.t/ with, say, Γ={0, 3, 6, . . . , 3�τdur=3�};
here, 1Γ.t/ is 1 for t ∈Γ and 0 otherwise. We also note that hÅ

q can be different across types of
stimulus. This allows varying stimulus durations across types. Although the double-gamma
function is popular, other HRF shapes can also be considered.

For estimating the HRF, the following linear model is considered (see, also, Dale (1999)):

y =
Q∑

q=1
Xqhq +Sγ +ε: .3/

Here, hq is a vector of parameters describing the HRF evoked by a qth-type stimulus; the jth
element of hq represents the height of the HRF at time .j − 1/ΔT following a stimulus onset.
All other terms are defined under model (1). The focus here is on estimating Chh; Ch is a linear
combination matrix, and h = .h′

1, . . . , h′
Q/′. When Ch = .Ik, −Ik, 0, . . . , 0/, the interest lies in the

difference between the HRFs incurred by the first two types of stimulus; Ik is the k ×k identity
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matrix, and k is the length of the vector hq, which is set to be the same as that of hÅ
q in model

(1).

3.2. Optimal design criteria
Following Kiefer (1959), the performance of a design for detecting activation is evaluated by
some function of the covariance matrix cov.Cθθ̂/ of the generalized least squares estimator,
Cθθ̂. Similarly, the estimation efficiency is measured by some function of cov.Chĥ/, where Chĥ
is the estimator of Chh. Specifically, with models (1) and (3), these covariance matrices are

cov.Cθθ̂/=Cθ.H′X′V′.IT −PVS/VXH/−C′
θ;

cov.Chĥ/=Ch.X′V′.IT −PVS/VX/−C′
h:

Here, H is a diagonal matrix with the vectors hÅ
1 , . . . , hÅ

Q along the diagonal, X = .X1, . . . , XQ/

and V is an assumed whitening matrix so that Vε is white noise. PA =A.A′A/−A′ is the orthog-
onal projection matrix onto the column space of A, and A− is a generalized inverse of A.

We consider the A-optimality criterion in our case-studies. Designs with smaller average vari-
ances for the estimators of the linear combinations of the parameters of interest are said to be
(A) better (Bailey, 2007). For a design s, the A-efficiency for detection is defined as

FÅ
d .s/= Fd.s/

Fd.sÅd /
,

where

Fd.s/= tr{cov.Cθθ̂/}−1,

and sÅd is a design maximizing Fd . We use the genetic algorithm of Kao, Mandal, Lazar and
Stufken (2009) to maximize Fd , and to obtain such a design. For estimation, the A-efficiency of
s is

FÅ
e .s/= Fe.s/

Fe.sÅe /
,

where

Fe.s/= tr{cov.Chĥ/}−1:

The design sÅe is a design maximizing Fe and can be approximated via the genetic algorithm
of Kao, Mandal, Lazar and Stufken (2009). Although we present results for A-optimality, our
approach can also accommodate other optimality criteria, such as D-optimality. Note that the
design criteria that are presented here are for a subset of the model parameters. Such criteria are
sometimes termed As- (or Ds-)optimality; see also Atkinson et al. (2007). For clarity, we omit
the subscript and use the term A- (or D-)optimality in this paper.

In addition to statistical efficiencies, experimenters may want to use a desired frequency for
each type of stimulus for practical reasons (see Section 4.3). We take this requirement into
account by considering the FÅ

f -criterion of Kao, Mandal, Lazar and Stufken (2009):

FÅ
f .s/=1− Ff .s/

Ff .s0/
,

where

Ff .s/=
Q∑

i=1
�|ni −nPi|�, .4/
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ni is the number of the type i stimulus in the subdesign of s excluding all zeros, n is the length
of the subdesign, Pi is the desired proportion of the ith stimulus type, s0 is the design contain-
ing only the stimulus type i with the smallest Pi and �|a|� is the greatest integer less than or
equal to the absolute value of a. To fulfil the experimenter’s requirement, we regard ‘FÅ

f � cf ’
as a constraint for a given cf while optimizing .FÅ

d , FÅ
e /. In Section 3.3, we present an efficient

algorithm to achieve this goal.

3.3. Search algorithm
Our proposed algorithm is built on the NSGA II algorithm of Deb et al. (2002) with a modifica-
tion in the first step of the algorithm. Specifically, we follow Kao, Mandal, Lazar and Stufken
(2009) to include well-known functional MRI designs in the first step of the algorithm to facil-
itate the search for good functional MRI designs. The algorithm proposed mimics Darwin’s
theory of evolution to move through generations. Good parents are selected to reproduce off-
springs and, with the survival of the fittest principle, individuals of better fit survive to the next
generation. The process, when repeated, ensures preservation of good traits and high quality
designs can be expected.

To determine the fitness of designs with respect to multiple objectives, two measures, namely
non-domination rank and crowding distance, are considered. These measures are functions of
design efficiencies (i.e. FÅ

i -values). Non-domination ranks are assigned to designs within each
generation of the algorithm. The first rank is assigned to designs that are not dominated by any
other designs in the same generation; a design s1 is said to be dominated by another design s2 if
FÅ

i .s1/�FÅ
i .s2/ for both i=d and i= e and FÅ

i .s1/<FÅ
i .s2/ for i=d or i= e or both. Designs

of the second non-domination rank are dominated by one or more first-ranked designs, but
not by others. The subsequent ranks are assigned accordingly. When comparing designs, this
measure is of the primary concern; it helps to move towards Pareto optimality. An efficient way
for rank assignments can be found in Deb et al. (2002) and is not repeated here.

When the constraint FÅ
f � cf is used, the ‘constrained domination’ of Deb et al. (2002) is

utilized for assigning non-domination ranks. A design s1 is said to be constrained dominated
by s2 if

(a) both designs satisfy the constraint, and s1 is dominated by s2, or
(b) at least one si fails to satisfy the constraint and FÅ

f .s1/<FÅ
f .s2/.

We note that the constrained case is equivalent to the unconstrained case if cf =0.
As the secondary measure, the crowding distance is used to compare designs of the same

non-domination rank. It helps to maintain diversity in the objective space in terms of design
efficiencies (FÅ

d and FÅ
e ). Designs with small crowding distances are close to their neighbours,

and we would like to leave them out. To obtain the crowding distance, we first use FÅ
d to sort

the designs. If a design s has the smallest or the largest FÅ
d , we follow Deb et al. (2002) to set

dd.s/ = ∞ to avoid leaving out the designs on the boundaries. Otherwise, dd.s/ is the abso-
lute difference between the FÅ

d -values of the first neighbours of s. Repeat the procedure again
by using FÅ

e to obtain de.s/. The crowding distance of s is dd.s/ + de.s/; see also Deb et al.
(2002).

With these two measures, we describe the proposed algorithm below.

Step 1: initials (first generation)—obtain 2G initial designs to form the first generation, where
G is an even number. The designs that we use include block designs, m-sequences, random
designs, a design maximizing Fd , a design maximizing Fe and combinations of the last two.
Calculate design efficiencies for these designs.
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Step 2: fitness and mating pool—compute the non-domination ranks and crowding distances
for the designs in the current generation. On the basis of these two measures, select the G best
designs from the current generation to form a mating pool.
Step 3: stopping rule—if a given number of generations is reached, terminate the search and
report the G designs in the mating pool. Otherwise, continue to the next step.
Step 4: selecting parents—obtain G=2 pairs of parents from the mating pool via a tournament
selection. Specifically, four distinct designs are randomly selected from the mating pool to
form two pairs of designs. Choose the better one from each of the two design pairs; the two
winners continue as a pair of parents. This process is then repeated G=2 times to form G=2
pairs of parents, each time starting with the selection of four designs from the original mating
pool of G designs.
Step 5: reproduction—use the paired parents to generate offspring via crossover and muta-
tion; each pair gives birth to two offspring designs. The crossover operator exchanges the
corresponding fractions of each pair of designs on the basis of a randomly selected cut point.
The mutation operator then perturbs a randomly selected portion αm of elements of the G
resulting designs. The selected elements are replaced by new elements generated from the
discrete uniform distribution U{0, 1, . . . , Q}.
Step 6: next generation—obtain the design efficiencies of the G offspring designs. The G off-
spring along with the G designs in the mating pool form the next generation. Go back to step
2 and repeat the process until the stopping rule in step 3 is met.

We follow Kao, Mandal, Lazar and Stufken (2009) to include well-known functional MRI
designs in the initial generation. These designs provide ‘building blocks’ to facilitate the search.
They can be generated systematically but are not easy to achieve via random mechanisms
(crossover and mutation). We also include designs maximizing Fd and Fe, which are required
for calculating FÅ

d and FÅ
e respectively. Including them does not significantly increase the com-

putation time and is helpful. When implementing the algorithm, we set G to 100 and αm to 1%.
The search is terminated after 2500 generations. Although these algorithmic parameters may
not be optimal, the achieved designs are satisfactory as presented in Section 4.

We note that the NSGA II algorithm has a different procedure in the first iteration. In that
algorithm, G designs are first randomly generated to produce another G designs via tournament
selection, crossover and mutation. The 2G designs are combined to form ‘initial designs’ in step
1. Other steps are then implemented to generate subsequent generations; see also Deb et al.
(2002). When implementing this algorithm, we also set G = 100, and αm = 1%, and terminate
the search after 2500 generations.

4. Case-studies

In this section, we use our proposed approach to generate multiobjective functional MRI designs
for various experimental settings. The results are compared with those of the weighted sum
method and the NSGA II approach in terms of the diversity of the obtained designs in the objec-
tive space, achieved trade-offs and CPU time spent. In addition, designs are selected from the
obtained design classes by using various selection criteria. These selected designs are compared
to provide information about the ability of the three approaches in fulfilling the experimenter’s
needs. We also study the robustness of designs to misspecified τdur in equation (2).

Moreover, our proposed approach is applied to obtain designs for the experiment of Brendel
et al. (2010), who used a design obtained through random permutations. Although such designs
are quite common in practice, we demonstrate that our designs can significantly outperform
them.
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4.1. Multiobjective designs for brief stimuli
We first consider an experimental setting that was also studied by Kao, Mandal, Lazar and
Stufken (2009). The number of stimulus types is 3 (Q=3) and all stimuli have a short duration.
The length of the design sequence is 255. The interstimulus interval is 2 s and so is the time to
repetition. Two study objectives of interest include detecting activation and estimating the HRF,
and the linear combination matrices Cθ and Ch are identity matrices. The response is assumed
to have a second-order polynomial drift. The noise follows an AR(1) process with a correlation
coefficient ρ=0:3. On the basis of the results of Maus et al. (2010a), A-optimal designs obtained
with ρ= 0:3 are quite robust against other ρ∈ [0, 0:5]. Alternatively, if a prior estimate of ρ is
available, one could use that value; see also Wager and Nichols (2003). For q=1, 2, 3, the HRF
shape hÅ

q of model (1) is the normalized g.t/ that was discussed in Section 3.1.
Fig. 2(a) presents the FÅ

e - against FÅ
d -values of the 21 designs obtained by the weighted sum

method under this scenario. These designs are achieved by repeatedly implementing the MAT-
LAB program of Kao (2009) to maximize F = wFÅ

d + .1 − w/FÅ
e with w increased from 0 to

1 in steps of 0.05. Except for the stopping rule, the algorithmic parameters of the MATLAB
program, including the population size (20), mutation rate (1%) and number of immigrants (4),
are set to their default values (see Table 1 of Kao (2009)). The stopping rule that we choose is
also built in the program and it terminates the search if there is no significant improvement in
the F -value. In our experience, this stopping rule can save CPU time without sacrificing much
in the efficiency achieved. Note that the mesh size of 0.05 was also considered in Kao, Mandal,
Lazar and Stufken (2009).

0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a)

F*
d

F
* e

0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b)

F*
d

F
* e

0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(c)

F*
d

F
* e

0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(d)

F*
d

F
* e

Fig. 2. F Å
e - against F Å

d -values of the designs obtained from (a) the weighted sum method with mesh size
0.05 (21 designs), (b) the weighted sum method with mesh size 0.01 (101 designs), (c) the NSGA II approach
(100 designs) and (d) our approach (100 designs)
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A disadvantage of the weighted sum method is observed in Fig. 2(a)—the designs are clus-
tered at the two ends of the approximate Pareto frontier and are sparse in the middle. Users do
not have many choices if designs with intermediate efficiencies are desired. The use of a smaller
mesh size of 0.01 slightly improves the situation. However, clusters and gaps are still observed
(see Fig. 2(b)). Our approach and the NSGA II approach yield designs with better diversity
in the objective space. As shown in Figs 2(c) and 2(d), no large distances between consecutive
designs are observed, and there are designs almost everywhere on the approximate Pareto fron-
tier. Experimenters can select a suitable design on the basis of their preferences for a trade-off
between the different objectives.

Figs 2(c) and 2(d) also reveal that the maximal FÅ
d -value that is achieved by the NSGA II

approach is slightly smaller than that attained by our approach. This is better manifested in
Fig. 3 where Figs 2(b)–2(d) are overlaid; note that the design class in Fig. 2(a) is a subset of
that in Fig. 2(b). As shown in Fig. 3, the NSGA II approach does not provide any design with
FÅ

d >0:948. With the help of good initial designs, our approach is free from this drawback. Fig. 3
also indicates that the weighted sum method can achieve designs with slightly better trade-offs;
these designs are located slightly to the upper right of some designs of the other two approaches.
Although the weighted sum approach is slightly advantageous in this regard, it requires much
more CPU time as also shown in Fig. 3.

The CPU times that are presented in Fig. 3 are obtained from implementing the different
methods on a desktop computer with a 3.0 GHz Intel Pentium 4 quad-core processor. The
weighted sum method is the most time consuming. With the mesh size of 0.05, this method
takes about 19 min to obtain 21 designs. About 98 min are required for the weighted sum
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respectively): �, weighted sum; �, our approach; Å, NSGA II approach; , reference line
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method to achieve 101 designs. The NSGA II algorithm spends about 11 min and our approach
uses about 12 min to obtain 100 designs. The last two approaches are more efficient.

In addition to the above comparisons, it is also of interest to see whether the three approaches
can fulfil the experimenter’s needs in design selection. One possible selection criterion is to find a
design with balanced efficiencies (FÅ

d =FÅ
e ). Such a design works equally well, relative to the best

designs, in both dimensions. With this selection criterion, a design with .FÅ
d , FÅ

e /= .0:744, 0:745/

can be selected from the 100 designs of our approach. The NSGA II approach achieves a de-
sign with .FÅ

d , FÅ
e /= .0:745, 0:749/. The weighted sum method yields .FÅ

d , FÅ
e /= .0:729, 0:781/,

which is achieved by using the mesh size of 0.01, and the objective function F =0:62FÅ
d +0:38FÅ

e .
Our approach and the NSGA II approach produce designs with closer FÅ

d - and FÅ
e -values and

better satisfy the selection criterion. We also note that, when equal weights are assigned (w=0:5),
the weighted sum method does not yield a design with equal efficiencies for detection and esti-
mation but results in an .FÅ

d , FÅ
e / value of .0:618, 0:92/.

Selecting constrained designs that maximize FÅ
d (or FÅ

e ) subject to FÅ
e � c (or FÅ

d � c) for
a given c is also quite common. Fig. 4 presents the max.FÅ

i / that is achieved by different
approaches when FÅ

j � 0:75, 0:85, 0:95. The weighted sum method with mesh size 0.05 consis-
tently performs the worst, and the use of a finer mesh size improves the result. Although our
approach and the NSGA II algorithm use much less CPU time, Fig. 4 demonstrates that these
two methods achieve designs that are better or not much worse than those of the weighted sum
method. Although the NSGA II approach performs similarly to our approach in most cases,
it fails to produce designs with FÅ

d �0:95 as indicated in the rightmost group of Fig. 4(b). Our
approach is thus recommended.
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4.2. Multiobjective designs for longer durations of stimulus
For the second setting, stimuli that last several seconds are considered. We start with the case
of two types (Q=2) of 4-s stimuli. The length of the design is 242. The interstimulus interval is
4 s and the time to repetition is 2 s. The HRF shape is the convolution of a 4-s boxcar function
with the normalized g.t/; see Section 3.1. Other conditions are the same as for the experimental
setting in Section 4.1.

Comparisons between our approach, the NSGA II approach and weighted sum method are
again conducted. The results convey information similar to that in Section 4.1 and have thus
been omitted. Here, we focus on another important issue, namely the robustness of designs to
misspecification of the duration τdur of the boxcar function b.t/ in equation (2). This misspec-
ification may occur when there is a difference between the duration of stimulus, which is com-
monly used to specify τdur, and the duration of the neuronal activity evoked, which is almost
always uncertain and may vary across brain voxels. For example, in an experiment involv-
ing tasks requiring memory or decision making, the neuronal activity might last longer than
the stimulus presentation. In other instances, the neuronal activity that is evoked by a simple
task might not last as long as the presentation duration of the task. Our results suggest that
our obtained designs remain efficient if the difference between the misspecified neural activity
duration and the real duration is no more than 2 s, especially when the interstimulus inter-
val is 6 s or less. A loss of efficiency is observed when the misspecified duration is more than
4 s apart from the real duration. The amount of loss in the design efficiency increases with the
interstimulus interval.

Fig. 5 presents the performance of two sets of designs, namely designs for brief stimuli and
those for 2-s stimuli (τdur =2) when the interstimulus interval is 4 s. In Fig. 5(a), we assume that
the neuronal activity is brief; the τdur of 2 that was used to generate the second set of designs
is thus misspecified, and the first set of designs is suited to this particular case. As shown in
Fig. 5, the Pareto fronts approximated by the two design sets are nearly indistinguishable. This
indicates that the designs that were obtained for 2-s stimuli are very efficient when the neuronal
activity is brief. In Fig. 5(b), we assume that the actual neuronal activity duration is 2 s. Again,
the two designs sets perform similarly in this latter case. The designs generated for brief stimuli
are therefore very efficient when the actual τdur is 2 s.

To accommodate stimuli with duration longer than 2 s, we increase the interstimulus interval
to 6 s and 8 s. The FÅ

e - against FÅ
d -values of designs generated with 6-s interstimulus interval

are presented in Figs 6(a) and 6(b), and those with 8-s interstimulus interval are in Figs 6(c) and
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6(d). As shown in Fig. 6(a), designs for 4-s stimuli yield FÅ
d - and FÅ

e -values that are similar to
those of designs for brief stimuli when the actual neuronal activity duration is brief. In contrast,
Fig. 6(b) indicates that designs for brief stimuli remain efficient when the actual neuronal activ-
ity duration is 4 s. Similar results are observed when the interstimulus interval is 8 s. The 4-s
stimulus designs perform quite well for brief neuronal activity; see Fig. 6(c). We also observe that
the designs for brief stimuli and those for 6-s stimuli are quite efficient when the actual neuronal
activity is 4 s (not shown). Fig. 6(c) also suggests that designs for 6-s stimuli can suffer a loss
of efficiency if the neuronal activity that is evoked by the stimulus is brief. Fig. 6(d) indicates
that the brief stimulus designs do not perform well when the underlying neuronal activity that is
evoked by each stimulus lasts 6 s. However, the 4-s stimulus designs achieve a good performance
in this last scenario in Fig. 6(d). Designs for 2-s stimuli have also been studied and are observed
to perform similarly to the brief stimulus designs in all cases presented in Fig. 6. For clarity,
these 2-s stimulus designs have been omitted from Fig. 6.

4.3. Constrained multiobjective designs for varying durations of stimulus
Following Brendel et al. (2010), we consider here three types of stimulus with durations 6, 3.6
and 2 s. Specifically, the three types of stimulus are

(a) a 2-s preparatory auditory tone signal plus a 4-s, 2.5-Hz isochronous click train,
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d -values of designs when (a) the actual neuronal activity duration is brief and the
interstimulus interval is 6 s, (b) the actual neuronal activity duration is 4 s and the interstimulus interval is 6 s,
(c) the actual neuronal activity duration is brief and the interstimulus interval is 8 s and (d) the actual neuronal
activity duration is 6 s and the interstimulus interval is 8 s: �, brief design; C, 4-s design; Å, 6-s design
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(b) a 2-s preparatory auditory tone signal plus a 1.6-s 2.5-Hz isochronous click train and
(c) a 2-s preparatory auditory tone signal alone.

They are respectively termed the long click train, short click train and no-click train. The in-
terstimulus interval is set to 9 s and the design length to 67; it takes about 10 min to present
the entire design. The MRI scanner scans each voxel every 1.5 s to collect functional MRI time
series for detecting active brain voxels and estimating the HRFs that are evoked by the three
types of stimulus.

Each click train involves clicks of sounds, namely strokes of a pen against a desk. During
the experiment, the subject is asked to synchronize the syllable /ta/ to the clicks as closely as
possible in time. The experimenters decide to include more long click trains, and expect that,
with a higher number of this type of stimulus, the subject will be more engaged throughout the
experiment. The number of occurrences of long click trains is about three times as many as the
other two types of stimulus. Therefore, in the notation of equation (4), P1 = 3

5 for long click
trains, P2 = 1

5 for short click trains and P3 = 1
5 for trains with no clicks. We consider ‘FÅ

f �0:95’
as the constraint when seeking designs with good (FÅ

d , FÅ
e ) values.

Our approach does not have trouble in accommodating the constraint to obtain good multiob-
jective functional MRI designs. The efficiencies of the designs obtained are shown in Fig. 7 (the
cluster of dots that are labelled with FÅ

f �0:95/. From these designs, we could, as an example,
select the design with approximately equal FÅ

d - and FÅ
e -values. One can obviously make other

choices on the basis of needs or preferences. The design that we select is presented in Fig. 8.
Among the 67 elements, there are 27 ones (long click trains), 12 twos (short click trains) and 12
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threes (no-click trains); the remaining elements are zeros. Although the frequency of the first type
of stimulus is not quite three times as much as that of the second or the third type of stimulus,
(we did after all not insist that FÅ

f =1), the design meets the spirit of the experimenter’s require-
ment and achieves high efficiencies for estimation and detection. In addition, although the
unpredictability of designs is not explicitly taken into account, the design obtained does not
seem to have a perceivable pattern (except for a larger number of long click trains). This agrees
with Liu (2004), where designs with high estimation efficiencies are observed to be unpredictable;
see also a discussion in Section 5.

Fig. 7 also presents the efficiencies of designs that are random permutations of a sequence
with 22 ones, eight twos, eight threes and 29 zeros, which is how Brendel et al. (2010) obtained
their design. Obtaining designs via random permutation is quite common in functional MRI.
As presented in Fig. 7, random permutation does not typically result in designs with high effi-
ciencies. Specifically, the FÅ

d -values of the 1000 randomly permuted designs do not exceed 0.7
and their FÅ

e -values are less than 0.8. Designs that we obtain are better.
Moreover, we modified the MATLAB program of Kao (2009) and used it to obtain designs

for the current experimental setting. Appropriate weights of objectives are unknown, and we
simply consider equal weights. The efficiencies of the design obtained are presented in Fig. 7,
where it is labelled ‘weighted sum I’. This design achieves an FÅ

f -value of 0.877; it fails to satisfy
the requirement of FÅ

f �0:95. We then consider maximizing F = 1
6 FÅ

d + 1
6 FÅ

e + 2
3 FÅ

f , i.e. putting
more weight on FÅ

f . The obtained design is labelled ‘weighted sum II’ in Fig. 7. It achieves
an FÅ

f -value of 0:991. Although the constraint on stimulus frequency is satisfied, the .FÅ
d , FÅ

e /

value is sacrificed for such a high FÅ
f -value. Designs with better .FÅ

d , FÅ
e / values are obtained by

our approach under the constraint; these designs are to the upper right of the second weighted
sum design. Moreover, assigning equal weights on estimation and detection tends to produce
designs that are in favour of estimation. This was also observed in Section 4.1. Although one
can keep altering the weights for a more suitable design, this trial-and-error method is tedious
and time consuming. Our approach is much easier to use and it saves time.

The efficiencies of designs that are obtained with a more strict constraint, FÅ
f = 1, are also

presented in Fig. 7. As expected, these designs perform worse in estimation and detection owing
to a higher value of FÅ

f . These designs can be considered when the experimenter demands a
design completely satisfying the specified relative stimulus frequencies. In addition, the .FÅ

d , FÅ
e /

values that were achieved without imposing the constraint are also plotted in Fig. 7. The stimu-
lus frequency of these designs is close to the optimal stimulus frequency that was approximated
by Liu and Frank (2004). Each symbol (0, 1, 2 or 3) occurs nearly equally often. Further investi-
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gations are required to confirm the optimal stimulus frequency for designs with long or varying
durations of stimulus.

5. Discussion

In this paper, we present an efficient approach for obtaining multiobjective designs for func-
tional MRI experiments. Our proposed approach is built on the NSGA II approach of Deb
et al. (2002). As in Kao, Mandal, Lazar and Stufken (2009), we include well-known functional
MRI designs in the first step to improve the approach. This approach can accommodate many
real life experimental settings to find a class of multiobjective functional MRI designs. With this
class of designs, the trade-offs between study objectives can be explored and experimenters can
choose a design from the class on the basis of their needs.

We demonstrate the advantages of our approach over the popular weighted sum method and
the NSGA II approach by using various experimental settings. Compared with the weighted sum
method, our approach uses much less CPU time and achieves good designs that are nearly evenly
distributed on the approximated Pareto front. Our case-studies also show that designs that are
obtained by the NSGA II approach may not achieve FÅ

d -values as high as those for designs that
are obtained by our approach (e.g. Fig. 4(b)). This drawback of the NSGA II approach can
be alleviated by increasing the number of generations. For example, using the same scenario
as in Section 4.1, the NSGA II approach achieves a maximal FÅ

d -value of 0.994 after 100000
generations. However, this FÅ

d -value is still slightly smaller than that achieved by our approach
with 2500 generations. Instead of investing much more CPU time, we take advantage of current
knowledge about the performance of functional MRI designs and utilize good initial designs
to improve greatly the efficiency of the search for high quality functional MRI designs. Our
proposed approach largely saves resources.

We believe that the observed drawback of the NSGA II approach is due to the lack of vari-
ability in the design population that is searched by this method. Specifically, good designs for
detection usually require multiple blocks of stimuli of the same type. With only random initial
designs, it seems difficult for the NSGA II approach to achieve such good designs with this
special feature. By contrast, our approach uses not only random designs, but also well-known
functional MRI designs that are easy to generate. These designs facilitate the search by providing
good building blocks to increase the variability of the design population.

In addition, although we consider A-optimality in our case-studies, our approach can also
accommodate the D-optimality criterion. The selection of the optimality criterion should be
guided by the needs and preferences of the experimenter. The A-optimality criterion may be
considered when minimizing the average variance of parameter estimators is of interest. In con-
trast, D-optimality aims at minimizing the volume of a simultaneous confidence ellipsoid of the
parameters; see Kao, Mandal, Lazar and Stufken (2009) and Maus et al. (2010a, b) for formu-
lations of the D-optimality criterion for functional MRI. By changing the objective function,
our approach can also be used for other optimality criteria.

When evaluating the performance of a design, we focus on the design’s ability to detect acti-
vation, to estimate the HRF and to meet requirements for the relative stimulus frequencies. Our
approach can also accommodate additional performance criteria such as the counterbalancing
criterion FÅ

c for avoiding patterned, predictable designs; see Kao, Mandal, Lazar and Stufken
(2009) and Wager and Nichols (2003). In our experience, designs with high FÅ

e -values tend to
have high FÅ

c -values and, hence, are not easy to predict. This observation agrees with Liu (2004).
We also observe a trade-off relationship between FÅ

c and FÅ
d .

Moreover, we assume that the HRF shape hÅ
q in model (1) is a double-gamma function or its
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convolution with a boxcar function. The duration τdur of the boxcar function is typically set to
the duration of a stimulus, but it should ideally reflect the duration of the underlying neuronal
activity, which is usually uncertain. As shown by our simulations in Section 4.2, a small change
(2s or less) of τdur does not seem to have a large effect on the efficiency of the designs that we
obtain. Our designs allow the researcher to modify τdur at the analysis stage to improve the
analysis results; these designs remain very efficient.

The double-gamma function that we consider is very popular and has a proven track record
in functional MRI research (Lindquist, 2008; Loh et al., 2008). However, our approach is not
restricted to this particular function. By changing the function g.t/ that is described under model
(1), our proposed approach can be used to search for multiobjective designs that are suited to
other HRF models. If the HRF model is uncertain at the design stage, one may follow the sug-
gestion of Maus et al. (2010a) of using a maximin approach for finding designs that are
robust against misspecification of the HRF model. Pursuing this is beyond the scope of this
present work.

We also assume the linear time invariant system; see Section 3.1. Some studies suggest that
the assumption might not hold and that the functional MRI response might have a non-linear
effect for some situations, e.g. when the stimuli are too close, say less than 4 s (Wager et al.,
2005; Soltysik et al., 2004). Wager and Nichols (2003) proposed a simple way to deal with this
non-linear effect. They set a ceiling for the accumulated HRFs. Similarly to Wager and Nichols
(2003) and Kao (2009), our approach can be modified to find designs for cases where such a
ceiling is imposed.
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Appendix A

The design matrix Xq in model (1) is a 0–1 matrix for the qth-type stimuli, q=1, . . . , Q. To obtain Xq, we
first construct a working matrix Wq having entries 0 and 1. The first column of Wq indicates the times of
the onsets of the qth-type stimuli in terms of multiples of ΔT . The next columns are obtained by shift-
ing the elements of the previous column one position down and adding a 0 at the top. The matrix Xq is
then obtained by deleting rows from Wq, keeping only rows 1 + .i − 1/mTR, where mTR = τTR=ΔT and
i=1, 2, . . . , 1+ [.T −1/=mTR]. Note that the dimension of Xq is T ×k, where k =1+�32=ΔT � for brief (of
the order of 1 s) stimuli or k =1+�.32+ τdur/=ΔT � for stimuli with a longer duration τdur s (Section 3.1).

As an illustrative example, we consider a design s={101210. . . 1} of brief stimuli with time to repetition
τTR =2 s and interstimulus interval τISI =3 s; thus, ΔT =1 s, mTR =2 and mISI = τISI=ΔT =3. The stimuli
of the first type occur at time 0, 2τISI = 6 ΔT , 4τISI = 12 ΔT , and so on (see Section 2). The first column
of W1 is therefore w1 = .100000100000100000:::100/′ with 1 occurring at positions 1 .=0+1/, 7 .=6+1/,
13 .= 12 + 1/, and so on to indicate the onsets of the first-type stimuli. The jth column of W1 is Lj−1w1,
where j =1, . . . , 33, and

L=

⎛
⎜⎜⎜⎜⎝

0 0 : : : 0 0
1 0 : : : 0 0
0 1 : : : 0 0
:::

:::
: : :

:::
:::

0 0 : : : 1 0

⎞
⎟⎟⎟⎟⎠

:

Similarly, the jth column of W2 is Lj−1w2, where w2 = .000000000100000000:::000/′. That the 10th element
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of w2 is 1 is a consequence of the fact that the second-type stimulus occurs at time 3τISI =9 ΔT . We then
obtain Xq by deleting even rows and keeping odd rows of Wq, q=1, 2.
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