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Abstract

Information matrices play a key role in identifying optimal designs. Panel mixed

logit models are more flexible than multinomial logit models for discrete choice exper-

iments. For panel mixed logit models, the information matrix does not have a closed

form expression and is difficult to evaluate. We propose three methods to approx-

imate the information matrix, namely importance sampling, Laplace approximation

and joint sampling. The three methods are compared through simulations. Since our

ultimate goal is to find optimal designs, the three methods are compared on whether

they rank designs similarly, not on how accurate the approximations are. Although

the Laplace approximation is not as accurate as the other two methods, it can still be

used to rank designs accurately and it is much faster than the other two methods. For

an optimal design search using an exchange algorithm takes days to run, the Laplace

approximation may be the only viable choice to use in practice.

Keywords: Discrete choice experiments, optimal designs, Laplace’s method, importance

sampling, joint sampling, A-optimality, D-optimality.

1 Introduction

In marketing, transportation and health care, researchers are interested in understanding

how people make their choices. Such consumer behaviors can be analyzed with discrete

choice models (Train (2009), Rossi, Allenby and McCulloch (2006) and Hensher, Rose and

Greene (2005)). One of the most popular discrete choice models is the multinomial logit
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model, but it has several limitations in representing the choice behaviors (McFadden (1974)).

Recently, mixed logit models have become more popular, because they can relax assumptions

in the multinomial logit model (McFadden and Train (2000), Bhat (1998), Brownstone and

Train (1999), Erdem (1996), Revelt and Train (1998) and Bhat (2000)). However, mixed

logit models belong to the class of generalized linear mixed models, for which designing an

experiment and analyzing the data are difficult, since the likelihood functions do not have

closed-form expressions (McCulloch (1997), Booth and Hobert (1999), Breslow and Clayton

(1993), Wand (2007), Moerbeek and Maas (2005) and Waite and Woods (2014)).

When respondents choose from several products, discrete choice models can be used to

explore the relationship between their choices and the attributes of the products. The multi-

nomial logit model is popular for its simple analytical form, but it assumes a homogenous

population (Train (2009)). Mixed logit models (McFadden and Train (2000)) can account

for the heterogeneity in the population. If respondents are asked to choose from more than

one choice set, the mixed logit model used is called a panel mixed logit model (Erdem (1996),

Revelt and Train (1998) and Bhat (2000)). In a panel mixed logit model, a respondent is

assumed to use similar rules to make a sequence of choices, so the choices from the same

respondent are correlated.

Unlike multinomial logit models, mixed logit models do not have closed-form likelihood

functions, so designing an experiment and analyzing the data are difficult. For the analysis,

likelihood functions are simulated by Monte Carlo methods (Revelt and Train (1998)). For

the design, information matrices are often used to form criteria that measure qualities of the

designs (Atkinson, Donev and Tobias (2007)). Since information matrices also do not have

closed-form expressions, we need a method to evaluate information matrices.

For mixed logit models, the expression for the information matrix, which does not have a

closed-form expression, is often derived and simplified first, followed by an approximation

method based on the simplified expression. For the cross-sectional mixed logit model, Sándor

and Wedel (2002) provide an expression for the information matrix that makes the evaluation

straightforward using Monte Carlo method. Sándor and Wedel (2002) used cross-sectional

mixed logit model for panel data, where responses from the same respondent are assumed

to be independent. For the panel mixed logit model, Bliemer and Rose (2010) derive an ex-

pression for the information matrix, which is more complex than that for the cross-sectional

mixed logit model. Their expression is also too complex to explore the structures in the

information matrix. We simplify their expression and make use of the new expression to

propose more efficient methods for approximating the information matrix. With respect to

a design criterion, the optimal designs are the ones that optimize the criterion and search

algorithms can be used to find efficient designs. Since many information matrices are eval-

uated in search algorithms, efficient methods of approximating the information matrix can

reduce the time of the search considerably.
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In this paper, we will first derive the simplified expression for the information matrix under

a panel mixed logit model. As in Bliemer and Rose (2010), the expression consists of two

expectations, but the two expectations involved are different. For the two expectations in

our expression, one is with respect to the posterior distribution of the random effects given

the responses, the other is with respect to the distribution of the responses. The former

is nested within the latter. We can evaluate the expression in two ways − independently

or together. If the two expectations are approximated independently, the expectation with

respect to the responses is considered first. Then to approximate the expectation with

respect to the posterior distribution, we consider techniques from the literature of discrete

choice models and generalized linear mixed models: McCulloch (1997) and Rossi, Allenby

and McCulloch (2006) use a Metropolis algorithm, Booth and Hobert (1999) use rejection

sampling, McCulloch (1997) and Booth and Hobert (1999) use importance sampling, and

Tierney and Kadane (1986) and Tierney, Kass and Kadane (1989) apply Laplace’s method

to approximate the posterior mean. We find that the Metropolis algorithm is too time

consuming for approximating the information matrix, rejection sampling is not applicable

for the posterior distribution considered here, and importance sampling and the Laplace

approximation are viable to use here. If we consider the two expectations together, we

propose another method which uses samples from the joint distribution of the responses

and the random effects. The three methods, importance sampling, Laplace approximation

and joint sampling, are compared in a simulation study. We find that although the Laplace

approximation is not as accurate as the other two methods, it can still be used to rank

designs and is much faster than the other two methods. Since our ultimate goal is to find

efficient designs and not to approximate information matrices, the ranking of the designs

is more important than the actual information matrices. We conclude that the Laplace

approximation is the most efficient method to use in search algorithms.

The paper is organized as follows. In Section 2, we introduce the panel mixed logit model

and give the simplified expression of the information matrix. Methods for approximating the

information matrix are discussed in Section 3 and three methods are proposed. In Section 4,

we use simulations to compare the three methods. The paper concludes with a discussion in

Section 5.

2 Model, Information Matrix and Design Criteria

We start by introducing the formulation of the panel mixed logit model.
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2.1 Panel Mixed Logit Model

In a typical choice experiment, there are several questions that ask the respondents to choose

one from several alternatives presented to them. The set consisting of the alternatives in

each question is called a choice set. From the respondents’ choices in the choice sets, we can

get information about the preferences of the respondents. The alternatives are identified by

the level combinations of the attributes. For example, suppose a beverage has price (low and

high) and volume (small and large) as attributes. One beverage with low price and small

volume corresponds to a product that is different from another product—a beverage with

low price and large volume.

Let S denote the number of choice sets presented to each respondent and J the number

of alternatives in each choice set. Let xnsj be the k-dimensional vector containing the

coded levels of the q attributes for alternative j in choice set s for respondent n and de-

note by βn the corresponding k-dimensional coefficient vector. The details of the coding

are given in Section 4. Then, the coded design matrix for respondent n is given by a

SJ × k matrix Xn = (xn11, xn12, . . . , xnSJ)′. The corresponding response vector is given by

Yn = (Yn11, Yn12, . . . , YnSJ)′, where Ynsj = 1 if respondent n chooses alternative j in choice

set s and Ynsj = 0 otherwise. In each choice set,
∑J

j=1 Ynsj = 1 where 1 ≤ s ≤ S, because

the respondent chooses only one alternative in each choice set.

We now introduce the panel mixed logit model. In choice set s, if βn is given, the probability

of respondent n choosing alternative j is

P (Ynsj = 1|βn) =
exp(x′nsjβn)∑J
i=1 exp(x′nsiβn)

.

In the above formula, βn is assumed to be constant across the S (> 1) choice sets. Given

βn, the choices made by respondent n are independent and the conditional probability of

observing a sequence of choices yn is

P (Yn = yn|βn) =
S∏
s=1

J∏
j=1

(
exp(x′nsjβn)∑J
i=1 exp(x′nsiβn)

)ynsj

.

The above expression is the probability of observing yn in a multinomial logit model where

βn is a fixed parameter vector. In a mixed logit model, βn is assumed to be a random

vector, whose density function is fθ(βn) with θ being the vector of unknown parameters.
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The unconditional probability of observing yn is

Pθ(Yn = yn) =

∫
P (Yn = yn|βn)fθ(βn) dβn =

∫ S∏
s=1

J∏
j=1

(
exp(x′nsjβn)∑J
i=1 exp(x′nsiβn)

)ynsj

fθ(βn) dβn.

The above expression reflects that choices by the same respondent in different choice sets

are not independent.

For a sample y = (y′1, y
′
2, . . . , y

′
N)′ of N respondents, the likelihood function of θ is

L(θ|Y = y) =
N∏
n=1

Pθ(Yn = yn).

2.2 Information Matrix

The asymptotic variance-covariance matrix of the maximum likelihood estimator of θ is equal

to the inverse of the information matrix. The information matrix can be calculated as

I(θ|X) = EY

(
(
∂ logL(θ|Y )

∂θ
)(
∂ logL(θ|Y )

∂θ
)′
)
,

where X = (X ′1, X
′
2, . . . , X

′
N)′ is the NSJ × k coded design matrix for the N respondents.

Usually, βn is assumed to be a random vector from a multivariate normal distribution

Nk(b,Σ) with b = (b1, b2, . . . , bk)
′ and Σ = diag(σ2

1, σ
2
2, . . . , σ

2
k). The normal random vec-

tor βn can be written as βn = b + un where un ∼ Nk(0,Σ). Let σ = (σ1, σ2, . . . , σk)
′, then

the vector of unknown parameters is θ = (b′, σ′)′. The information matrix for θ is

I(θ|X) =
N∑
n=1

 EYn

(
(∂ logLn

∂b
)(∂ logLn

∂b
)′
)

EYn

(
(∂ logLn

∂b
)(∂ logLn

∂σ
)′
)

EYn

(
(∂ logLn

∂σ
)(∂ logLn

∂b
)′
)

EYn

(
(∂ logLn

∂σ
)(∂ logLn

∂σ
)′
)  ,

where Ln = Pθ(Yn = yn) is the likelihood function for respondent n and is given by

Pθ(Yn = yn)

=

∫
Pb(Yn = yn|un)fσ(un) dun

=

∫ S∏
s=1

J∏
j=1

(
exp(x′nsj(b+ un))∑J
i=1 exp(x′nsi(b+ un))

)ynsj

(2π)−k/2|Σ|−1/2exp(−1

2
u′nΣ−1un) dun.
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The score function for respondent n is

∂ logLn
∂b

=
1

Ln

∂Ln
∂b

= X ′n
(
yn − Eun(pn|yn)

)
, (1)

where pn = (p′n1, p
′
n2, . . . , p

′
nS)′ with pns = (pns1, pns2, . . . , pnsJ)′ and pnsj = Pb(Ynsj = 1|un) =

exp(x′nsj(b+un))∑J
i=1 exp(x

′
nsi(b+un))

; and

∂ logLn
∂σ

= −
(

1

σ1
, . . . ,

1

σk

)′
+ Eun

[(
u2n1
σ3
1

, . . . ,
u2nk
σ3
k

)′
|yn
]
, (2)

where uni is the ith element of un, 1 ≤ i ≤ k. The above expressions are derived in

Appendix 6.1

Then, it can be shown that expressions in the information matrix are given by

EYn

(
(
∂ logLn
∂b

)(
∂ logLn
∂b

)′
)

= X ′n

(
Eun(∆n)− Eun(pnp

′
n) + EYn

[
Eun(pn|Yn)Eun(p′n|Yn)

])
Xn,

EYn

(
(
∂ logLn
∂b

)(
∂ logLn
∂σ

)′
)

= X ′n

(
Eun

[
pn

(
u2n1
σ3
1

, . . . ,
u2nk
σ3
k

)]
−EYn

[
Eun(pn|Yn)Eun

((
u2n1
σ3
1

, . . . ,
u2nk
σ3
k

)
|Yn
)])

,

EYn

(
(
∂ logLn
∂σ

)(
∂ logLn
∂σ

)′
)

= −
(

1

σ1
, . . . ,

1

σk

)′(
1

σ1
, . . . ,

1

σk

)
+ EYn

[
Eun

((
u2n1
σ3
1

, . . . ,
u2nk
σ3
k

)′
|Yn
)
Eun

((
u2n1
σ3
1

, . . . ,
u2nk
σ3
k

)
|Yn
)]

,

(3)

where ∆n = diag(∆ns) with ∆ns = diag(pns) − pnsp′ns. These expressions are also derived

in Appendix 6.1. They will be used to evaluate the information matrix in order to identify

optimal designs, as discussed below.

2.3 Design Criteria

For a univariate estimator, one with a small variance is desirable. For a multivariate es-

timator, the generalization of variance is the variance-covariance matrix. As mentioned in

Subsection 2.2, the asymptotic variance-covariance matrix of the maximum likelihood esti-

mator is equal to the inverse of the information matrix. Hence, a real-valued function of the

information matrix is usually used to formulate the design criterion. D-optimality is usually

used as the design criterion, which seeks to minimize det
[
I(θ|X)

]−1/2k
(often called D-error
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in the context of discrete choice experiments) over all possible choices of X, where 2k is

the number of parameters in θ. A-optimality is another frequently used design criterion, for

which the average of the eigenvalues of I(θ|X)−1, i.e., the trace of I(θ|X)−1 divided by 2k,

is minimized.

Note that I(θ|X) depends on the parameter vector θ, which is unknown prior to the ex-

periment. To overcome this problem, an estimated value of θ from previous studies or an

educated guess can be used. Optimal designs found by this method are called locally optimal

designs (Chernoff (1953)). Here, locally D-optimal designs are the designs that minimize the

D-optimality criterion for a given value of θ. Similarly, the locally A-optimal designs are the

designs that minimize the A-optimality criterion for a given value of θ.

3 Approximation of the Information Matrix

The expressions of information matrices for different respondents are the same, but different

choices of Xn can be used. Hence, for the demonstration of how to approximate the infor-

mation matrix, we will use X1 (SJ × k) for respondent 1 as an example. Correspondingly,

Y1 (SJ × 1) and u1 (k × 1) are the response and random effect for respondent 1.

The expressions in (3) cannot be evaluated explicitly, because they contain intractable inte-

grals. In (3), the terms Eu1(∆1), Eu1(p1p
′
1) and Eu1

[
p1(

u211
σ3
1
, . . . ,

u21k
σ3
k

)
]

only involve expecta-

tions with respect to u1, so Monte Carlo methods can be applied directly to evaluate these

terms.

However, the following terms involve additional expectations with respect to Y1:

EY1
[
Eu1(p1|Y1)Eu1(p′1|Y1)

]
, EY1

[
Eu1(p1|Y1)Eu1

(
(
u211
σ3
1

, . . . ,
u21k
σ3
k

)|Y1
)]
,

and EY1

[
Eu1
(
(
u211
σ3
1

, . . . ,
u21k
σ3
k

)′|Y1
)
Eu1
(
(
u211
σ3
1

, . . . ,
u21k
σ3
k

)|Y1
)]
. (4)

The two layers of expectations make the approximation of these terms computationally

expensive. For simplicity, we denote these terms in a general form as

EY1
[
Eu1(g(u1)|Y1)Eu1(h(u1)

′|Y1)
]
,

where both g(u1) and h(u1) are vectors of functions of u1. The approximation methods that

we propose for such expressions can be classified into two categories, which are differentiated

by whether samples of Y1 and samples of u1 are drawn independently or jointly. In Subsec-

tion 3.1 , we will discuss different methods for sampling independently, while Subsection 3.2

discusses the method for sampling jointly.
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3.1 Approximations Using Samples from Marginal Distributions

For methods in this section, the approximation is done in two steps.

In the first step, a sample is drawn from the marginal distribution of Y1 to approximate the

expectation EY1
[
Eu1(g(u1)|Y1)Eu1(h(u1)

′|Y1)
]

with respect to Y1.

The marginal sample can be easily obtained from a joint sample, so we introduce how to get

the joint sample next. The density function for the joint distribution of Y1 and u1 is given

by fθ(y1, u1) = Pb(Y1 = y1|u1)fσ(u1). To get the ith sample point (yi1, u
i
1) from the joint

distribution, first a ui1 is drawn from fσ(u1), then a yi1 is generated from Pb(Y1 = y1|ui1) in

two steps:

1. In choice set s, given ui1 the response (Y1s1, Y1s2, . . . , Y1sJ)′ follows a multinomial distri-

bution with probabilities (pi1s1, p
i
1s2, . . . , p

i
1sJ)′, where pi1sj =

exp(x′1sj(b+u
i
1))∑J

l=1 exp(x
′
1sl(b+u

i
1))

. Given

ui1, a (yi1s1, y
i
1s2, . . . , y

i
1sJ)′ is simulated for each choice set s, 1 ≤ s ≤ S.

2. Noting that given ui1 the responses in different choice sets are independent, the ith

sample yi1 can be obtained by juxtaposing the simulated responses for all choice sets

in the previous step.

Suppose the sample size is ny, then the joint sample is (y11, u
1
1), . . . , (y

ny
1 , u

ny
1 ). Finally, a

sample of Y1 from the marginal distribution can be obtained by using the y part in the joint

sample (y11, u
1
1), . . . , (y

ny
1 , u

ny
1 ), which is y11, . . . , y

ny
1 .

Now, EY1
[
Eu1(g(u1)|Y1)Eu1(h(u1)

′|Y1)
]

is approximated by

1

ny

ny∑
i=1

Eu1(g(u1)|yi1)Eu1(h(u1)
′|yi1). (5)

In the second step, Eu1(g(u1)|yi1), 1 ≤ i ≤ ny, is considered. Note that Eu1(g(u1)|yi1) is a

posterior mean and the posterior density is given by

fθ(u1|yi1) ∝ Pb(Y1 = yi1|u1)× fσ(u1)

∝
S∏
s=1

J∏
j=1

(
exp(x′1sj(b+ u1))∑J
l=1 exp(x′1sl(b+ u1))

)yi1sj

× (2π)−k/2|Σ|−1/2exp(−1

2
u′1Σ

−1u1).

From the literature, the following methods can be used to approximate Eu1
(
g(u1)|yi1

)
.
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1. Metropolis Algorithm: For generalized linear mixed models, McCulloch (1997) uses

a Metropolis algorithm to take samples from the posterior distribution and then form

Monte Carlo approximations to the desired posterior means in the Monte Carlo EM

algorithm. Rossi, Allenby and McCulloch (2006) consider two Metropolis variants to

take samples from the posterior distribution for the multinomial logit model.

To approximate the information matrix, we need to approximate Eu1
(
g(u1)|yi1

)
where

1 ≤ i ≤ ny, so a sample of u1|yi1 is required for every i. Since samples drawn by this

method are dependent, a large sample size is usually required for it to work. Addition-

ally, when we search for optimal designs in Section 4, we also need to approximate the

information matrices of a large number of designs. Hence, it is not feasible to use the

Metropolis algorithm in practice for our problem.

2. Rejection Sampling: For generalized linear mixed models, Booth and Hobert (1999)

use rejection sampling to take samples from the posterior distribution in the Monte

Carlo EM algorithm. The method they use is carried out in two steps. In step 1, a u11
is drawn from fσ(u1) and a w is drawn from the uniform(0,1) distribution. In step 2, if

w ≤ Pb(Y1 = yi1|u11)/τ where τ = supu1 Pb(Y1 = yi1|u1), then u11 is accepted; otherwise,

start from step 1 again. This procedure stops when a desired sample size is attained.

In step 2, Pb(Y1 = yi1|u1) is maximized as a function of u1.

Here, since yi1 is the response vector from respondent 1 and the number of choice sets for

a respondent cannot be very large, it is not always possible to find a u1 that maximizes

Pb(Y1 = yi1|u1). Hence, the previous rejection sampling method is not applicable for

the posterior distribution considered here.

3. Importance sampling: For generalized linear mixed models, McCulloch (1997) and

Booth and Hobert (1999) also use importance sampling, with the former using it to

approximate the log-likelihood and the latter for the posterior means in the EM al-

gorithm. To approximate the likelihood function, McCulloch (1997) uses the density

function of the random effects as the importance density. Booth and Hobert (1999)

use a multivariate t density whose mean and variance match the mode and curvature

of the posterior distribution as the importance density.

For our problem, since the posterior mean can be written as the ratio of two expecta-

tions, importance sampling is used to approximate both expectations. Let ui11 , u
i2
1 , . . . , u

inu
1

be a set of random samples from the importance density q(u1) that has the same sup-

port as fθ(u1|yi1). Then, Eu1(g(u1)|yi1) is approximated by

Eu1(g(u1)|yi1) ≈
∑nu

j=1 g(uij1 )Pb(Y1 = yi1|u
ij
1 )fσ(uij1 )/q(uij1 )∑nu

j=1 Pb(Y1 = yi1|u
ij
1 )fσ(uj1)/q(u

ij
1 )

.

For our problem, we will use the density of the random effects, fσ(u1), as the importance
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density.

As an alternative to (5), EY1
[
Eu1(g(u1)|Y1)Eu1(h(u1)

′|Y1)
]

can be calculated directly

as ∑
yi1∈A

Eu1(g(u1)|yi1)Eu1(h(u1)
′|yi1)Pθ(Y1 = yi1),

where A is the set that contains all possible values for Y1. In situations where the

number of possible values for Y1 is not very large, we can make use of the above

expression. We only need to find a way to approximate Pθ(Y1 = yi1). Since we have a

sample ui11 , u
i2
1 , . . . , u

inu
1 from importance density fσ(u1), we can approximate Pθ(Y1 =

yi1) as 1
nu

∑nu
j=1 Pb(Y1 = yi1|u

ij
1 ).

4. Laplace approximation: Let the lth element of g(u1) be gl(u1). Assuming for now

u1 is univariate and gl(u1) is a smooth and positive function of u1, the posterior mean

of gl(u1) can be written as

Eu1 [gl(u1)|yi1] =

∫
elog gl(u1)+logPb(Y1=y

i
1|u1)+log fσ(u1) du1∫

elogPb(Y1=y
i
1|u1)+log fσ(u1) du1

.

With Q(u1) = logPb(Y1 = yi1|u1) + log fσ(u1) and ql(u1) = log gl(u1) + logPb(Y1 =

yi1|u1) + log fσ(u1), the above expression can be written as

Eu1 [gl(u1)|yi1] =

∫
eql(u1) du1∫
eQ(u1) du1

.

Tierney and Kadane (1986) apply Laplace’s method to integrals in the numerator and

the denominator and obtain an approximation of the posterior mean. Let û1 be the

mode of Q(u1) and d2 = −1/Q′′(u1)|u1=û1 . Then, Laplace’s method approximates the

integral in the denominator by∫
eQ(u1)du1 ≈

∫
exp

[
Q(û1)− (u1 − û1)2

2d2

]
du1 =

√
2π|d|eQ(û1).

Similarly, if û1l is the mode of ql(u1) and dl
2 = −1/(ql(u1))

′′|u1=û1l , then Laplace’s

method approximates integral in the numerator by
√

2π|dl| exp(ql(û1l)). Taking the

ratio of these two approximations, the Laplace approximation of Eu1 [gl(u1)|yi1] is given

by

Eu1 [gl(u1)|yi1] ≈
|dl|
|d|

exp
[
ql(û1l)−Q(û1)

]
.
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If u1 is multivariate, a similar approximation can be obtained by

Eu1 [gl(u1)|yi1] ≈
( |Dl|
|D|

)1/2
exp

[
ql(û1l)−Q(û1)

]
,

where û1l and û1 maximize ql(u1) and Q(u1) respectively, Dl is the negative of the

inverse of the Hessian of ql(u1) evaluated at û1l and D is the negative of the inverse of

the Hessian of Q(u1) evaluated at û1.

Applying this approximation to Eu1(p1sj|yi1), where 1 ≤ s ≤ S and 1 ≤ j ≤ J , we have

Eu1(p1sj|yi1) =

∫
p1sjPb(Y1 = yi1|u1)fσ(u1)du1∫
Pb(Y1 = yi1|u1)fσ(u1)du1

≈
( |Hsj|
|H|

)1/2p1sjPb(Y1 = yi1|u1)fσ(u1)|u1=û1sj
Pb(Y1 = yi1|u1)fσ(u1)|u1=û1

, (6)

where û1sj maximizes log p1sj+logPb(Y1 = yi1|u1)+log fσ(u1), û1 maximizes logPb(Y1 =

yi1|u1) + log fσ(u1),

Hsj = −
( ∂

∂u1

∂

∂u′1

[
log p1sj + logPb(Y1 = yi1|u1) + log fσ(u1)

])−1
|u1=û1sj

= −(−X ′1s∆1sX1s −X ′1∆1X1 − Σ−1)−1|u1=û1sj ,

where X1s = (x1s1, x1s2, . . . , x1sJ)′, and

H = −
( ∂

∂u1

∂

∂u′1

[
logPb(Y1 = yi1|u1) + log fσ(u1)

])−1
|u1=û1

= −(−X ′1∆1X1 − Σ−1)−1|u1=û1 .

The expressions are derived in Appendix 6.2. The previous approximation only applies

to a positive function gl(u), but the elements of (
u211
σ3
1
, . . . ,

u21k
σ3
k

) could be zero. Tierney

et al. (1989) suggest to add a large constant c to gl(u1), so that gl(u1) + c is a positive

function. Applying this procedure to E
(
(
u21j
σ3
j

)|yi1
)
, where 1 ≤ j ≤ k, we get

E
(u21j
σ3
j

|yi1
)

= E
(u21j
σ3
j

+ c|yi1
)
− c

≈
( |Hj|
|H|

)1/2 u21j+cσ3
j

σ3
j

Pb(Y1 = yi1|u1) log fσ(u1)|u1=û1j
Pb(Y1 = yi1|u1)fσ(u1)|u1=û1

− c, (7)
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where û1j maximizes log(
u21j+cσ

3
j

σ3
j

) + logPb(Y1 = yi1|u1) + log fσ(u1) and

Hj = −
( ∂

∂u1

∂

∂u′1

[
log(

u21j + cσ3
j

σ3
j

) + logPb(Y1 = yi1|u1) + log fσ(u1)
])−1
|u1=û1j

= −
(

2(cσ3
j − u21j)

(u21j + cσ3
j )

2
eje
′
j −X ′1∆1X1 − Σ−1

)−1
|u1=û1j .

The above expressions are also derived in Appendix 6.2.

The Laplace approximation for Eu1(g(u1)|yi1) should run faster than the Monte Carlo

method, since optimization usually requires less computation than sampling. In addi-

tion, we do not have to decide the sample size of u1 as in the Monte Carlo method,

which is good since we also need to decide the sample size of Y1.

3.2 Approximation Using Samples from the Joint Distribution

Previously, a sample from the marginal distribution of Y1 is used and we discuss several

methods to approximate posterior means with respect to u1 given the sample of Y1. In the

second approach, a sample of size nyu from the joint distribution of (Y1, u1) is used. The

method to take samples from the joint distribution has been described in Subsection 3.1.

We denote the joint sample as (yi1, u
i
1), 1 ≤ i ≤ nyu.

Suppose there are M unique vectors of y1 in the joint sample, and denote these by z11 , . . . , z
M
1 .

Then, Eu1
(
g(u1)|Y1 = zm1

)
, 1 ≤ m ≤M , is approximated by∑

{i:yi1=zm1 }
g(ui1)

#{i : yi1 = zm1 }
,

where {i : yi1 = zm1 } is a set of integers at which yi1 is equal to zm1 and #{i : yi1 = zm1 } is the

number of elements in this set. Next, EY1
[
Eu1(g(u1)|yi1)Eu1(h(u1)

′|yi1)
]

is approximated by

M∑
j=1

∑
{i:yi1=zm1 }

g(ui1)

#{i : yi1 = zm1 }

∑
{i:yi1=zm1 }

h(ui1)
′

#{i : yi1 = zm1 }
#{i : yi1 = zm1 }

nyu
.

In Subsection 3.1, when we use importance sampling, the same sample size of nu is used for

every given yi1. Here, when we use the joint sampling, the sample size of u1 for a given yi1 is

determined from the joint sample. Hence, the sample size of u1 can be adjusted as needed.

Also, we only need to decide the sample size nyu for the joint sample.

12



4 Simulation

In Section 3, we discuss three methods to approximate the information matrix: importance

sampling, Laplace approximation and joint sampling. In this section, we will compare the

three methods in simulations.

We consider a case where 2 attributes of 3 levels are of interest and a design with 9 choice

sets of size 2 is used for all the respondents. The number of choice sets and the number of

alternatives in each choice set cannot be large due to cognitive constraints. We use 32/2/9

to denote this choice design, while other choice designs considered are 32/3/6, 32/4/5 and

32/5/4.

We use effects-type coding for the attributes (Hensher, Rose and Greene (2005)). For exam-

ple, if the coefficients of the first two levels of an attribute are given by (β1, β2)
′, where the

attribute has 3 levels, then the coefficient of the third level is −β1−β2. With effects-type cod-

ing, the sum of coefficients for an attribute is zero and the coefficient of each level can be in-

terpreted as its effect relative to the average effect of the attribute, which is zero. Hence, two

independent parameters are needed for an attribute of three levels. Here, with effects-type

coding, the three levels of an attribute are coded as (1, 0), (0, 1) and (−1,−1). Then, the dis-

tribution of random effects is N4(b,Σ), where b = (b1, b2, b3, b4)
′ and Σ = diag(σ2

1, σ
2
2, σ

2
3, σ

2
4).

The unknown parameter vector is θ = (b′, σ′)′, where σ = (σ1, σ2, σ3, σ4)
′. Following Arora

and Huber (2001), Toubia et al. (2004) and Yu et al. (2011), values of the parameters are

varied in terms of response accuracy and respondent heterogeneity. We take b = (a, 0, a, 0)′,

where a = .5 is used to represent low response accuracy and a = 3 is used to represent high

response accuracy. With this specification, it is implied that the mean for the third level is

−a for each attribute. Arora and Huber (2001) state that it is more meaningful to select the

variance relative to the mean. As in Toubia et al. (2004), we take σ = (
√

3a,
√

3a,
√

3a,
√

3a)′

in the case of high respondent heterogeneity and σ = (
√

0.5a,
√

0.5a,
√

0.5a,
√

0.5a)′ in the

case of low respondent heterogeneity. Thus, the 4 sets of parameter values used in our simu-

lations are (a) high accuracy and high heterogeneity: b = (3, 0, 3, 0)′ and σ = (3, 3, 3, 3)′, (b)

high accuracy and low heterogeneity: b = (3, 0, 3, 0)′ and σ = (
√

1.5,
√

1.5,
√

1.5,
√

1.5)′, (c)

low accuracy and high heterogeneity: b = (0.5, 0, 0.5, 0)′ and σ = (
√

1.5,
√

1.5,
√

1.5,
√

1.5)′,

and (d) low accuracy and low heterogeneity: b = (0.5, 0, 0.5, 0)′ and σ = (0.5, 0.5, 0.5, 0.5)′.

We are only interested in finding good designs, so the (dis)similarities of the three methods

are compared on good designs. For a choice design with given values of the parameters, we

handpick 100 good designs and approximate the information matrices for these designs using

the three methods. The 100 designs are good designs from a computer search (We use a

coordinate exchange algorithm with the Laplace approximation, A-optimality, and a sample

size of ny = 10000. The setting of the coordinate exchange algorithm is chosen based on

preliminary simulation results.).
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In the simulation, we use large sample sizes for the three methods so that the approximated

values have stabilized and would have very small variation. For importance sampling, if

there are 9 choice sets of size 2, there are 29 = 512 possible values for Y . Since 512 is not

a large number in this context, instead of taking a sample of Y , we use all possible values

of Y with nu = 106 in the simulation. We can also use all possible values of Y in the other

cases (6 choice sets of size 3, 5 choice sets of size 4 and 4 choice sets of size 5). For joint

sampling, we use nyu = 106. For the Laplace method, we use ny = 106. Importance sampling

is considered to be the most accurate method because we use all possible values for Y and

use 106 as the sample size for u.

Importance sampling and joint sampling are Monte Carlo methods, so the simulated infor-

mation matrices will converge to the information matrices if the corresponding sample sizes

(ny and nu for importance sampling and nyu for joint sampling) go to infinity. Since the

Laplace approximation is a combination of Monte Carlo method and Laplace’s method, the

simulated information matrices will not converge to the information matrices, but to the ap-

proximations of the information matrices, when the sample size (ny for the Laplace method)

goes to infinity. Our eventual goal is to find optimal designs, and not the actual values of

the information matrices. Thus, we only want to see whether the three methods can rank

the designs similarly.

Figures 1 to 4 show the comparisons of the three methods for 32/2/9 and 32/5/4. The figures

for 32/3/6 and 32/4/5 are similar, so they are not shown here. The 100 designs are ordered

by the values from importance sampling and the x-axis gives the order of the designs. We

can see that values from importance sampling and joint sampling are very close. Although

values from the Laplace approximation are different from values from the other two methods,

the patterns are similar. The three methods largely agree in ordering those 100 good designs.

Another way to assess agreement between the three methods is by studying pairwise corre-

lations of values for a given criterion for the 100 designs. The scatter plot of values from any

two of the methods shows that there is a linear pattern. The closer the scatter plot resembles

a straight line, the more the two methods would agree in ordering the designs. Correlations

depend on the 100 designs used here, since it is more difficult to get high correlations when

the designs are similar. Hence, the correlation cannot be used as a useful measure of how the

three methods agree. Table 1 shows the correlations between any two of the methods. We see

that the correlations between importance sampling and joint sampling are larger than 0.9 in

all cases. When the accuracy is high and heterogeneity is high, the correlations between the

Laplace method and the other two methods are lower, except for 32/5/4 with A-optimality.

When the accuracy is high and the heterogeneity is low, the correlations between the Laplace

method and the other two methods are lower, which are around 0.8, in 32/2/9, 32/3/6 and

32/4/5 and all with A-optimality. For these two sets of parameter values, the correlations

between the Laplace method and the other two methods are larger in 32/5/4 than in 32/2/9.
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For the other two sets of parameter values, the correlations between the Laplace method and

the other two methods are higher than 0.90. This table is consistent with what we observe

in Figures 1 to 4.

In order to use the three methods in practice, we need to find appropriate sample sizes for

the methods. For each method, relative differences are used to show how values change with

sample sizes. We will use the 32/5/4 case with b = (3, 0, 3, 0)′ and σ = (3, 3, 3, 3)′ as an

example for illustration. For importance sampling, sample sizes considered are 5000, 10000,

. . . , 40000. For joint sampling, sample sizes considered are 50000, 100000, . . . , 400000. For

the Laplace approximation, sample sizes considered are 1000, 2000, . . . , 9000. For each

method, the relative differences between values from a small sample size and values from the

largest sample size (which were also used in the previous simulation, i.e., all possible values

of Y with nu = 106 for importance sampling, nyu = 106 for joint sampling and ny = 106

for the Laplace method) are calculated. Figure 5 shows the relative differences of values in

A-optimality and D-optimality for the three methods for 100 designs. The 100 designs are

the same as those used previously for the 32/5/4 case with b = (3, 0, 3, 0)′ and σ = (3, 3, 3, 3)′.

We conclude that it suffices to take nu = 20000 for importance sampling, nyu = 250000 for

joint sampling and ny = 3000 for the Laplace approximation. After these sample sizes, the

improvements in the mean and variance of the relative differences become smaller as sample

sizes increase. For the other cases, similar conclusions hold. Thus, we can use nu = 20000

for importance sampling, nyu = 250000 for joint sampling and ny = 3000 for the Laplace

approximation for all the cases considered.

Table 2 shows the running time that the three methods take to approximate the information

matrices for 100 designs with the reduced sample sizes. We can see that the Laplace ap-

proximation is about 3 times faster than importance sampling and 10 times faster than joint

sampling. Note that here all possible values of Y are used for importance sampling. When

this is not possible, we need to sample Y , making importance sampling slower, and the ad-

vantage of the Laplace approximation in running time will be larger. Another advantage of

the Laplace approximation is that only the sample size of Y needs to be decided. For impor-

tance sampling with a large number of possible Y values, sample sizes of Y and u are varied

simultaneously to find the appropriate ones. For joint sampling, nyu is often much larger

than ny for the Laplace approximation, so it takes more time to find the appropriate sample

size. For a given choice experiment, we can see that the time of joint sampling changes with

the values of the parameters. The time is shorter for the cases with high response accuracy.

In these cases, the mass of Y concentrates on a small proportion of possible values of Y .

The algorithm that counts the unique values of Y in the joint sample runs faster when the

mass of Y concentrates on a small proportion of possible values of Y than when it is more

evenly distributed over possible values of Y .
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(d) 4 choice sets of size 5

Figure 1: Comparisons of the three methods with A- and D-optimality when the response
accuracy is high and the respondent heterogeneity is high.
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(d) 4 choice sets of size 5

Figure 2: Comparisons of the three methods with A- and D-optimality when the response
accuracy is high and the respondent heterogeneity is low.
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(d) 4 choice sets of size 5

Figure 3: Comparisons of the three methods with A- and D-optimality when the response
accuracy is low and the respondent heterogeneity is high.
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(c) 9 choice sets of size 2
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Figure 4: Comparisons of the three methods with A- and D-optimality when the response
accuracy is low and the respondent heterogeneity is low.
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Table 1: Correlations between the three methods

9 choice sets
of size 2

6 choice sets
of size 3

hh hl lh ll hh hl lh ll

A-optimality

Importance
-Joint

0.98 0.97 0.98 0.97 0.97 0.99 0.98 0.98

Importance
-Laplace

0.88 0.84 0.96 0.98 0.89 0.80 0.98 0.99

Joint
-Laplace

0.88 0.86 0.94 0.96 0.87 0.80 0.97 0.98

D-optimality

Importance
-Joint

≈ 1 ≈ 1 0.99 0.98 0.99 ≈ 1 0.99 0.99

Importance
-Laplace

0.64 0.97 0.98 0.99 0.84 0.96 0.99 ≈ 1

Joint
-Laplace

0.64 0.98 0.97 0.98 0.86 0.96 0.99 0.99

5 choice sets
of size 4

4 choice sets
of size 5

hh hl lh ll hh hl lh ll

A-optimality

Importance
-Joint

0.99 0.99 0.97 0.96 0.98 0.99 0.97 0.95

Importance
-Laplace

0.88 0.78 0.98 0.99 0.94 0.95 0.94 0.99

Joint
-Laplace

0.88 0.80 0.97 0.95 0.94 0.95 0.93 0.94

D-optimality

Importance
-Joint

≈ 1 ≈ 1 0.99 0.97 ≈ 1 ≈ 1 0.98 0.97

Importance
-Laplace

0.86 0.94 0.99 0.99 0.86 0.96 0.97 0.99

Joint
-Laplace

0.86 0.95 0.98 0.97 0.86 0.96 0.97 0.97

Note: hh represents high accuracy and high heterogeneity (b = (3, 0, 3, 0)′ and σ =
(3, 3, 3, 3)′), hl represents high accuracy and low heterogeneity (b = (3, 0, 3, 0)′ and
σ = (

√
1.5,
√

1.5,
√

1.5,
√

1.5)′), lh represents low accuracy and high heterogeneity (b =
(0.5, 0, 0.5, 0)′ and σ = (

√
1.5,
√

1.5,
√

1.5,
√

1.5)′) and ll represents low accuracy and
low heterogeneity (b = (0.5, 0, 0.5, 0)′ and σ = (0.5, 0.5, 0.5, 0.5)′).
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(b) Importance sampling
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(c) Joint sampling
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(e) The Laplace method
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Figure 5: Relative difference (in %) between values from a sample size on the x-axis and
the values from the largest sample size for the 32/5/4 case with b = (−3, 0,−3, 0)′ and
σ = (3, 3, 3, 3)′.
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Table 2: Time for evaluating 100 designs using the three methods

9 choice sets
of size 2

6 choice sets
of size 3

hh hl lh ll hh hl lh ll
Importance, nu = 20000 42m 43m 42m 42m 65m 60m 64m 61m

Joint, nyu = 250000 169m 172m 298m 361m 172m 187m 417m 506m
Laplace, ny = 3000 20m 20m 21m 27m 26m 26m 27m 29m

5 choice sets
of size 4

4 choice sets
of size 5

hh hl lh ll hh hl lh ll
Importance, nu = 20000 90m 94m 83m 81m 56m 50m 58m 57m

Joint, nyu = 250000 209m 198m 499m 630m 173m 166m 405m 487m
Laplace, ny = 3000 30m 32m 30m 35m 33m 35m 30m 32m

Note: hh represents high accuracy and high heterogeneity (b = (3, 0, 3, 0)′ and σ =
(3, 3, 3, 3)′), hl represents high accuracy and low heterogeneity (b = (3, 0, 3, 0)′ and
σ = (

√
1.5,
√

1.5,
√

1.5,
√

1.5)′), lh represents low accuracy and high heterogeneity (b =
(0.5, 0, 0.5, 0)′ and σ = (

√
1.5,
√

1.5,
√

1.5,
√

1.5)′) and ll represents low accuracy and low het-
erogeneity (b = (0.5, 0, 0.5, 0)′ and σ = (0.5, 0.5, 0.5, 0.5)′).

5 Discussion and Conclusion

For the panel mixed logit model, the information matrix has a complex form and cannot

be written in a closed-form expression. We propose three methods to approximate the

information matrix: importance sampling, Laplace approximation and joint sampling. For

importance sampling, a sample of Y and a sample of u are taken independently, so the

sample sizes of the two samples can be changed separately to adjust the precision of the

approximation. When the number of possible values for Y is not large, all possible values

of Y can be used, which makes the method more efficient. For joint sampling, the sample

size for the joint sample is varied to adjust the accuracy of the approximation. From the

simulation results, the running time for joint sampling is much longer than for the other

two methods. For the Laplace approximation, although it is not as accurate as the other

two methods, it ranks designs similarly and is much faster than the other two methods.

For finding optimal designs, this ordering is the most important thing. Moreover, when

search algorithms are used to find efficient designs, the number of information matrices to

be evaluated will be much greater than 100 considered in our simulation and the search

algorithm can take days, so using an efficient method to evaluate the information matrix is

very important. For larger choice designs, importance sampling and joint sampling may not
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be practical and the Laplace approximation may be the only viable method to use. Another

advantage of the Laplace approximation is that only the sample size of Y needs to be decided.

It is easier and faster to get an appropriate sample size for the Laplace approximation.

6 Appendix

6.1 Information Matrix for Panel Mixed Logit Model

We will show the validity of the expressions for ∂ logLn
∂b

and ∂ logLn
∂σ

in (1) and (2). First,

∂ logLn
∂b

=
1

Pθ(Yn = yn)
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∂b

=
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j=1 p
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)
∂b

=
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∫
∂
(∏S
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j=1 p
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)
∂b
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1
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∫ ( S∏
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p
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∑
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∑
j
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1

Pθ(Yn = yn)
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∏
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p
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(∑
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∑
i
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)
fσ(un) dun

=
1
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∫
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∏
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∏
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p
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s

∑
j

ynsjxnsj −
∑
s

∑
j

ynsj(
∑
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pnsixnsi)
)
fσ(un) dun

=
1
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∫
(
∏
s

∏
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p
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(∑
s

∑
j

ynsjxnsj −
∑
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∑
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=
1
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∫
(
∏
s

∏
j

p
ynsj
nsj )(X ′nyn −X ′npn)fσ(un) dun

=
1

Pθ(Yn = yn)
X ′n

(
Pθ(Yn = yn)yn −

∫
(
∏
s

∏
j

p
ynsj
nsj )pnfσ(un) dun

)
= X ′n

(
yn −

1

Pθ(Yn = yn)

∫
(
∏
s

∏
j

p
ynsj
nsj )pnfσ(un) dun

)
= X ′n

(
yn − Eun(pn|yn)

)
,

where pn is defined in (1). For the second expression that is to be evaluated,
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∂ logPθ(Yn = yn)

∂σ
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1

Pθ(Yn = yn)
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∂σ

=
1

Pθ(Yn = yn)

∂
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j=1 p
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nsj fσ(un) dun

)
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1

Pθ(Yn = yn)

∫ ( S∏
s=1
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p
ynsj
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)∂fσ(un)

σ
dun

=
1
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∏
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p
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2
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)
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=
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∏
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p
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)(
− 1
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[
|Σ|−1∂|Σ|

∂σ
+
∂(u′nΣ−1un)
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])
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=
1

Pθ(Yn = yn)

∫ (∏
s

∏
j

p
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nsj

)(
fσ(un)

[
− (

1

σ1
, . . . ,

1

σk
)′ + (

u2n1
σ3
1

, . . . ,
u2nk
σ3
k

)′
])

dun

= −(
1

σ1
, . . . ,

1

σk
)′ + Eun

(
(
u2n1
σ3
1

, . . . ,
u2nk
σ3
k

)′|yn
)
,

where uni is the ith element of un, 1 ≤ i ≤ k.

Using these partial derivatives, we can now get the expressions for EYn

(
(∂ logLn

∂b
)(∂ logLn

∂b
)′
)

,

EYn

(
(∂ logLn

∂b
)(∂ logLn

∂σ
)′
)

and EYn

(
(∂ logLn

∂σ
)(∂ logLn

∂σ
)′
)

.

First, for EYn

(
(∂ logLn

∂b
)(∂ logLn

∂b
)′
)

we have

EYn

(
(
∂ logLn
∂b

)(
∂ logLn
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)′
)

= EYn

(
X ′n
[
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]
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)
= X ′nEYn
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[
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]
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Theses expressions are now evaluated separately.

EYn(YnY
′
n) = Eun(EYn(YnY

′
n|un))

= Eun
[
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′
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′
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 ,

where pns is defined after (1). Next,
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∏
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∫
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∑
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∏
j

p
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′
n
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=

∫
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′
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= Eun(pnp
′
n).

Let ∆n = diag(∆ns) with ∆ns = diag(pns)− pnsp′ns. Then

Eun(∆n) = EYn(yny
′
n)− EYn

[
Eun(pn|yn)y′n

]
.

Hence, we have
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((∂logLn
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(
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Second, EYn

((
∂ logLn
∂b

)(
∂ logLn
∂σ

)′)
can be written as
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To evaluate the first of these, note that
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Last, EYn
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6.1.1 Information Matrix for General Σ

For general Σ, not necessarily a diagonal matrix, a normal random vector βn can be written

as βn = b+un, where un ∼ Nk(0,Σ = ΓΓ′) with Γ a lower triangular matrix. Let γ = vec(Γ′),

the information matrix for θ = (b′, γ′)′ is

I(θ|X) =
N∑
n=1

 EYn

(
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where Ln = Pθ(Yn = yn) is the likelihood function for respondent n and is given by

Pθ(Yn = yn)

=

∫
Pb(Yn = yn|un)fγ(un) dun

=

∫ S∏
s=1

J∏
j=1

(
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(2π)−k/2|Σ|−1/2exp(−1

2
u′nΣ−1un) dun.

It can be shown that ∂ logLn
∂b

has the same expression as before. For ∂ logLn
∂γ

, the derivation is

the same as for ∂ logLn
∂σ

except that we cannot simplify the following expression further,
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6.2 Laplace Approximation

In (6), we have

Eu1(p1sj|yi1) =

∫
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=

∫
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]
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]
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,

where û1sj maximizes log p1sj + logPb(Y1 = yi1|u1) + log fσ(u1), û1 maximizes logPb(Y1 =

yi1|u1) + log fσ(u1),
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and

H = −
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∂
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[
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The validity of these expressions follows because
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Further,
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where û1j maximizes log(
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The validity of this expression follows because
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