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Abstract
Calibration of hydrological time-seriesmodels is a challenging task since thesemodels
give a wide spectrum of output series and calibration procedures require significant
amount of time. From a statistical standpoint, thismodel parameter estimation problem
simplifies to finding an inverse solution of a computer model that generates pre-
specified time-series output (i.e., realistic output series). In this paper, we propose
a modified history matching approach for calibrating the time-series rainfall-runoff
models with respect to the real data collected from the state of Georgia, USA. We
present the methodology and illustrate the application of the algorithm by carrying
a simulation study and the two case studies. Several goodness-of-fit statistics were
calculated to assess the model performance. The results showed that the proposed
history matching algorithm led to a significant improvement, of 30% and 14% (in
terms of root mean squared error) and 26% and 118% (in terms of peak percent
threshold statistics), for the two case-studieswithMatlab-Simulink and SWATmodels,
respectively.
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1 Introduction

Hydrological models are commonly used in environmental studies to estimate the
water cycle elements in an area of interest. These models use basic principles of mass
balance, energy conservation and other principles of physics. The input parameters of
these models are often unknown and correspond to physical properties that are diffi-
cult to measure. Tuning/calibration of these parameters is required to obtain realistic
outputs (Montanari and Toth 2007). This calibration problem is also referred to as the
inverse problem in computer experiments literature. This research deals with obtaining
the set of input parameters of a computer model that corresponds to a pre-specified
target response, which is the observed field data in our application.

In this paper, we focus on calibrating two time-series valued hydrological models
that simulate rainfall-runoff dynamics. The input parameters of these models are high
dimensional, and the outputs can be very sensitive to small changes in the inputs.
Realistic computer models can also be computationally and/or financially expensive,
which prohibits numerous evaluation of the simulator. As a result, the calibration of
these time-series models is a challenging problem, and an efficient approach to find the
inverse solution is extremely important. Several researchers have attempted to solve
the inverse problem for hydrological models using different methods via both manual
and automated approaches, such as, the Genetic Algorithms, Maximum Likelihood
Estimator, Markov Chain Monte Carlo, and Shuffled Complex Evolution (Boyle et al.
2000; Chu et al. 2010; Duan et al. 1992; Franchini and Galeati 1997; Montanari and
Toth 2007; Tigkas et al. 2015).

In an unrelated endeavour, Ranjan et al. (2016) and Zhang et al. (2018) proposed
a sequential design strategies for estimating the inverse solution, and Vernon et al.
(2010) proposed an iterative approach called history matching (HM) for calibrating
a galaxy formation model called GALFORM. HM algorithm intelligently eliminates
the implausible points from the input (or parameter) space and returns a set of plau-
sible candidates for the inverse solution. However, there are a few aspects of the HM
algorithm by Vernon et al. (2010) that differ from our objective. First, the end result of
the HM algorithm may be an empty set if there does not exist a plausible inverse solu-
tion, and second, the HM algorithm requires a large number of simulator runs which
is undesirable in several applications like ours, where the simulator is expensive to
evaluate.

We propose a modification in the HM algorithm which allows us to find the inverse
solution in fewer simulator runs, and gives us a perfectmatch if possible, otherwise, the
best approximation instead of returning an empty set of inverse solutions.We carry out
a simulation study and two case studies of rainfall-runoff models to apply the proposed
algorithm in solving this inverse mapping problem. To the best of our knowledge, the
HM algorithms have not been applied yet for calibration of hydrological models with
time series response.

The case studies refer to the calibration of two rainfall-runoff computer simulators
for two target data sets collected at different locations in the state of Georgia, USA,
which contains forty to fifty windrow composting systems. The management of the
composting pad is crucial since the pad runoff is highly regulated and researchers have
tried to estimate runoff in order to provide guidance for retention pond design (Kalaba
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et al. 2007; Wilson et al. 2004). The first case study focusses on the calibration of
Matlab-Simulink compartmental dynamic model that estimates the amount of runoff
from thewindrowcompostingpad (Duncan et al. 2013).Wewish to calibrate thismodel
with respect to the composting pad data from the Bioconversion center, University of
Georgia, Athens. The second case study considers the calibration of Soil and Water
Assessment Tool (SWAT) model, a complex hydrological model that simulates runoff
from watershed areas based on climate variables, soil types, elevation and land use
data (Arnold et al. 1994). We use the Middle Oconee River data for calibrating this
model. SWAT is an internationally accepted simulator and used in modeling of the
rainfall-runoff processes across various watersheds and river basins to address climate
changes, water quality, land use and water resources management practices (Dile
et al. 2013; Jayakrishnan et al. 2005; Krysanova and Srinivasan 2015; Srinivasan et al.
2005).

The rest of the manuscript is organized as follows. Section 2 presents the method-
ology for the proposed history matching algorithm for solving the inverse problems.
Section 3 presents a simulation study. The implementation of the proposed strategy
is shown for the two case studies in Sect. 4. Section 5 concludes the article with a
summary and important remarks.

2 Methodology

Let g(x) := {g(x, ti ), i = 1, 2, . . . , L} denote the time-series valued simulator
response for a given input x ∈ [0, 1]d (scaled to an unit hypercube for convenience).
Then the objective of the inverse problem is to find the x (or set of x’s) that gen-
erate the desired (pre-specified) output g0 := {g0(ti ), i = 1, 2, . . . , L} (say). For
many complex phenomena, the realistic computer models are also computationally
and/or financially expensive to run. As a result, standard mathematical techniques
and algorithms cannot be used for solving the inverse problems. Ranjan et al. (2008)
proposed a sequential design approach for efficiently finding the inverse problem for
scalar-valued simulators. However, for this research, the complexity due to time-series
response makes the problem more challenging. Section 2.1 briefly reviews the history
matching (HM) algorithm proposed by Vernon et al. (2010), and then we discuss the
proposed modifications to the HM algorithm in Sect. 2.2.

2.1 History matching algorithm

Thehistorymatching algorithmproposedbyVernon et al. (2010) begins bydiscretizing
the time-series response on Tk time points, say, at t∗1 , t∗2 , . . . , t∗Tk , such that Tk is much
smaller than L . These Tk time points are chosen in such a way that they capture
the defining features of the target response. Then, the HM method finds a common
set of plausible solutions to these Tk inverse problems for scalar-valued simulators,
and declares it as a solution to the general inverse problem. Mathematically, the HM
algorithm finds x ∈ [0, 1]d such that g(x, t∗j ) = g0(t∗j ) for all j = 1, 2, . . . , Tk .
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Assuming that the computer model is expensive, the inverse solution must be esti-
mated using the minimal number of model runs. A common practice in computer
experiments literature is to build up the methodologies using a flexible statistical sur-
rogate trained on carefully chosen model runs. Vernon et al. (2010) used the most
popular surrogate, Gaussian process (GP) model. For simplicity, let us assume that
y(xi ) = g(xi , t∗j ). Then, the n training points, (xi , y(xi )), i = 1, 2, . . . , n, are mod-

elled as y(xi ) = μ + Z(xi ), where μ is the mean and {Z(x), x ∈ [0, 1]d} is a GP,
denoted by Z(x) ∼ GP(0, σ 2R). This implies that E(Z(x)) = 0 and the spatial
covariance structure defined as Cov(Z(xi ), Z(x j )) = �i j = σ 2R(θ; xi , x j ). (Nota-
tion: We use bold xi to denote a d-dimensional point in [0, 1]d and un-bold xik to
denote the kth coordinate of xi .)

For any given input x∗ in the design space, the fittedGP surrogate gives the predicted
simulator reponse as,

ŷ(x∗) = μ + r(x∗)TR−1(y − μ1n), (1)

where r(x∗) = [corr(z(x∗), z(x1)), corr(z(x∗), z(x2)), . . . , corr(z(x∗), z(xn))]T , 1n
is a vector of ones of length n,R is the n×n correlationmatrix for (Z(x1), . . . , Z(xn)),
y is the response vector (y(x1), . . . , y(xn)), and the associated uncertainty estimate
is,

s2(x∗) = σ 2
(
1 − r(x∗)TR−1r(x∗)

)
. (2)

In practice, the parametersμ, σ 2 and θ inEqs. (1) and (2) are replacedby their estimates
(see Vernon et al. 2010 for details). We used the R package GPfit (MacDonald et al.
2015) for obtaining ŷ(x∗) and s2(x∗) for any arbitrary x∗ and a given training data.

The driving force behind the HM algorithm is the implausibility function

I( j)(x) = |ĝ(x, t∗j ) − g0(t∗j )|
st j (x)

, (3)

where ĝ(x, t∗j ) is the predicted response in Eq. (1), and st j (x) is the associated uncer-
tainty estimate in Eq. (2). The main idea is to label the design points implausible if
Imax (x) > c, where

Imax (x) = max{I(1)(x), I(2)(x), . . . , I(Tk )(x)},

and c is a pre-determined cutoff (e.g., c = 3 as per 3σ rule of thumb). Vernon et al.
(2010) further proposed an iterative approach to refine the plausible subset of points
from the input space. However, the algorithm is designed to find the set of all plausible
inverse solutions and not only the perfect solution. For the Galaxy formation model
(GALFORM) application with input dimension d = 17, Vernon et al. (2010) used a
large training set to start with (n1 = 1000) and ended up with N = 2011 points after
four iterations.
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2.2 Modified history matching algorithm

We propose a few modifications in the history matching algorithm described above.
We aim to find only the best possible approximation of the inverse solution instead
of the entire plausible set, and prefer to use a reasonably small space-filling design
instead of a large design in [0, 1]d for building the initial surrogate. The optimal choice
for the size of design, n1, is discussed in Section 3.2. The key steps of the proposed
modified HM algorithm are summarized as follows:

1. Choose a discretization-point-set (DPS), t∗1 , t∗2 , . . . , t∗Tk .
2. Set i = 1. Assume D0 = φ (empty set).
3. Choose a training set, D1 = {x1, x2, . . . , xn1} ⊂ [0, 1]d , using a space-filling

design, and evaluate the simulator g(x) over D1.
4. Fit Tk scalar-response GP-based surrogate to g(x, t∗j ) over the training set D =

Di ∪ Di−1. We used the R package GPfit for surrogate fitting.
5. Evaluate the implausibility criteria I( j)(x) for j = 1, 2, . . . , Tk over a randomly

generated test set χi of size M (via a space-filling design) in [0, 1]d and combine
them via

Imax (x) = max{I(1)(x), I(2)(x), . . . , I(Tk )(x)},

for screening the plausible set of points Di+1 = {x ∈ χi : Imax (x) ≤ c}.
6. Stop if Di+1 = φ, otherwise, set i = i + 1, evaluate the simulator on Di and go

to Step 4.

Instead of using the entire Di+1 from Step 5 to Step 6, one can use a space-filling
design to find a representative subset of Di+1 and then augment it in Step 4 for the
next iteration. This will further reduce the total computer model evaluation in solving
the inverse problem. Since we assume that the target response is a realization of the
simulator output, one can find the best possible approximation of the inverse solutions
by minimizing the discrepancy δ(x) = ‖g(x) − g0‖, where ‖ · ‖ is the Euclidean
distance or L2 norm. Assuming N is the total number of points at the end of the
proposed HM algorithm, the desired inverse solution is given by

x̂opt = argmin
1≤i≤N

‖g(xi ) − g0‖.

Instead of minimizing δ(x) over the training set, one can develop an extraction tech-
nique using the final fitted surrogate and/or the DPS.

In summary, we need to identify the following elements to implement the proposed
history matching algorithm:

(a) a computer model (g(·)) that takes a d-dimensional input vector and returns a
time-series output,

(b) input parameters (x) that need to be calibrated,
(c) a target response (g0) for calibrating the computer model, and
(d) algorithmic parameters: n1, c, Tk, (t∗1 , . . . , t∗Tk ) and M .
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Fig. 1 The illustrative example: a few model outputs (dashed curves) and the target response (solid curve)

Next, we present a simulation study for a comprehensive understanding of the
calibration problem and investigate different aspects of the proposed algorithm. Two
real-life case studies are presented in Sect. 4.

3 Simulation study

The objective of this simulation study is to discuss the implementation details of the
proposed algorithm, and investigate the sensitivity of the algorithmic parameters on
the performance efficiency.We consider a simple test function as a computer simulator
with two calibration parameters. Specifically, the inputs are x = (x1, x2) ∈ [0, 1]2,
which return the following time-series output:

g(x, ti ) = sin(10π ti )

(2x1 + 1)ti
+ |ti − 1|(4x2+2), (4)

where ti = 0.5, 0.52, 0.54, . . . , 2.50 (equidistant time points of length L = 101
in [0.5, 2.5]). We further assume that the true value of the calibration parameter is
x0 = (0.5, 0.5), which generates the target response g0 in the inverse problem context.
Fig. 1 presents the model outputs for a few random input combinations (gray curves)
and the target response series (red curve).

Our objective is to find x ∈ [0, 1]2 such that g(x) ≈ g0.We now apply the proposed
HM algorithm for solving the inverse problem.

3.1 Application of the proposed algorithm

The implementation procedure stats with choosing the algorithmic parameters. Since
the computer simulator, as shown in Fig. 1, appears to be quite simple and d = 2, we
wish to start with n1 = 10 points for fitting the initial surrogate (note that the choice of
n1 is somewhat arbitrary at this point). The cutoff for selecting the plausible points is
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Fig. 2 The illustrative example: selection of the training points according to the implausibility function
with cutoff c = 3 at the discretization-point-set DPS = (33, 67) in the first iteration of the modified HM
algorithm

chosen as c = 3, which is guided by the 3σ rule of thumb for normal distributions. We
randomly selected Tk = 2 and then used L/3 and 2L/3 for discretizing the response,
i.e., DPS = (33, 67), since L = 101. Finally, we used a randomly chosen large
dense sets of size M = 5000 for thoroughly searching the follow-up points in the
subsequent iterations. That is, the algorithmic parameters are: n1 = 10, c = 3, Tk = 2,
DPS = (33, 67) and M = 5000.

Figure 2 provides the selection of points in the first iteration, where the points in
(blue) triangle and (red) plus correspond to I( j)(x) ≤ 3 for t∗1 = 33 and t∗2 = 67
respectively, and the (black) solid circle represents D2 = {Imax (x) ≤ 3}. The iterative
procedure gives |D2| = 69.

Subsequently, the augmented training set is of size 79. Now, for the second iteration,
Fig. 3 shows the implausibility value of the candidate points. It turns out that D3 is
an empty set, i.e., there are no black solid dots in this figure. This happens because
individually {x : I( j)(x) ≤ 3} are non-empty for both j = 1, 2, but Imax (x) 
≤ 3.
Thus, the iterative procedure terminates.

As a result, the final training set is of size N = 79, and the minimized
log[δ(xi )] over the training set is − 4.2290, with the estimated inverse solution
x̂opt = (0.4992, 0.5007). It turns out that the simulator output at x̂opt is very similar
to the target response (see Fig. 4).

3.2 Sensitivity of algorithmic parameters

Wenow investigate the sensitivity of the algorithmic parameters, n1, c, Tk andM , with
respect to the accuracy of the estimated inverse solution measured by log[δ(x̂opt )],
which is the minimized value of δ(x) over the augmented training data at the end of
the proposed HM algorithm. That is, the lower the value of log[δ(x̂opt )], the better the
parameter combination is. We randomly regenerated the initial training sets, test sets
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Fig. 3 The illustrative example: selection of the training points according to the implausibility function
with cutoff c = 3 at the discretization-point-set DPS = (33, 67) in the second iteration of the modified
HM algorithm
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Fig. 4 The illustrative example: the simulator output at the estimated inverse solution x̂opt (dashed blue
curve) and the target response (solid red curve)

and the DPS for each combination of n1 = (5, 10, 20), c = (1, 2, 3), Tk = (2, 4, 8)
and M = (500, 2000, 5000), and ran the modified HM algorithm. The results are
averaged over 100 random realizations for each combination of n1, c, Tk and M .

Figure 5 presents the marginal distribution of the median of log[δ(x̂opt )] over 100
simulations for all possible two-factor combinations of n1, c, Tk and M . Here, each
panel has three sub-panels. For Panel (a), the left most sub-panel corresponds to
n1 = 5 and the three dots there correspond to M = 500 (solid circle), M = 2000
(solid triangle), and M = 5000 (plus), respectively. Similarly, the middle sub-panel
shows the different values of log[δ(x̂opt )] for the same three different values of M
and a fixed value of n1(=10). The line segments in other panels and sub-panels can be
explained similarly.
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Fig. 5 The illustrative example: marginal distribution of the median of log[δ(x̂opt )] over 100 simulations
for different two-factor combinations of n1, c, Tk and M

FromFig. 5we can draw some inference regarding the sensitivity and preference for
the algorithmic parameters. For example, Panels (a), (b) and (c) show that as the value
of M increases, from 500 to 5000, the value of log[δ(x̂opt )] decreases monotonically.
Naturally, here M = 5000 is the best choice. Although it may not be obvious from
Panel (a), Panels (d) and (e) clearly demonstrate that n1 = 10 give better results for
this example, since in all of these cases, the value of log[δ(x̂opt )] for n1 = 10 is
smaller than that of n1 = 5 or 20. Similarly, Panels (b) and (d) support the choice of
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Fig. 6 The illustrative example: sensitivity of selecting DPS measured with respect to the total run-size
and optimized log[δ(x̂opt )]

c = 3, and the same conclusion can be drawn from Panel (f), since each of the three
lines of this panel has the lowest value of log[δ(x̂opt )] at c = 3. Finally, Panels (c),
(e) and (f), all clearly indicate that Tk = 2 gives the lower value of log[δ(x̂opt )] than
that for 4 and 8.

Together, these six panels of Fig. 5 lead to some intuitive conclusions, such as the
higher the value of M or c, the better the performance of the proposed HM algorithm.
However, some other conclusions are not that intuitive, and these simulations shed
more light on the optimal choice of the algorithmic parameters. For example, it turns
out that a higher number of dicretized points (Tk) may not necessarily yield a better
performance of the HM algorithm. Finally, if the size of the initial design is either
too small or too large, the HM algorithm will not be very efficient. It is important to
note that the inferences drawn here are based only on this small simulation study for
a simple test function based simulator, and the optimal choices for the algorithmic
parameters will have to be carefully chosen for another application.

Since the size of the discretization-point-set (value of Tk) plays a crucial role in
the performance of HM algorithm, the actual location of the discretization points (i.e.,
DPS) may also affect the performance of the proposed algorithm. Figure 6 presents
the performance comparison of the proposed algorithm over 100 simulations. Here,
we fix n1 = 10, c = 3 and Tk = 2, and randomly generate training data and implement
the algorithmunder two scenarios:Fixed—DPS = (33, 67), andVariable—randomly
generate DPS of size Tk using some space-filling criterion. The top panel of Fig. 6
presents log(N ) distribution and the bottom panel displays log[δ(x̂opt )] distribution
over 100 simulations for both fixed and variable scenario.

It is clear from the top panel of Fig. 6 that the choice of DPS fixed at (33, 67) is
clearly better than many other alternatives in terms of the total number of computer
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model evaluations. The bottompanel shows that both scenariosFixed andVariablegive
comparable accuracy of the final inverse solution, which is expected as the termination
of the algorithm depends on the accuracy of the predictor near the target response, as
captured by the implausibility function in Eq. (3). In summary, a good choice of the
DPS may be helpful in efficiently finding the inverse solution.

Remark 1 For real-life applications, it is certainly infeasible to experiment with dif-
ferent choices of DPS to find the optimal one. One would have to carefully choose
DPS to ensure that the important features are captured. The objective of the above
simulation study is to demonstrate that the choice of DPS is important for estimating
x̂opt with the fewest number of computer model simulator runs.

Remark 2 A reasonable choice of n1 is also a non-trivial problem. It varies with the
end objective, complexity of the underlying simulator response process and the input
dimension. In an attempt to answer this question, Loeppky et al. (2009) suggests a rule
of thumb of 10 points per input dimension to be enough for getting a good overall idea
of the underlying process (i.e., n1 = 10d, where d is the input dimension). However,
our objective is to estimate the inverse solution only and not to explore the entire input
space with same accuracy. Thus the choice of n1 = 10d is not necessarily optimal
in our case. In a sequential design framework for estimating pre-specified features of
interest, e.g., globalminimumor the inverse solution, Ranjan et al. (2008) recommends
using n1 ∈ [N/3, N/2] for building the initial surrgoate.

4 Case studies

This section illustrates the implementation of the proposed history matching approach
for the calibration of two hydrological models. The first case study deals with Matlab-
Simulink model which simulates runoff from windrow compost pad over a period of
time. The second case study refers to estimating the inverse solution of a well-known
reservoir model called Soil and Water Assessment Tool (SWAT).

4.1 Case study 1: Matlab-Simulinkmodel

Duncan et al. (2013) investigated the rainfall-runoff relationship for the windrow com-
posting pad, and developed a compartmentalmodel for estimating the amount of runoff
from the composting pad (represented as a change in pond volume). It quantifies the
surface runoff, infiltration and lateral seepage using differential equations developed
for each section of the compost pad. Additionally, the model takes several factors
as inputs, for instance, length, width, slope of compost pad, area covered by com-
post windrows, depth of surface/sub-surface, depression/embankment depths, initial
surface/sub-surface water content, and model coefficients of the saturated hydraulic
conductivity of the gravel media (Ksat1) and the saturated hydraulic conductivity of
the supporting soil below themedia (Ksat2). As per Duncan et al. (2013), the following
four inputs/parameters are the most influential: depth of surface, depth of sub-surface
and two coefficients of the saturated hydraulic conductivity (Ksat1 and Ksat2). See
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Fig. 7 Field data (g0(ti )) from Bioconversion center, UGA (represented by the red curve) and the Matlab-
Simulinkmodel outputs g(x, ti ) (represented by the blue lines) for i = 1, 2, . . . , 5445 at randomly generated
x (depth of surface, depth of sub-surface and two coefficients of the saturated hydraulic conductivity Ksat1
and Ksat2). Time period is December 23, 2010–January 30, 2011

Table 1 Summary statistics of the field data (collected at Bioconversion center, University of Georgia,
Athens, USA) required for the Matlab-Simulink Model case study

Variable (units) Summary

Min Median Mode Mean Std Max

Rainfall (cm) 0 0 0 0.002 0.011 0.345

Pond volume (m3) 867.50 1203.00 1192.40 1207.20 191.40 1515.90

Duncan et al. (2013) for more details on data collection, characteristics of composting
pad and the Matlab-Simulink model.

For calibration, we used the runoff data (g0) collected at Bioconversion center,
University of Georgia, Athens, USA, as the target response. The raw runoff data
(collected on a 10-min interval during 11:50 a.m., December 23, 2010 to 11:50 p.m.,
January 30, 2011 over T = 5445 time points) are represented by the noisy (red) curve
in Fig. 7. This figure shows a few random computer model responses superimposed
with the field data.

The descriptive statistics of the field data required to compute the runoff are sum-
marized in Table 1.

The objective here is to find the best possible combinations of those four
inputs/parameters: depth of surface, depth of sub-surface, Ksat1 and Ksat2, that can
generate realistic runoff, i.e., similar to the one obtained from the field data. For con-
venience in the implementation of the algorithm, the inputs were scaled to [0, 1]4. We
start the proposed HM algorithm implementation by choosing n1 = 40 points using
a maximin Latin hypercube design (Johnson et al. 1990), and evaluate the simulator
on these design points. By carefully examining the nature of the field data, five time
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Fig. 8 Calibration Results for the Matlab-Simulink model. The solid red curve represents observed data,
blue dash line represents best solution used in the previous study and green dash line corresponds to the
best solution using the proposed HM algorithm. Time period is December 23, 2010–January 30, 2011

points (Tk = 5) given by {135, 554, 1243, 3232, 4500} were selected from the runoff
series (of length L = 5445) to discretize the time-series responses. Furthermore, we
used the test set of size M = 5000 and c = 3 for computing the implausibility values
and finding the training points for the next iteration. The full implementation required
N = 461 simulator runs to converge.

The final inverse solution obtained via the proposed HM algorithm is presented in
Fig. 8. For a benchmark comparison, we also present the best inverse solution found
by Duncan et al. (2013).

For accuracy comparison of different approaches, there are several goodness of
fit measures that are more popular in hydrological applications as compared to
log[δ(x̂opt )]. We use four such popular measures in this article:

– Root mean squared error

RMSE =
(
1

L

L∑
i=1

∣∣g(x̂opt , ti ) − g0(ti )
∣∣2

)1/2

.

– Coefficient of determination R2 of the simple linear regression (SLR)model, when
the dependent variable is the target response and the independent variable is the
estimated inverse solution, i.e., R2 of the SLR model:

g0(ti ) = g(x̂opt , ti ) + εi , i = 1, 2, . . . , L,

with the assumption of i.i.d. errors εi .
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Table 2 Goodness of fit comparisons of the proposed HM algorithm and compartmental model (Duncan
et al. 2013) for calibrating the Matlab-Simulink model

Matlab-Simulink RMSE R2 NSE PPTS(5,95) PPTS(1,100)

Compartment 71.91 0.86 0.86 4.70 4.75

History matching 55.58 0.93 0.92 3.71 3.77

– Nash–Sutcliffe Efficiency (Nash and Sutcliffe 1970)

NSE = 1 −
∑L

i=1[g(x̂opt , ti ) − g0(ti )]2∑L
i=1[g0(ti ) − ḡ0]2

.

– Peak percent threshold statistics (Lohani et al. 2014): PPT S(l,u) is the trimmed
mean of

|ξti | = |g0(ti ) − g(x̂opt , ti )|
|g(x̂opt , ti )|

after eliminating the two tail percentiles, l% and u%, values of |ξti |.
Table 2 summarizes the values of these four goodness of fit measures for the

calibration ofMatlab-SimulinkModel using the proposedHMalgorithm and the state-
of-the-art Compartmental model (Duncan et al. 2013). For PPTS values we compute
measures under two scenarios: no-trimming, and 5% trimming each at the two tails.
Note than R2 and NSE should be maximized, whereas the other two statistics, RMSE
and PPTS, should be minimized.

As per Table 2, the proposed HM algorithm outperforms the earlier approach by
Duncan et al. (2013) with respect to all three goodness of fitmeasures, and in particular
by a significant (71.91 − 55.58)/55.58 × 100 ≈ 30% margin according to RMSE,
and 26% margin as per PPT S(1,100).

4.2 Case study 2: SWATmodel

SWAT model has been widely used for modeling the rainfall-runoff processes across
various watersheds and river basins to address climate changes, water quality, land
use and water resources management practices (Arnold et al. 1994; Dile et al. 2013;
Jayakrishnan et al. 2005; Krysanova and Srinivasan 2015; Srinivasan et al. 2005). This
hydrological model takes several inputs, for example, curve number (CN ), ground-
water delay (GWdelay), available water capacity (AWC), baseflow factor (αBF ),
Manning’s coefficient (ν), etc. Based on experts’ advise and preliminary variable
screening analysis using Sequential Uncertainty Fitting (SUFI2) toolkit, we identified
the following five parameters for the calibration exercise: ν, effective hydraulic con-
ductivity in the channel (K ), GWdelay , groundwater “revap” coefficient (GWrevap)
and AWC . More details on SUFI2 can be found in Abbaspour et al. (2004, 2007).
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Table 3 Summary statistics of the field data (stream flow records observed at L = 84 time points for the
Middle Oconee River, Georgia) used in the SWAT Model calibration

Variable (units) Summary

Min Median Mode Mean Std Max

Streamflow (m3/s) 0.024 0.277 0.320 0.349 0.280 1.206

Fig. 9 Middle Oconee river discharge data (USGS Gauge Number 02217500), g0(ti ) (red curve), and
SWAT model discharge outputs g(x, ti ) (blue curves) at random inputs x (Manning’s coefficient, effective
hydraulic conductivity, groundwater delay, groundwater “revap” coefficient and available water capacity).
Time period is January 2003–December 2009

The target response was retrieved from the historical monthly data of streamflow
from the US Geological Survey (USGS) water data website for the Middle Oconee
River, Georgia, during the period January 2001 to December 2009 (Gauge Number
02217500). We obtained ASTER digital elevation model (DEM) values at 30 m reso-
lution from USGS EarthExplorer platform and Global Climate Data in SWAT format
from Texas A&M University website (https://globalweather.tamu.edu/). We used a
warm-up period of 2 years (January 2001 to December 2002) and a calibration period
of 7 years (January 2003 to December 2009). For the stream flow records used in
SWAT model, the descriptive statistics are listed in Table 3.

Figure 9 shows a few SWAT model runs (in blue—obtained by randomly varying
the calibration inputs) and the field data (in red).

Following the steps of the proposedHMalgorithm (Sect. 2.2),we rescaled the inputs
to [0, 1]5, assigned n1 = 50 for training the initial surrogate, and carefully identified
four time instances t∗j at: 10, 37, 63, 79 for discretizing the output series. The DPS
contains two dips and two peaks. Here also we used test sets of size M = 5000 and
the cutoff for implausibility function to be c = 3. Ultimately, the algorithm required
N = 398 model runs to converge. Figure 10 presents the estimated inverse solution
(dashed greed) along with the target response (solid red). For reference comparison,
the best solution obtained by SUFI2 (dashed blue) has also been overlayed in Fig. 10.
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Fig. 10 SWATmodel calibration: the solid red curve represents the observeddata, blue dashed line represents
best solution usingSUFI2, and the greendashed line corresponds to the best solution using theHMalgorithm.
Time period is January 2003–December 2009

Table 4 Accuracy comparisons of the proposed HM algorithm over the state-of-the-art Sequential Uncer-
tainty Fitting (SUFI2) toolkit for the calibration of SWAT model

SWAT model RMSE R2 NSE PPTS(5,95) PPTS(1,100)

SUFI2 0.16 0.68 0.67 52.02 65.80

History matching 0.14 0.77 0.75 29.67 30.20

Table 4 presents a more detailed comparison of the two approaches measured with
respect to RMSE, R2, NSE and PPTS. Recall that R2 and NSE have to be maximized
and RMSE and PPTS have to be minimized.

Similar to the previous case study, the proposed HM algorithm exhibits superior
performance in terms of all four goodness of fit measures. In particular, the proposed
approach demonstrates (0.16 − 0.14)/0.14 × 100 ≈ 14% improvement as per the
RMSE criterion, and an amazing 118% improvement with respect to PPT S(1,100)
measure.

5 Discussion

In this study, we applied the proposed modified history matching (HM) algorithm for
solving an inverse problem (i.e. calibration problem) for a test function based computer
model and two real-life hydrological models. The proposed algorithm demonstrated
very good performance in all scenarios. In the first case study (Matlab-Simulink
model), the HM algorithm demonstrated approximately 30% better (as per RMSE)
performance than the state-of-the-art compartment model calibration results. For the
second case study, we observed that the HM algorithm resulted in approximately 14%
more accurate (as per RMSE) inverse solution as compared to the one obtained from
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SUFI2. Thus, we believe that the proposed HM algorithm can be fruitful for solving
calibration problems in hydrological time-series models.

Based on our empirical findings via a simulation study, we infer that the choice
of algorithmic parameters gives a trade-off between large training-set and accuracy
of the inverse solution. Due to the stochastic nature of the HM algorithm, a multi-
start approach of the proposed HM algorithm may lead to improved accuracy, and
subsampling of Di in Step 5 may lead to more economical sampling strategy, however
one must analyze the tradeoff between the accuracy gain and the additional cost of
simulator evaluation for the application at hand. The choice of discretization-point-set
is subjective and a key to the success of this algorithm. In practice, one should examine
the target response carefully, and choose the points in such a way that they capture the
overall variation and important features reasonably well.

Note that the proposed HM approach will find the closest possible approximation
in case the simulator turns out to be stochastic and cannot generate the exact same
desired output g0. Although, it is methodologically straightforward to generalize the
proposed technique that can adjust for some systematic discrepancies, a bias correction
stepwould require synchroniseddata on the simulator and actual field trials formultiple
input combinations.
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