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Summary

Standard model-based small area estimates perform poorly in presence of outliers. Sinha &
Rao (2009) developed robust frequentist predictors of small area means. In this article, we present
a robust Bayesian method to handle outliers in unit-level data by extending the nested error
regression model. We consider a finite mixture of normal distributions for the unit-level error to
model outliers and produce noninformative Bayes predictors of small area means. Our modelling
approach generalises that of Datta & Ghosh (1991) under the normality assumption. Application
of our method to a data set which is suspected to contain an outlier confirms this suspicion,
correctly identifies the suspected outlier and produces robust predictors and posterior standard
deviations of the small area means. Evaluation of several procedures including the M-quantile
method of Chambers & Tzavidis (2006) via simulations shows that our proposed method is as good
as other procedures in terms of bias, variability and coverage probability of confidence and credible
intervals when there are no outliers. In the presence of outliers, while our method and Sinha–Rao
method perform similarly, they improve over the other methods. This superior performance of our
procedure shows its dual (Bayes and frequentist) dominance, which should make it attractive to all
practitioners, Bayesians and frequentists, of small area estimation.

Key words: Normal mixture; outliers; prediction intervals and uncertainty; robust empirical best linear
unbiased prediction; unit-level models.

Disclaimer: Any opinions and conclusions expressed herein are those of the authors and do
not necessarily reflect the views of the US Census Bureau or the University of Georgia or the
NORC.

1 Introduction

The nested error regression (NER) model with the normality assumption for both the random
effects or model error terms and the unit-level error terms has played a key role in analysing
unit-level data in small area estimation. Many popular small area estimation methods have
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been developed under this model. In the frequentist approach, Battese et al. (1988), Prasad &
Rao (1990), Datta & Lahiri (2000), for example, derived empirical best linear unbiased pre-
dictors (EBLUPs) of small area means. These authors used various estimation methods for
the variance components and derived approximately accurate estimators of mean squared error
(MSEs) of the EBLUPs. On the other hand, Datta & Ghosh (1991) followed the hierarchi-
cal Bayesian (HB) approach to derive posterior means as HB predictors and variances of the
small area means. While the underlying normality assumptions for all the random quantities
are appropriate for regular data, they fail to adequately accommodate outliers. Consequently,
these frequentist/Bayesian methods are highly influenced by major outliers in the data, or break
down if the outliers grossly violate distributional assumptions.

Sinha & Rao (2009) investigated the robustness, or lack thereof, of the EBLUPs from the
usual normal NER model in the presence of ‘representative outliers’. According to Cham-
bers (1986), a representative outlier is a ‘sample element with a value that has been correctly
recorded and cannot be regarded as unique. In particular, there is no reason to assume that there
are no more similar outliers in the nonsampled part of the population’. Sinha & Rao (2009)
showed via simulations for the NER model that while the EBLUPs are efficient under normality,
they are very sensitive to outliers that deviate from the assumed model.

To address the non-robustness issue of EBLUPs, Sinha & Rao (2009) used the  -function,
Huber’s Proposal 2 influence function in M-estimation, to downweight the contribution of out-
liers in the BLUPs and the estimators of the model parameters, both regression coefficients and
variance components. Using M-estimation for robust maximum likelihood, estimators of model
parameters and robust predictors of random effects, Sinha & Rao (2009) for mixed linear mod-
els proposed a robust EBLUP (REBLUP) of mixed effects, which they used to estimate small
area means for the NER model. By using a parametric bootstrap procedure, they have also
developed estimators of the MSEs of the REBLUPs. We refer to Sinha & Rao (2009) for details
of this method. Their simulations show that when the normality assumptions hold, the proposed
REBLUPs perform similar to the EBLUPs in terms of empirical bias and empirical MSE. But
in the presence of outliers in the unit-level errors, while both EBLUPs and REBLUPs remain
approximately unbiased, the empirical MSEs of the EBLUPs are significantly larger than those
of the REBLUPs.

Datta & Ghosh (1991) proposed a noninformative HB model to predict finite population
small area means. In this article, we follow the approach to finite population sampling which
was also followed by Datta & Ghosh (1991). Our suggested model includes the treatment of the
NER model by Datta & Ghosh (1991) as a special case. Our model facilitates accommodating
outliers in the population and in the sample values. We replace the normality of the unit-level
error terms by a two-component mixture of normal distributions, each component centred at
zero. As in Datta & Ghosh (1991), we assume normality of the small area effects.

Simulation results of Sinha & Rao (2009) indicated that there was not enough improvement
in performance of the REBLUP procedures over the EBLUPs when they considered outliers
in both the unit-level error and the model error terms. To keep both analytical and computa-
tional challenges for our noninformative HB analysis manageable, we use a realistic framework
and we restrict ourselves to the normality assumption for the random effects. Moreover, the
assumption of zero means for the unit-level error terms is similar to the assumption made by
Sinha & Rao (2009). While allowing the component of the unit-level error terms with the big-
ger variance to also have non-zero means to accommodate outliers might appear attractive, we
note later that it is not possible to conduct a noninformative Bayesian analysis with an improper
prior on the new parameter.

We focus only on unit-level model robust small area estimation in this article. There is a
substantial literature on small area estimation based on area-level data using the Fay–Herriot
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model (Fay & Herriot, 1979; Prasad & Rao, 1990). The paper by Sinha & Rao (2009) also
discussed robust small area estimation for an area-level model. In another paper, Lahiri & Rao
(1995) discussed EBLUP and estimation of MSE under a non-normality assumption for the
random effects. An early robust Bayesian approach for area-level models is due to Datta &
Lahiri (1995), where they used a scale mixture of normal distributions for the random effects.
It is worth mentioning that the t-distributions are special cases of the scale mixture of normal
distributions. While Datta & Lahiri (1995) assumed long-tailed distributions for the random
effects, Bell & Huang (2006) used the HB method based on the t distribution, either only for
the sampling errors or only for the model errors.

The scale mixture of normal distributions requires specification of the mixing distribution, or
in the specific case for t distributions, it requires the degrees of freedom. In an attempt to avoid
this specification, in a recent article, Chakraborty et al. (2016) proposed a simple alternative
via a two-component mixture of normal distributions in terms of the variance components for
the model errors.

2 Unit-level Hierarchical Bayesian Models for Small Area Estimation

The model-based approach to finite population sampling is very useful for modelling unit-
level data in small area estimation. The NER model of Battese et al. (1988) is a popular model
for unit-level data. Suppose a finite population is partitioned into m small areas, with the i -th
area havingNi units. The NER model relates Yij , the value of a response variable Y for the j th
unit in the i -th small area, with xij D .xij1; � � � ; xijp/

T , the value of a p-component covariate
vector associated with that unit, through a mixed linear model given by

Yij D x
T
ijˇ C vi C eij ; j D 1; � � � ; Ni ; i D 1; � � � ; m; (2.1)

where all the random variables vi ’s and eij ’s are assumed independent. Distributions of these

variables are specified by assuming that random effects vi
i id
� N.0; �2

v/ and unit-level errors

eij
i id
� N.0; �2

e /. Here, ˇ D .ˇ1; � � � ; ˇp/
T is the regression coefficient vector. We want to

predict the i -th small area finite population mean NYi D N�1
i

PNi
jD1 Yij , i D 1; � � � ; m. We

assume that the population level model (2.1) holds for any sample from the population.
Battese et al. (1988) and Prasad & Rao (1990), among others, considered noninformative

sampling, where a simple random sample of size ni is selected from the i -th small area. For
notational simplicity, we denote the sample by Yij ; j D 1; � � � ; ni ; i D 1; � � � ; m. To
develop predictors of the small area means NYi ; i D 1; � � � ; m, these authors first derived, for
known model parameters, the conditional distribution of the unsampled values, Yij ; j D ni C
1; � � � ; Ni ; i D 1; � � � ; m, given the sampled values Yij ; j D 1; � � � ; ni ; i D 1; � � � ; m.
Under squared error loss, the best predictor of NYi is its mean with respect to this condi-
tional distribution, also known as the predictive distribution. In the frequentist approach,
Battese et al. (1988) and Prasad & Rao (1990) obtained the EBLUP of NYi by replacing in
the conditional mean the unknown model parameters .ˇT ; �2

e ; �
2
v/
T by their estimators using

Yij ; j D 1; � � � ; ni ; i D 1; � � � ; m. In the Bayesian approach, on the other hand, Datta &
Ghosh (1991) developed HB predictors of NYi by integrating out these parameters in the condi-
tional mean of NYi with respect to their posterior density, which is derived based on a prior distri-
bution on the parameters and the distribution of the sample Yij ; j D 1; � � � ; ni ; i D 1; � � � ; m,
derived under the model (2.1).

While the frequentist approach for the NER model under the distributional assumptions in
(2.1) continues with accurate approximation and estimation of the MSEs of the EBLUPs, the
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Robust HB SAE for NER Model S161

Bayesian approach typically proceeds under some noninformative priors, and computes numer-
ically, usually by the MCMC method, the exact posterior means and posterior variances of the
area means NYi ’s. Among various noninformative priors for ˇ; �2

e ; �
2
v , a popular choice is

�P .ˇ; �
2
e ; �

2
v/ D

1

�2
e

; (2.2)

(see, for example,(Datta & Ghosh, 1991).
The standard NER model in (2.1) is unable to explain outlier behaviour of unit-level error

terms. To avoid the breakdown of EBLUPs and their MSEs in the presence of outliers, Sinha
& Rao (2009) modified all estimating equations for the model parameters and random effects
terms by robustifying various ‘standardised residuals’ that appear in the estimating equations
by using Huber’s  -function, which truncates large absolute values to a certain threshold. They
did not replace the working NER model in (2.1) to accommodate outliers, but they accounted
for their potential impacts on the EBLUPs and estimated MSEs by downweighting large stan-
dardised residuals that appear in various estimating equations through Huber’s  -function.
Their approach, in the terminology of Chambers et al. (2014), may be termed robust projective,
where they estimated the working model in a robust fashion and used that to project sample
non-outlier behaviour to the unsampled part of the model.

To investigate the effectiveness of their proposal, Sinha & Rao (2009) conducted simula-
tions based on various long-tailed distributions for the random effects and/or the unit-level error
terms. In one of their simulation scenarios which is reasonably simple but useful, they used a
two-component mixture of normal distributions for the unit-level error terms, with both com-
ponents centred at zero but with unequal variances, and the component with the larger variance
appearing with a small probability. This modifies the regular setup of the NER model with
the possibility of outliers arising as a small fraction of contamination caused by the error cor-
responding to the larger variance component. Simulation results in Table 2 of Sinha & Rao
(2009) report that outliers in the random effect have little impact on the EBLUP. Hence, we
could focus on the unit-level error only. In this article, we incorporate this mixture distribution
to modify the model in (2.1) to develop new Bayesian methods that would be robust to outliers.
Our proposed population level HB model is given by normal mixture (NM) HB model:

(I) Conditional on ˇ D .ˇ1; � � � ; ˇp/
T ; v1; � � � ; vm; ´ij ; j D 1; � � � ; Ni ; i D

1; � � � ; m; pe; �2
1 ; �

2
2 and �2

v ,

Yij
ind
� ´ijN.x

T
ijˇCvi ; �

2
1 /C .1�´ij /N.x

T
ijˇCvi ; �

2
2 /; j D 1; � � � ; Ni ; i D 1; � � � ; m:

(II) The indicator variables ´ij ’s are iid with P.´ij D 1jpe/ D pe; j D 1; � � � ; Ni ; i D
1; � � � ; m; and are independent of ˇ D .ˇ1; � � � ; ˇp/

T ; v1; � � � ; vm; �
2
1 ; �

2
2 and �2

v .
(III) Conditional on ˇ; ´ D .´11; � � � ; ´1N1 ; � � � ; ´m1; � � � ; ´mNm/

T ; pe; �
2
1 ; �

2
2 and �2

v , random

small area effects vi
i id
� N.0; �2

v/ for i D 1; � � � ; m.

For simplicity, we assume the contamination probability pe to remain the same for all units
in all small areas. Gershunskaya (2010) proposed this mixture model for empirical Bayes
point estimation of small area means. We assume independent simple random samples of size
n1; � � � ; nm from the m small areas. The simple random sampling results in a noninforma-
tive sample and the joint distribution of responses of the sampled units can be obtained from
the NM HB model mentioned earlier by replacing Ni by ni . This marginal distribution in
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S162 A. CHAKRABORTY, G. S. DATTA & A. MANDAL

combination with the prior distribution provided below will yield the posterior distribution of
the vi ’s, and of all the parameters in the model. For the informative sampling developments in
small area estimation, we refer to Pfeffermann & Sverchkov (2007) and Verret et al. (2015).

Two components of the NM distribution differ only by their variances. We will assume the
variance component �2

2 is larger than �2
1 and is intended to explain any outliers in a data set.

However, if a data set does not include any outliers, the two component variances �2
1 ; �

2
2 may

only minimally differ. In such situation, the likelihood based on the sample will include limited
information to distinguish between these variance parameters, and consequently, the likelihood
will also have little information about the mixing proportion pe . We notice this behaviour in
our application to a subset of the corn data in Section 5.

In this article, we carry out an objective Bayesian analysis by assigning a noninformative
prior to the model parameters. In particular, we propose a noninformative prior

�.ˇ; �2
1 ; �

2
2 ; �

2
v ; pe/ D

I.0 < �2
1 < �

2
2 <1/

.�2
2 /

2
; (2.3)

where we have assigned an improper prior on ˇ; �2
v ; �

2
1 ; �

2
2 and a proper uniform prior on the

mixing proportion pe. However, subjective priors could also be assigned when such subjective
information is available. Notably, it is possible to use some other proper prior on pe that may
elicit the extent of contamination to the basic model to reflect prevalence of outliers. While
many such subjective priors can be reasonably modelled by a beta distribution, we use a uni-
form distribution from this class to reflect noninformativeness or little information about this
parameter. We also use the traditional uniform priors on ˇ and �2

v . In Supporting Information,
we explore the propriety of the posterior distribution corresponding to the improper priors in
(2.3).

The improper prior distribution on the two variances for the mixture distribution has been
carefully chosen so that the prior will yield conditionally proper distributions for each parameter
given the other. The proper conditional densities given �2

2 (or �2
1 ) respectively are

�.�2
1 j�

2
2 / D

1

�2
2

I.0 < �2
1 < �

2
2 /; �.�2

2 j�
2
1 / D

�2
1

.�2
2 /

2
I.�2

1 < �
2
2 <1/:

This conditional propriety is necessary for parameters appearing in the mixture distribu-
tion in order to ensure under suitable conditions the propriety of the posterior density resulting
from the HB model. Alternatively, if we used, �.�2

1 ; �
2
2 / / .�2

1 /
�1.�2

2 /
�1, the posterior dis-

tribution would be improper for situations when there are no observations from the outlying
distribution. Prior (2.3) can accommodate these situations. The specific prior distribution that
we propose earlier is such that the resulting marginal densities for �2

1 and �2
2 , respectively, are

��2
1
.�2

1 / D .�2
1 /
�1 and ��2

2
.�2

2 / D .�2
2 /
�1. These two densities are of the same form as that

of �2
e in the regular model in (2.2) introduced earlier. Indeed, by setting pe D 0 or 1 in our

analysis, we can reproduce the HB analysis of the regular model given by (2.1) and (2.2).
We use the NM HB model under noninformative sampling and the noninformative priors

given by (2.3) to derive the posterior predictive distribution of NYi ; i D 1; � � � ; m. The NM
HB model and noninformative sampling that we propose here facilitate building model for
representative outliers (Chambers, 1986). According to Chambers, a representative outlier is a
value of a sampled unit which is not regarded as unique in the population, and one can expect
existence of similar values in the non-sampled part of the population which will influence the
value of the finite population means NYi ’s or the other parameters involved in the superpopulation
model.
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Robust HB SAE for NER Model S163

Following the practice of Battese et al. (1988) and Prasad & Rao (1990), we approxi-
mated the predict and NYi by �i D NXTi ˇ C vi to draw inference on the finite population
small area means. Here, NXi D N�1

i

PNi
jD1 xij is assumed known. This approximation works

well for small sampling fractions ni=Ni and large Ni ’s. It has been noted by these authors
and by Sinha & Rao (2009) that even for the case of outliers in the sample, the difference
between the inference results for NYi and �i is negligible. Our own simulations for our model
also confirm that observation. Once MCMC samples from the posterior distribution of ˇ; vi ’s
and �2

v ; �
2
1 ; �

2
2 ; pe have been generated, using the NM HB model the MCMC samples of

Yij ; j D ni C 1; � � � ; Ni ; i D 1; � � � ; m from their posterior predictive distributions can be
easily generated. Finally, using the relation NYi D N�1

i Œ
Pni
jD1 yij C

PNi
jDniC1 Yij �, (posterior

predictive) MCMC samples for NYi ’s can be easily generated for inference on these quantities.
In our own data anaysis, where the sampling fractions are negligible, we do inference for the
approximated predictands �i ’s.

Chambers and Tzavidis (2006) took a new frequentist approach to small area estimation that
is different from the mixed model prediction used in EBLUP. Instead of using a mixed model
for the response, they suggested a method based on quantile regression. We briefly review their
M-quantile small area estimation method in Section 3. They also proposed an estimator of MSE
of their point estimators.

Our Bayesian proposal has two advantages over the REBLUP of Sinha & Rao (2009). First,
instead of a working model for the non-outliers, we use an explicit mixture model to specify the
joint distribution of responses of all the units in the population, and not only the non-outliers
part of the population. It enables us to use all the sampled observations to predict the entire non-
sampled part, consisting of outliers and non-outliers, of the population. Our method is robust
predictive and the noninformative HB predictors are less susceptible to bias. Second, the main
thrust of the EBLUP approach in small area estimation is to develop accurate approximations
and estimation of MSEs of EBLUPs (cf. Prasad and Rao, 1990. Datta & Lahiri (2000), and
Datta et al. (2005) termed this approximation as second-order accurate approximation, which
neglects terms lower order than m�1 in the approximation. Second-order accurate approxima-
tion results for REBLUPs have not been obtained by Sinha & Rao (2009). Also, their bootstrap
proposal to estimation of the MSE under the working model has not been shown to be second-
order accurate. Our HB proposal does not rely on any asymptotic approximations. Analysis
of the corn data set and simulation study show less uncertainty (and better stability of this
measure) of our method compared to the M-quantile method.

3 M-quantile Small Area Estimation

Small area estimation is dominated by linear mixed effects models where the condi-
tional mean of Yij , the response of the j th unit in the i -th small area, is expressed as
E.Yij jxij ; vi / D xTijˇ C ´

T
ijvi ; where xij and ´ij are suitable known covariates, vi is a ran-

dom effects vector and ˇ is a common regression coefficient vector. This assumption is the
building block for EBLUPs of small area means, based on suitable additional assumptions for
this conditional distribution and the distribution of the random effects. Also with suitable prior
distribution on the model parameters, HB methodology for prediction of small area means is
developed.

As an alternative to linear regression which models E.Y jx/, the mean of the conditional
distribution of Y given covariates x, quantile regression has been developed by modelling
suitable quantiles of the conditional distribution of Y given x. In particular in quantile lin-
ear regression, for 0 < q < 1, the qth quantile Qq.Y jx/ of this distribution is modelled as
Qq.Y jx/ D xTˇq , where ˇq is a suitable parameter modelling the linear quantile function.
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S164 A. CHAKRABORTY, G. S. DATTA & A. MANDAL

For a given quantile regression function, the quantile coefficient qi 2 .0; 1/ of an observation
yi satisfies Qqi .Y jxi / D yi . In particular, for a linear quantile function, for given yi ; xi , the
qi satisfies xTi ˇqi D yi .

While in the linear regression setup, the regression coefficient ˇ is estimated from a set of
data ¹yi ; xi W i D 1; � � � ; nº by minimising the sum of squared errors

Pn
i D 1.yi � x

T
i ˇ/

2

with respect to ˇ, the quantile regression coefficient ˇq for a fixed q 2 .0; 1/ is obtained by
minimising the loss function

Pn
i D 1 jyi �x

T
i bj¹.1�q/I.yi �x

T
i b � 0/CqI.yi �xTi b > 0/º

with respect to b. Here I.�/ is a usual indicator function.
Following the idea of M-estimation in robust linear regression, Breckling & Chambers (1988)

generalised quantile regression by minimising an objective function
Pn
i D 1 d.jyi �x

T
i bj/¹.1�

q/I.yi � x
T
i b � 0/C qI.yi � xTi b > 0/º with respect to b for some given loss function d.�/.

(Linear regression is a special case for q D 0:5 and d.u/ D u2.) Estimator of ˇq is obtained
by solving the equation

nX
iD1

 q.riq/xi D 0;

where riq D yi � x
T
i ˇq ,  q.riq/ D  .s�1riq/¹.1 � q/I.riq � 0/ C qI.riq > 0/º, the

function  .�/, known as the influence function in M-estimation, is determined by d.�/ (actu-
ally,  .u/ is related to the derivative of d.u/, assuming it is differentiable). The quantity s is a
suitable scale factor determined from the data (cf. Chambers & Tzavidis, 2006). In M-quantile
regression, these authors suggested using  .�/ as the Huber Proposal 2 influence function
 .u/ D uI.juj � c/C csign.u/I.juj > c/, where c is a given positive number bounded away
from 0.

To apply the M-quantile method in small area estimation for a set of data
¹yij ; xij ; j D 1; � � � ; ni ; i D 1; � � � ; mº, Fabrizi et al. (2012) followed Chambers and Tzavidis
(2006) and suggested determining a set of Ǒq in a fine grid for q 2 .0; 1/ by solving

mX
iD1

niX
jD1

 q.rijq/xij D 0;

where rijq D yij � x
T
ij
Ǒ
q . Fabrizi et al. (2012) defined M-quantile estimator of NYi by

ONYi;MQ D
1

Ni

2
4
niX
jD1

yij C

NiX
jDniC1

xTij
Ǒ
Nqi C .Ni � ni /. Nyi � Nx

T
i
Ǒ
Nqi /

3
5 ; (3.1)

where . Nyi ; Nxi / is the sample mean of ¹.yij ; xij /; j D 1; � � � ; niº. Here, Nqi D
1
ni

Pni
j D 1 qij

is the average estimated quantile coefficient of the i -th small area, where qij is obtained by
solving xTij

Ǒ
q D yij , based on the set ¹ Ǒqº described earlier (if necessary, interpolation for

q is made to solve xTij
Ǒ
q D yij accurately). Here, we suppress the dependence of Ǒq and qij

on the influence function  .�/. For details on M-quantile small area estimators and associated
estimators of MSE based on a pseudo-linearisation method, we refer to Tzavidis & Chambers
(2005) and Chambers et al. (2014).

4 Robust Empirical Best Linear Unbiased Prediction

Empirical best linear unbiased predictors (EBLUPs) of small area means, developed under
normality assumptions for the random effects and the unit-level errors, play a very useful role
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Robust HB SAE for NER Model S165

in production of reliable model-based estimation methods. While the EBLUPs are efficient
under the normality assumptions, they may be highly influenced by outliers in the data. Sinha
& Rao (2009) investigated the robustness of the classical EBLUPs to the departure from nor-
mality assumptions and proposed a new class of predictors which are resistant to outliers. Their
proposed robust modification of EBLUPs of small area means, which they termed REBLUP,
downweight any influential observations in the data in estimating the model parameters and the
random effects.

Sinha & Rao (2009) considered a general linear mixed effects model with a block-diagonal
variance-covariance matrix. Their model, which is sufficiently general to include the popular
Fay–Herriot model and the NER model as special cases, is given by

yi D Xiˇ CZivi C ei ; i D 1; � � � ; m; (4.1)

for specified design matrices Xi ; Zi , random effects vector vi and unit-level error vector ei
associated with the data yi from the i -th small area. They assumed normality and independence
of the random vectors v1; � � � ; vm; e1; � � � ; em, where vi � N.0; Gi .ı// and ei � N.0; Ri .ı//.
Here, ı includes the variance parameters associated with the model (4.1).

To develop a robust predictor of a mixed effect �i D hTi ˇ C k
T
i vi , Sinha & Rao (2009)

started with the well-known mixed model equations given by

mX
iD1

XTi R
�1
i .yi �Xiˇ �Zivi / D 0; ZTi R

�1
i .yi �Xiˇ �Zivi /�G

�1
i vi D 0; i D 1; � � � ; m;

(4.2)
which are derived as estimating equations by differentiating the joint density of y1; � � � ; ym;
and v1; � � � ; vm with respect to ˇ, and v1; � � � ; vm to obtain ‘maximum likelihood’ estimators of
ˇ; v1; � � � ; vm for known ı. The unique solution Q̌.ı/; Qv1.ı/; � � � ; Qvm.ı/ to these equations leads
to the BLUP hTi

Q̌ C kTi Qvi of �i . To estimate the variance parameters ı, Sinha & Rao (2009)
maximised the profile likelihood of ı, which is the value of the likelihood of ˇ and ı based on
the joint distribution of the data y1; � � � ; ym at ˇ D Q̌.ı/.

To mitigate the impact of outliers on the estimators of the variance parameters, the regression
coefficients and the random effects, Sinha & Rao (2009) extended the work of Fellner (1986)
to robustify all the ‘estimating equations’ by using Huber’s  -function in M-estimation. Based
on the robustified estimating equations, Sinha & Rao (2009) obtained the robust estimators of
ˇ; ı and vi ; i D 1; � � � ; m, denoted respectively by ǑM ; OıM and OviM ; i D 1; � � � ; m. These
estimators lead to the REBLUP of �i given by hTi

Ǒ
M C k

T
i OviM . For details of the REBLUP

and the associated parametric bootstrap estimators of the MSE of the REBLUPs of �i , we refer
the readers to the paper by Sinha & Rao (2009).

5 Data Analysis

We illustrate our method by analysing the crop areas data reported by Battese et al. (1988)
who considered EBLUP prediction of county crop areas for 12 counties in Iowa. Based on US
farm survey data in conjunction with LANDSAT satellite data, they developed predictors of
county means of hectares of corn and soybeans. Battese et al. (1988) were the first to put for-
ward the NER model for the prediction of the county crop areas. Datta & Ghosh (1991) later
used the HB prediction approach on this data to illustrate Bayesian treatment of the NER model.
In the USDA farm survey data on 37 sampled segments from these 12 counties, Battese et al.
(1988) determined in their reported data that the second observation for corn in Hardin county
was an outlier so that this outlier would not unduly affect the model-based estimates of the
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S166 A. CHAKRABORTY, G. S. DATTA & A. MANDAL

small area means, Battese et al. (1988) initially recommended, and Datta & Ghosh (1991) sub-
sequently followed, to remove this suspected outlier observation from their analyses. Discarding
this observation results in a better fit for the NER model. However, removing any data which
may not be a non-representative outlier from analysis will result in loss of valuable information
about a part of the non-sampled units of the population which may contain outliers.

We reanalyse the full data set for corn using our proposed HB method and the other methods
we reviewed earlier. In Table 1, we report various point estimates and standard error esti-
mates. We compare our proposed robust HB prediction method with the standard HB method
of Datta & Ghosh (1991), and two robust frequentist methods, the REBLUP method of Sinha
& Rao (2009) and the MQ method of Chambers & Tzavidis (2006). We list in the table vari-
ous estimates of county hectares of corn, along with their estimated standard errors or posterior
standard deviations. Our analysis of the full data set including the potential outlier from the last
small area shows that for the first 11 small areas, there is a close agreement among the three
sets of point estimates by Datta & Ghosh (1991), Sinha & Rao (2009) and the proposed NM
HB method. The Datta and Ghosh method, which was not developed to handle outliers, yields
a point estimate for the 12th small area that is much different from the point estimates from
Sinha–Rao or the proposed NM HB method. The latter two robust estimates are very similar in
terms of point estimates for all the small areas. But when we compare these two sets of robust
estimates with those from another robust method, namely, the MQ estimates, we find that the
MQ estimates for the first three small areas are widely different from those for the other two
methods. These numbers possibly indicate a potential bias of the MQ estimates.

To compare performance of all these methods in the absence of any potential outliers, we
reanalysed the corn data by removing the suspected outlier (our robust HB analysis confirmed
the outlier status of this observation, cf. Figure 1 hereafter). When we compare the MQ esti-
mates with the four other sets of estimates, the DG HB, the SR and the NM, which are reported
in Table 1, and the EB estimates from Table 3 of Fabrizi et al. (2012), we notice a great divide
between the MQ estimates and the other estimates. Out of the twelve small areas, the estimates
for areas 1, 2, 3, 5 and 6 from the MQ method differ substantially from the estimates from the
other four methods. On the other hand, the close agreement among the last four sets of esti-
mates also shows in general the usefulness of the robust predictors, the proposed HB predictors
and the Sinha–Rao REBLUP predictors.

To examine the influence of the outlier on the estimates, we compare changes in the estimates
from both the full and reduced data. We find that the largest change occurs, not surprisingly, for
the DG HB method for the small area suspected of the outlier. Such a large change occurred
since the DG method cannot suitably downweight an outlier, consequently, it treated the outlier
value of 88.59 in the same manner as it treated any other non-outlier observation. As a result,
the predictor substantially underestimated the true mean NYi for Hardin county. The next largest
difference occurred for the MQ method for small area 3 which is not known to include any
outlier. Such a large change is contrary to behaviour of a robust method.

The changes in point estimates for the robust HB and the REBLUP methods are moderate for
the areas not known to include any outliers, and the changes seem proportionate for the small
area suspected of an outlier. The corresponding changes in the estimates from the MQ method
for some of the areas not including any outlier seem disproportionately large, and the change in
the estimate for the area suspected of an outlier is not as large. This behaviour to some extent
indicates a lack of robustness of the MQ method to outliers.

An inspection of the posterior standard deviations of the two Bayesian methods reveals some
interesting points. First, the posterior SDs of the small area means for the proposed mixture
model appear to be substantially smaller than the posterior SDs associated with the Datta–
Ghosh HB estimators. Smaller posterior SDs suggest the posterior distribution of the small
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S168 A. CHAKRABORTY, G. S. DATTA & A. MANDAL

Figure 1. Posterior probabilities of observations being outliers in full and reduced data. [Colour figure can be viewed at
wileyonlinelibrary.com]

Table 2. Parameter estimates for various models with and without the suspected outlier

Estimates Datta–Ghosh HB Datta–Ghosh HB Proposed Mixture HB Proposed Mixture HB Sinha–Rao
Estimates Mean Median Mean Median Sinha–Rao

Full Reduced Full Reduced Full Reduced Full Reduced Full Reduced
Data Data Data Data Data Data Data Data Data Data

Ǒ
0 17:29 50:35 16:17 50:92 30:89 49:98 31:46 50:78 29:14 48:20
Ǒ

1 0:37 0:33 0:37 0:33 0:35 0:33 0:35 0:33 0:36 0:34
Ǒ

2 �0:03 � 0:13 �0:03 � 0:13 � 0:07 � 0:13 � 0:07 � 0:13 � 0:07 � 0:13
Ope � � � � 0:62 0:50 0:68 0:49 � �

O�2
v 175.68 231.87 127.68 186.07 205.01 238.42 160.22 203.55 102.74 155.15
O�2

1 � � � � 182.01 121.40 170.64 119.49 � �

O�2
2 370.00 216.00 341.00 192.00 976.00 231.00 483.00 188.00 225.60 161.50

area means under the mixture model are more concentrated than those under the Datta–Ghosh
model. This has been confirmed by simulation study, reported in the next section.

Next, when we compare the posterior SDs of small area means for our proposed method
based on the full data and the reduced data, all posterior SDs increase for the full data (which
likely contain an outlier). In the presence of outliers, the unit-level variance is expected to be
large. Even though the posterior SDs of the small area means do not depend entirely only on
the unit-level error variance, they are expected to increase with this variance. This monotonic
increase appears reasonable due to the suspected outlier. While this intuitive property holds for
our proposed method, it does not hold for the standard Datta–Ghosh method.

For further demonstration of the effectiveness of our proposed robust HB method, we com-
puted model parameter estimates for both the reduced and the full data sets. These estimates are
displayed in Table 2. The HB estimate of the larger variance component (976, based on mean)
of the mixture is much larger than the estimate of the smaller component (182) for the full data,
indicating a necessity of the mixture model. On the other hand, for the reduced data the esti-
mates of variances for the two mixing components, 231 and 121, respectively, are very similar
and can be argued identical within errors in estimation, indicating limited need of the mixture
distribution. A comparison of the estimates of pe for the two cases also reveals the appropri-
ateness of the mixture model for the full data. It also shows the redundancy of including pe in
the modelling of the reduced data as explained below.
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Robust HB SAE for NER Model S169

The posterior density in a reasonable noninformative Bayesian analysis is usually dominated
by the likelihood of the parameters generated by the data. In case the data do not provide much
information about some parameters to the likelihood, posterior densities of such parameters will
be dominated by their prior information. Consequently, the posterior distribution for some of
them may be very similar to the prior distribution. An overparameterised likelihood usually car-
ries little information for some parameters responsible for overparameterisation. In particular,
if our mixture model is overparameterised in the sense that variances of mixture components
are similar, then the integrated likelihood may be flat on the mixing proportion. We observe this
scenario in our data analysis when we removed the suspected outlier observation from analy-
sis based on our model. Since our mixture model is meant to accommodate outliers based on
unequal variances for the mixing components, in the absence of any outliers, the mixture of
two normal distributions may not be required. In particular, we noticed earlier that with the sus-
pected outlier removed the estimates of the two variance components �2

1 and �2
2 are very similar.

Also, the posterior histogram of the mixing proportion pe , not presented here, resembles a uni-
form distrubution, the prior distribution assigned in our Bayesian analysis. In fact, the posterior
mean of this parameter for the reduced data is the same as the prior mean 0.5. This essentially
says that the likelihood is devoid of any information about pe to update the prior distribution.

One advantage of our mixture model is that it explicitly models any representative outlier
through the latent indicator variable ´ij . By computing the posterior probability of ´ij D 0
we can compute the posterior probability that an observed yij is an outlier. While the REBLUP
method does not give a similar measure for an observation, one can determine the outlier status
by computing the standardised residual associated with an observation. To show the effec-
tiveness of our method, in Figure 1, we plotted the posterior probabilities of an individual
observation being an outlier against the observation’s standardised residual. In the left panel,
we showed the plot of these posterior probabilities for the full data, and in the right panel, we
included the same by removing the suspected outlier. These two figures are in sharp contrast;
the left panel clearly showed that there is a high probability (0.86) that the second observa-
tion in Hardin county is an outlier. The associated large negative standardised residual of this
observation also confirmed that, and from this plot, an approximate monotonicity of these pos-
terior probabilities with respect to the absolute values of the standardised residuals may also be
discerned. However, the right panel shows that for the reduced data excluding the suspected out-
lier, the standardised residuals for the remaining observations are between �3 and 3, with the
associated posterior probabilities of being outlier observations are all between 0.44 and 0.64.
None of these probabilities is particularly larger than prior probability 0.5 to indicate outlier
status of that corresponding observation. This little change of the outlier prior probabilities in
the posterior distribution for the reduced data essentially confirms that a discrete scale mixture
of normal distributions is not supported by the data, or in other words, the scale mixture model
is not required to explain the data, which is the same as that there are possibly no outliers in the
data set.

6 A Simulation Study

In our extensive simulation study, we followed the simulation setup used by Sinha & Rao
(2009). Corresponding to the model in (2.1), we use a single auxiliary variable x, which we
generated independently from a normal distribution with mean 1 and variance 1. In our simu-
lations, we use m D 40. We generated 40 sets of 200 (D Ni ) values of x to create the finite
population of covariates for the 40 small areas. Based on these simulated values, we computed
NXi D

1
Ni

PNi
j D 1 xij . Throughout our simulations, we keep the generated x values fixed. We

used these generated xij values and generated vi ; i D 1; � � � ; m independently from N.0; �2
v/
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S170 A. CHAKRABORTY, G. S. DATTA & A. MANDAL

with �2
v D 1. We generated eij ; j D 1; � � � ; Ni ; i D 1; � � � ; m as iid from one of three pos-

sible distributions: (i) the case of no outliers where eij are generated from N.0; 1/ distribution;
(ii) a mixture of normal distributions, with 10% outliers from a N.0; 52/ distribution and the
remaining 90% from the N.0; 1/ distribution; and (iii) eij ’s are iid from a t-distribution with 4
degrees of freedom. We also took ˇ0 D 1 and ˇ1 D 1 as in Sinha & Rao (2009), and gen-
erated m small area finite populations based on the generated xij ’s, vi ’s and eij ’s by computing
Yij D ˇ0Cˇ1xij C vi C eij based on the NER model in (2.1). Our goal is prediction of finite
population small area means NYi D

1
Ni

PNi
j D 1 Yij ; i D 1; � � � ; m. After examining no signifi-

cant difference between NYi and ˇ0 C ˇ1 NXi C vi D �i (say) in the simulated populations, as in
Sinha & Rao (2009), we also consider prediction of �i .

From each simulated small area finite population, we selected a simple random sample of
size ni D 4 for each small area. Based on the selected samples, we derived the HB predictors
of Datta & Ghosh (1991) (referred to as DG), the REBLUPs of Sinha & Rao (2009) (referred
to as SR), the MQ predictors of Chambers et al. (2014) (referred to as CCST-MQ, based on
their equation (38)) and our proposed robust HB predictors (referred to as NM). In addition to
the point predictors, we also obtained the posterior variances of both the HB predictors and the
estimates of the MSE of the REBLUPs based on the bootstrap method proposed by Sinha & Rao
(2009), and the estimates of MSE of the MQ predictors, obtained by using pseudo-linearisation
in equation (39) of Chambers et al. (2014).

For each simulation setup, we have simulated S D 100 populations. For the sth cre-
ated population, s D 1; � � � ; S , we computed the values of � .s/i , which will be treated
as the true values. We denote the sth simulation sample by d .s/, and based on this data,
we calculate the REBLUP predictors O� .s/i;SR and their estimated MSE, mse. O� .s/i;SR/ using the
procedure proposed by Sinha & Rao (2009). To assess the accuracy of the point predic-
tors, we computed the empirical bias eBi;SR D

1
S

PS
s D 1.

O�
.s/
i;SR � �

.s/
i / and empirical MSE

eMi;SR D
1
S

PS
s D 1.

O�
.s/
i;SR � �

.s/
i /2. Treating eMi;SR as the ‘true’ measure of variabil-

ity of O�i;SR, we also evaluate the accuracy of the MSE estimator mse. O�i;SR/, suggested by
Sinha & Rao (2009). Accuracy of the MSE estimator is evaluated by the relative differ-
ence between the empirical MSE and the average (over simulations) estimated MSE, given
by REmse�SR;i D ¹.1=S/

PS
s D 1mse.

O�
.s/
i;SR/ � eMi;SRº=eMi;SR. Similarly, we obtained

the predictors O� .s/i;CCST , estimated MSEs mse. O� .s/i;CCST / of Chambers et al. (2014), empiri-
cal biases and empirical MSEs of point estimators and relative biases of the estimated MSEs.
Using the point estimates and MSE estimates, we created approximate 90% prediction inter-

vals I .s/i;SR;90 D Œ O�
.s/
i;SR � 1:645

q
mse. O�

.s/
i;SR/;

O�
.s/
i;SR C 1:645

q
mse. O�

.s/
i;SR/� and 95% prediction

intervals I .s/i;SR;95 D Œ
O�
.s/
i;SR � 1:96

q
mse. O�

.s/
i;SR/;

O�
.s/
i;SR C 1:96

q
mse. O�

.s/
i;SR/�. We also obtained

similar intervals for the MQ method of Chambers et al. (2014). We evaluated empirical biases,
empirical MSEs, relative biases of estimated MSEs and empirical coverage probabilities of
prediction intervals for all four methods. These quantities for all 40 small areas are plotted in
Figures 2, 3 and 4.

We plotted the empirical biases on the left panel and the empirical MSEs on the right panel of
Figure 2. These estimators do not show any systematic bias. In terms of eM, the REBLUP and
the proposed NM HB predictor appear to be most accurate and perform similarly (in fact, based
on all evaluation criteria considered here, the proposed NM HB and the REBLUP methods have
equivalent performance). In terms of eM, the MQ predictor has maximum variability and the
standard DG HB predictor is in third place. In the case of no outliers, while the other three pre-
dictors have the same eM, the MQ predictor is slightly more variable. Moreover, we examined
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Robust HB SAE for NER Model S171

Figure 2. Plot of empirical biases and empirical MSEs of O�s. [Colour figure can be viewed at wileyonlinelibrary.com]

how closely the posterior variances of the Bayesian predictors and the MSE estimators of the
frequentist robust predictors track their respective eM of prediction (Figure 3). The posterior
variance of the proposed NM HB predictor and the estimated MSE of REBLUP appear to track
the eM the best without any evidence of bias. The posterior variance of the standard HB pre-
dictor appears to overestimate the eM and the estimated MSE of the MQ predictor appears to
underestimate. An undesirable consequence of this negative bias of the MSE estimator of the
MQ method is that the related prediction intervals often fail to cover the true small area means
(see the plots in Figure 4).

Our sampling-based Bayesian approach allowed us to create credible intervals for the small
area means at the nominal levels of 0.90 and 0.95 based on sample quantiles of the Gibbs sam-
ples of the �i ’s. For the Sinha–Rao and the Chambers et al. methods, we used their respective
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S172 A. CHAKRABORTY, G. S. DATTA & A. MANDAL

Figure 3. Plot of posterior variances and MSE estimates and their empirical relative biases. [Colour figure can be viewed
at wileyonlinelibrary.com]

estimated root MSE of the REBLUPs or MQ-predictors to create symmetric approximate 90%
and 95% prediction intervals of the small area means.

To assess the coverage rate of these prediction intervals, we computed empirical coverage
probabilities eCi;SR;90 D

1
S

PS
s D 1 I Œ�

.s/
i 2 I

.s/
i;SR;90� and eCi;SR;95 D

1
S

PS
s D 1 I Œ�

.s/
i 2

I
.s/
i;SR;95�, where I Œx 2 A� is the usual indicator function that is one for x 2 A and 0 otherwise.

Based on the same setup and same set of simulated data, we also evaluated the two HB
procedures. In the Bayesian approach, the point predictor, the posterior variance and the credible
intervals for � .s/i in the sth simulation were computed based on the MCMC samples of � .s/i
from its posterior distribution, generated by Gibbs sampling. The posterior mean and posterior
variance are computed by the sample mean and the sample variance of the MCMC samples.
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Robust HB SAE for NER Model S173

Figure 4. Plot of lengths and coverages of credible and prediction intervals. [Colour figure can be viewed at wileyonlineli-
brary.com]

An equi-tailed 100.1 � 2˛/% credible interval for � .s/i is created, where the lower limit is the
100˛th sample percentile and the upper limit is the 100.1 � ˛/th sample percentile of the
MCMC samples of � .s/i from the sth simulation.

Suppose in the sth simulation O� .s/i;DG denotes the Datta–Ghosh HB predictor of �i and V .s/i;DG
denotes the posterior variance. The empirical bias of the Datta–Ghosh predictor of �i is defined
by eBi;DG D

1
S

PS
s D 1.

O�
.s/
i;DG � �

.s/
i / and empirical MSE by eMi;DG D

1
S

PS
s D 1.

O�
.s/
i;DG �
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S174 A. CHAKRABORTY, G. S. DATTA & A. MANDAL

�
.s/
i /2. To investigate the extent, V .s/i;DG may be interpreted as an estimated MSE of the

predictor O�i;DG , we compute the relative difference between the empirical MSE and the aver-
age (over simulations) posterior variance, given by REV�DG;i D ¹.1=S/

PS
sD1 V

.s/
i;DG �

eMi;DGº=eMi;DG . These quantities for all 40 small areas are plotted in Figure 3.
Based on the MCMC samples of �i ’s for the sth simulated data set, let I .s/i;DG;90 be the 90%

credible interval for �i . To evaluate the frequentist coverage probability of the credible interval
for �i , we computed empirical coverage probabilities eCi;DG;90 D

1
S

PS
s D 1 I Œ�

.s/
i 2 I

.s/
i;DG;90�.

Corresponding to a credible interval I .s/i;DG;90, we used L
.s/
i;DG;90 to denote its length and

computed empirical average length of a 90% credible interval for �i based on Datta–Ghosh
approach by NLi;DG;90 D

1
S

PS
s D 1L

.s/
i;DG;90. Similarly, we computed eCi;DG;95 and NLi;DG;95

for the 95% credible intervals for �i .
Finally, as we did for the Datta–Ghosh HB predictor, we computed similar quantities for our

new robust HB predictor. Specifically, suppose O� .s/i;NM is the newly proposed NM HB predictor

of � .s/i , and V .s/i;NM is the posterior variance. For the new predictor, we define the empirical bias

by eBi;NM D
1
S

PS
s D 1.

O�
.s/
i;NM � �

.s/
i / and empirical MSE by eMi;NM D

1
S

PS
s D 1.

O�
.s/
i;NM �

�
.s/
i /2. Again, to investigate the extent, V .s/i;NM may be viewed as an estimated MSE of the

predictor O�i;NM , we computed the relative difference between the emprical MSE and the aver-
age (over simulations) posterior variance, given by REV�NM;i D ¹.1=S/

PS
s D 1 V

.s/
i;NM �

eMi;NM º=eMi;NM . These quantities for all 40 small areas are plotted in Figure 3. Based on
the MCMC samples of �i ’s for the sth simulated data set, let I .s/i;NM;90 be the 90% credible
interval for �i . To evaluate the frequentist coverage probability of the credible interval for
�i , we computed empirical coverage probabilities eCi;NM;90 D

1
S

PS
s D 1 I Œ�

.s/
i 2 I

.s/
i;NM;90�.

Corresponding to a credible interval I .s/i;NM;90, we used L.s/i;NM;90 to denote its length and com-
puted empirical average length of a 90% credible interval for �i based on new approach by
NLi;NM;90 D

1
S

PS
s D 1L

.s/
i;NM;90. Similarly, we computed eCi;NM;95 and NLi;NM;95 for the 95%

credible intervals for �i .
We plotted the empirical coverage probabilities for the four methods that we considered

in this article. The plot reveals significant undercoverage of the approximate prediction inter-
vals created by using the estimated prediction MSE proposed by Chambers et al. (2014). This
undercoverage is not surprising since their estimated MSE mostly underestimates the true MSE
(measured by the eM) (Figure 3). Coverage probabilities of the Sinha–Rao prediction intervals
and the two Bayesian credible intervals are remarkably accurate. This lends dual interpreta-
tion of our proposed credible intervals, Bayesian by construction and frequentist by simulation
validation. This property is highly desirable to practitioners, who often do not care about a
paradigm or a philosophy. In the same plot, we also plotted the ratio of the average lengths of
the DG credible intervals to the newly proposed robust HB credible intervals. These plots show
the superiority of the proposed method, yielding intervals which meet coverage accurately with
average lengths about 25–30% shorter compared to the DG method for NM model with 10%
contamination. Again, these two intervals meet the coverage accurately when the unit-level
errors are generated from normal (no outliers) or a moderately heavy-tail distribution (t4). In
these cases, the reduction in length of the intervals is less, which is about 10%. This shorter
prediction intervals from the new method even for normal distribution for the unit-level error is
interesting; it shows that the proposed method does not lose any efficiency in comparison with
the Datta–Ghosh method even when the normality of the unit-level errors holds.

The comparison of NM HB prediction intervals and the Sinha–Rao prediction intervals
yields a mixed picture. In the mixture setup, the NM HB prediction intervals attained coverage
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Robust HB SAE for NER Model S175

probability more accurately than the Sinha–Rao intervals, which undercover by 1%, and on an
average, the Bayesian prediction intervals are about 2% shorter than the frequentist intervals.
When the data are simulated from a t4 distribution, the coverage probabilities of the Sinha–
Rao prediction intervals are about 1% below the target, but these intervals are about 3% shorter
than the NM HB prediction intervals, which attained the nominal coverage. Finally, when the
population does not include any outlier, these two methods perform the same, both attained the
nominal coverage and yield the same average length.

7 Conclusion

The NER model by Battese et al. (1988) plays an important role in small area estimation for
unit-level data. While Battese et al. (1988), Prasad & Rao (1990) and Datta & Lahiri (2000)
investigated EBLUPs of small area means, Datta & Ghosh (1991) proposed an HB approach
for this model. Sinha & Rao (2009) investigated robustness of the MSE estimates of EBLUPs
in Prasad & Rao (1990) for outliers in the response. They showed in presence of outliers
robustness of their REBLUPs and lack of robustness of the EBLUPs.

In this article, we showed that non-robustness also persists for the HB predictors by Datta
& Ghosh (1991). To deal with this undesirable issue, we proposed an alternative to the HB
predictors by using a mixture of normal distributions for the unit-level error part of the NER
model. An illustrative application and simulation study show the superiority of our proposed
method over the existing HB, EBLUP and M-quantile solutions. Indeed, simulation results
show the superiority of our method over the Datta & Ghosh (1991) HB predictors and the M-
quantile small area estimators of Chambers et al. (2014). Performance of our proposed NM
HB method is found to be as good as the frequentist solution of Sinha & Rao (2009). Our
proposed Bayesian intervals also achieve the corresponding frequentist coverage. Thus, unlike
the frequentist solutions, our proposed HB solution enjoys dual interpretation, Bayesian by
construction and frequentist via simulation, a feature attractive to practitioners. Moreover, sug-
gested credible intervals are shorter in length in comparison with the other nominal prediction
intervals. In fact, the application and simulations show that the proposed NM HB method is
the best among the four methods in the presence of outliers. Our proposed method is as good
as the HB method of Datta & Ghosh (1991), even in the absence of outliers. Thus, there will
be no loss in using the proposed HB method for all data sets. It is not clear to us that why M-
quantile performs poorly. However, we note that in our simulations, all the errors are centred at
zero. Alternatively, one can explore the performance of these methods when the outlier parts of
the respective error components are generated from a distribution which is not centred at zero.
This remains a topic of future research.

Supporting Information

Propriety of the posterior distribution corresponding to the proposed model has been discussed
in the supplementary material.
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