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Abstract
We identify locally D-optimal crossover designs for generalized linear models. We 
use generalized estimating equations to estimate the model parameters along with 
their variances. To capture the dependency among the observations coming from 
the same subject, we propose six different correlation structures. We identify the 
optimal allocations of units for different sequences of treatments. For two-treatment 
crossover designs, we show via simulations that the optimal allocations are reason-
ably robust to different choices of the correlation structures. We discuss a real exam-
ple of multiple-treatment crossover experiments using Latin square designs. Using a 
simulation study, we show that a two-stage design with our locally D-optimal design 
at the second stage is more efficient than the uniform design, especially when the 
responses from the same subject are correlated.

Keywords Approximate designs · D-optimality · Compound symmetric correlation · 
AR(1) correlation structure · Generalized estimating equations · Two-stage design

1 Introduction

Pharmaceutical companies frequently conduct clinical trials where the outcome is 
either success or failure of a particular therapy. Crossover designs, also known as 
repeated measurements designs or changeover designs, have been used extensively 
in pharmaceutical research. There is a rich literature on optimal crossover designs 
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when the response can be adequately modeled by normal distributions. However, 
for a binary outcome, where the response needs to be described using generalized 
linear models (GLMs), limited results are known. Consequently, these trials are usu-
ally designed using the guidelines of traditional crossover designs obtained using the 
theory of linear models. However, these designs can be quite inefficient for GLMs. 
Our goal is to bridge this gap in the literature and determine efficient designs spe-
cifically for crossover experiments with responses under univariate GLMs, including 
binary, binomial, Poisson, gamma, inverse Gaussian responses, etc.

Among different types of experiments that are available for treatment compar-
isons with multiple periods, the crossover designs are among the most important 
ones. In these experiments, every subject is exposed to a sequence of treatments 
over different time periods, i.e., subjects crossover from one treatment to another. 
One of the most important aspects of crossover designs is that we can get the same 
number of observations as other designs but with less number of subjects. This is an 
important consideration since human participants are often scarce in clinical trials. 
The order in which treatments are applied to subjects is known as a sequence, and 
the time at which these sequences are applied is known as a period. In most of the 
cases, the main aim of such experiments is to compare t treatments over p periods. 
In each period, each subject receives a treatment, and the corresponding response is 
recorded. In different periods, a subject may receive different treatments, but treat-
ment may also be repeated on the same subject. Naturally, crossover designs also 
provide within-subject information about treatment differences.

Most of the research in the crossover design literature dealt with continuous 
response variables (see, for example, Kershner and Federer [10], Laska and Meis-
ner  [15], Matthews  [18], Carriere and Huang  [3] and the references therein). The 
problem of determining optimal crossover designs for continuous responses has 
been studied extensively (see, for example, Bose and Dey  [1, 2], for a review of 
results). For examples of practical cases where the responses are discrete in nature, 
such as binary responses, one may refer to Jones and Kenward [9] and Senn [21].

Among many fixed effects models proposed in the literature, the following linear 
model is used extensively to formulate crossover designs.

where Yij is the observation from the jth subject in the ith time period, with 
i = 1,… , p and j = 1,… , n . Here, d(i, j) stands for the treatment assignment to the 
jth subject at time period i and �, �i, �j, �d(i,j), �d(i−1,j) are the corresponding overall 
mean, the ith period effect, the jth subject effect, the direct treatment effect and the 
carryover treatment effect, respectively. Here, �ij ’s are the uncorrelated error terms 
which follow a normal distribution with zero mean and constant variance. Model (1) 
is sometimes referred to as the traditional model due to its extensive use in the 
literature.

As all the effects are fixed, for the linear model (1), the Fisher information matrix 
is independent of model parameters. Various optimality criteria such as A-, D-, 
E-optimality depend on this information matrix (see, for example, Pukelsheim [20]). 
Numerous results corresponding to the optimality of crossover designs for 

(1)Yij = � + �i + �j + �d(i,j) + �d(i−1,j) + �ij,
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linear models are available in the literature. Hedayat and Afsarinejad [7], Cheng and 
Wu [4] and Kunert [13] studied the optimality of balanced, uniform designs. Cheng 
and Wu [4] formulated theorems for the optimality of a strongly balanced design. 
Kunert [12] produced results for optimality of designs that are neither balanced nor 
strongly balanced. Similar results can also be found in Stufken [23]. Dey et al. [6] 
were among the first ones to provide results for optimality of designs when p ≤ t. 
Considering arbitrary p and t with both p ≤ t and p ≥ t , Kushner [14] obtained con-
ditions for universal optimality through approximate theory. Such results cannot be 
readily extended for binary responses since the Fisher information matrix for GLMs 
depends on the model parameters [19, 24]. In this paper, we focus on local optimal-
ity to circumvent this problem [11].

This paper is organized as follows. We describe a preliminary setup of a model 
for crossover designs for GLMs in Sect. 2.1 and then discuss generalized estimat-
ing equations in Sect. 2.2. We propose different correlation structures in Sect. 2.3 
and formulate locally optimal crossover designs along with an algorithm for obtain-
ing such designs, in Sect.  2.4. In Sect.  3, we provide examples of optimal design 
for two-treatment crossover trials. We calculate optimal designs for examples with 
binary response in Sect. 3.1 and for example with Poisson response in Sect. 3.2. In 
Sect. 4.1, we provide examples of optimal designs for multi-treatment crossover tri-
als, where we use Latin square design. Sensitivity study and relative D-efficiency 
are presented in Sect. 4.2. Simulation studies are presented in Sect. 4.3. The paper 
concludes with comments in Sect. 5. Some technical details and additional results 
are presented in “Appendix” and Supplementary Materials.

2  Crossover Designs for GLM

Although there is a rich literature on optimal crossover designs for linear models, 
the results on crossover designs under generalized linear models (GLMs) are mea-
ger. Before identifying optimal crossover design, we first formally introduce the 
GLM and the associated optimal crossover designs.

2.1  Preliminary Setup

We consider a crossover trial with t treatments, n subjects and p periods. The 
responses obtained from these n subjects are denoted as Y1,… , Yn , where the 
response from the jth subject is Yj = (Y1j,… , Ypj)

� . As discussed above, we use a 
generalized linear model (GLM) to describe the marginal distribution of Yij as in 
Liang and Zeger [17]. Let �ij denote the mean of a binary response Yij . To fix ideas, 
first we consider the logistic regression, which models the marginal mean �ij for 
crossover trial as

(2)logit(�ij) = log

(
�ij

1 − �ij

)
= �ij = � + �i + �d(i,j) + �d(i−1,j),
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where i = 1,… , p;j = 1,… , n ; � is the overall mean, �i represents the effect of the 
ith period, �s is the direct effect due to treatment s, and �s is the carryover effect due 
to treatment s, where s = 1,… , t.

Remark 1 Unlike model  (1), model  (2) does not contain a subject effect term �j . 
Note that the response here is described by a GLM, where the Fisher information 
matrix depends on model parameters. In this paper, we consider the local optimal-
ity approach of Chernoff [5], in which the parameters are replaced by assumed val-
ues. In the linear model, the subject effect can be estimated from the data, but for 
our local optimality approach for the GLM, an educated guess for the subject effect 
is needed. It would be reasonable to guess the fixed treatment effects from prior 
knowledge, while from a design point of view the subject effect, if included, has to 
be treated as random. Instead of incorporating a random effects term, in this paper, 
the mean response is modeled through the logit link function in Eq. (2) with an extra 
assumption that the responses from a particular subject are mutually correlated, 
while the responses from different subjects are uncorrelated. In the case of general-
ized linear models, only the mean response is modeled through the link function, 
and hence, we are free to choose a variance–covariance matrix as long as that is 
positive definite. So, in this paper, we use this opportunity of choosing the covari-
ance matrix and capture the subject effect by putting different meaningful structures 
on this matrix and studying the robustness of the design. In this way, we can exclude 
a random subject effect from the model and calculate optimal designs more easily.

As the main interest is in estimating the treatment effects and variance of its 
estimator, carryover effects are treated as nuisance parameters. To ensure estima-
bility of the model parameters, we set the baseline constraints as �1 = �1 = �1 = 0 . 
Consider � = (�2,… , �p)

� , � = (�2,… , �t)
� and � = (�2,… , �t)

� , which define the 
parameter vector � = (�, �, �, �)� . Then, the linear predictor corresponding to the 
jth subject, �j = (�1j,… , �pj)

� , can be written as

The corresponding design matrix Xj can be written as Xj =
[
1p,Pj, Tj,Fj

]
 , where Pj 

is p × (p − 1) such that Pj = [0(p−1)1, Ip−1]
� ; where Tj is a p × (t − 1) matrix with its 

(i, s)th entry equal to 1 if subject j receives the direct effect of the treatment s in the 
ith period and zero otherwise; where Fj is a p × (t − 1) matrix with its (i, s)th entry 
equal to 1 if subject j receives the carryover effect of the treatment s in the ith period 
and zero otherwise, where columns of Tj and Fj are indexed by 2,… , t.

If the number of subjects is fixed to n and the number of periods is p, then we 
determine the proportion of subjects assigned to a particular treatment sequence. 
As the number of periods is fixed to p, each treatment sequence will be of length 
p and a typical sequence can be written as � = (t1,… , tp)

� where ti ∈ {1,… , t} . 
Now, let � be the set of all such sequences and n� denote the number of subjects 
assigned to sequence � . Then, the total number of subjects n can be written as 
n = ��∈�n�, n� ≥ 0 . A crossover design � in approximate theory is specified by 

�j =Xj�.
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the set {p�,� ∈ �} , where p� = n�∕n is the proportion of subjects assigned to 
treatment sequence � . Such a crossover design � can be denoted as follows:

where k is the number of treatment sequences involved, such that ∑k

i=1
p�i

= 1, for i = 1,… , k . From the definitions of matrices Tj and Fj , it 
can be noted that they depend only on the treatments sequence � that subject j 
receives. So it can be inferred that Tj = T� and Fj = F� . This implies, Xj = X� as 
Pj = [0(p−1)1, Ip−1]

�.

2.2  Generalized Estimating Equations

Generalized estimating equations are quasi-likelihood equations which allow us to esti-
mate quasi-likelihood estimators. In this paper, instead of using maximum likelihood 
estimation (MLE) or ordinary least squares (OLS) to estimate the parameters, we use 
quasi-likelihood estimation. Earlier we made one important assumption in crossover 
trials that observations from each subject are mutually correlated, while the observa-
tions from different subjects are uncorrelated. This dependency between repeated 
observations from a subject is modeled using what is called “working correlation” 
matrix C. If C is the true correlation matrix of Yj , then from the definition of covariance 
we can write

where Dj = diag
(
�1j(1 − �1j),… ,�pj(1 − �pj)

)
 . Let us denote Cov(Yj) by Wj . In 

Zeger et al. [25, Eq. (3.1)], it has been shown that for repeated measurement model, 
the generalized estimating equations (GEE) are defined to be

where �j =
(
�1j,… ,�pj

)� and the asymptotic variance for the GEE estimator �̂� (see 
Zeger et al. [25], Eq. (3.2)) is

where Wj = Cov(Yj) . As mentioned by Singh and Mukhopadhyay [22] in the paper 
(Zeger et al. [25], Eq. (3.2)), it has also been shown that if the true correlation struc-
ture varies from “working correlation” structure, then Var(�̂�) is given by the sand-
wich formula

� =

{
�1 �2 … �k

p�1
p�2

… p�k

}

Cov(Yj) =D
1∕2

j
CD

1∕2

j
,

n∑
j=1

���
j

��
W−1

j

(
Yj − �j

)
= 0

(3)Var(�̂�) =

[
n∑
j=1

𝜕𝜇�
j

𝜕𝜃
W−1

j

𝜕𝜇j

𝜕𝜃

]−1

Var(�̂�) =U−1VU−1,
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where the U and V in above equation are as follows:

So it is expected that the effect of variance misspecification on the locally optimal 
designs will be minimal. Table 10 presented in “Appendix” confirms this.

From Eqs. (3) and (4), it can be seen that if the true correlation of Yj is equal to C, 
then Var(�̂�) = U−1.We have considered carryover effects to be nuisance parameters 
as the main interest usually lies in estimating the direct treatment effect contrasts. 
So, instead of working with the full variance–covariance matrix of parameter esti-
mator �̂� , we concentrate only on the variance of the estimator of treatment effect 
Var(𝜏) where

H is a (t − 1) × m matrix given by [0(t−1)1, 0(t−1)(p−1), It−1, 0(t−1)(t−1)] where 
m = p + 2t − 2 is the total number of parameters in � and 0(t−1)(p−1) is a 
(t − 1) × (p − 1) matrix of zeros.

We calculate optimal proportions such that the variances of estimators of treat-
ment effect are minimized. In this paper, we focus on D-optimality and use the 
determinant of Var(𝜏) as our objective function. Note that other optimality criteria 
such as A-, E-optimality can be applied similarly. Then, an optimal design �∗ mini-
mizes the determinant of Var(𝜏) in Eq. (5) with respect to p� such that 

∑
w∈� pw = 1 . 

For illustration, we give an explicit expression of the information matrix and present 
the associated calculations for a crossover design in the Supplementary Materials.

2.3  Proposed Correlation Structures

As mentioned in the above section, to calculate the variance matrix of parameter 
estimates, a predefined working correlation structure for the responses is needed. 
Any correlation structure can be assumed for the responses, but if the design is not 
robust, then the optimal proportions will vary as the correlation structure varies. So, 
to check the robustness of design and to make the design more practically accept-
able, optimal proportions using different correlation structures are calculated. For 
the design in Eq. (2) with two treatments A and B, six different types of correla-
tion structures are proposed, and optimal proportions are calculated. Out of these six 
correlation structures, the correlation matrices defined by the first three correlation 
structures are fixed and do not depend on treatment sequence, whereas the correla-
tion matrices of the fourth, fifth and sixth types depend on treatment sequences and 
vary along with treatment sequences.

The first correlation structure is a compound symmetric correlation structure, i.e.,

where Ip is the identity matrix of order p, and Jp is a p × p matrix with all elements 
unity.

(4)U =
∑
���

np�
���

�

��
W−1

�

���

��
, V =

∑
���

np�
���

�

��
W−1

�
Cov(Y�)W

−1
�

���

��
.

(5)Var(𝜏) =HVar(�̂�)H�,

Corr(1) = (1 − �)Ip + �Jp,
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The second correlation structure is the AR(1) correlation structure, i.e.,

so that the correlation between responses decreases as the time gap between 
responses increases.

The third correlation structure is as follows:

For each correlation structure different correlation matrices using different � values 
are considered.

To understand the other three correlation structures, we denote the correlation 
coefficient between the response when a subject receives treatment A first and the 
response when the same subject receives treatment B afterward as �AB and, �BA when 
the subject receives B first and A afterward. Note that in general �AB is not necessar-
ily the same as �BA . In a similar manner, we define �AA and �BB . To define the fourth 
type of correlation structure, we will use the same structure as Corr(3) but with dif-
ferent values of correlation coefficient for different treatment sequences. For fourth 
type of correlation, we use �AB = 0.2, �BA = 0.5 and �AA = 0.1, �BB = 0.3.

To define fifth and sixth type of correlation structures, we use AR(1) correla-
tion structure with correlation coefficient depending on treatment sequence. For the 
fifth type, we use the same values for �AB and �BA , and for the sixth type of correla-
tion structure, we use different values for �AB and �BA . For both fifth and sixth type 
of correlation structure, we keep �AA = �BB . These values might vary from example 
to example and would depend on what treatments A and B are. As the entries of 
the correlation matrix depend on which treatment the subject receives in a particu-
lar period, these correlation matrices are different for different treatment sequences. 
Here, our aim is to see how optimal proportions vary as we vary values of �AB and 
�BA.

As an illustration, we consider p = 2 with treatment sequences AB, BA. Then, the 
third type correlation matrices for both treatment sequences AB and BA will have 
same structure as Corr(1) . The fourth, fifth and sixth type correlation matrices will 
have same structure as follows with different � values,

For p = 3 case, we consider an example with treatment sequences ABB, BAA. The 
fourth type of correlation matrix will have values as mentioned above. The fifth type 

Corr(2) =
(
�|i−i�|

)
,

Corr(3) =

⎛
⎜⎜⎜⎜⎝

1 � 0 … 0 0 0

� 1 � … 0 0 0

⋮ ⋮ ⋮

0 0 0 … � 1 �

0 0 0 … 0 � 1

⎞
⎟⎟⎟⎟⎠
.

Corr(4∕5∕6)AB =

(
1 �AB

�AB 1

)
,

Corr(4∕5∕6)BA =

(
1 �BA

�BA 1

)
.
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correlation matrices for both treatment sequences ABB and BAA will be the same 
if in treatment sequences, A and B are interchangeable and �AB = �BA along with 
�AA = �BB . The sixth type correlation matrices for both treatment sequences ABB 
and BAA will be different as �AB and �BA are different. We get

and

and

Same as the above two cases, for p = 4 case, we consider an example with treat-
ment sequences AABB, BBAA. The fourth type of correlation matrix will be as given 
below. The fifth type of correlation matrices for both treatment sequences AABB 
and BBAA will be same because in treatment sequences A, B are interchangeable 
and �AA = �BB and �AB = �BA . Sixth type of correlation matrices for both treatment 
sequences ABB and BAA will be different as �AB and �BA are different. We get

and

Corr(4)ABB =

⎛
⎜⎜⎝

1 �AB 0

�AB 1 �BB
0 �BB 1

⎞
⎟⎟⎠
,

Corr(4)BAA =

⎛
⎜⎜⎝

1 �BA 0

�BA 1 �AA
0 �AA 1

⎞
⎟⎟⎠
,

Corr(5)ABB = Corr(5)BAA =

⎛
⎜⎜⎝

1 �AB �2
AB

�AB 1 �BB
�2
AB

�BB 1

⎞
⎟⎟⎠
,

Corr(6)ABB =

⎛
⎜⎜⎝

1 �AB �2
AB

�AB 1 �BB
�2
AB

�BB 1

⎞
⎟⎟⎠
,

Corr(6)BAA =

⎛⎜⎜⎝

1 �BA �2
BA

�BA 1 �AA
�2
BA

�AA 1

⎞⎟⎟⎠
.

Corr(4)AABB =

⎛
⎜⎜⎜⎝

1 �AA 0 0

�AA 1 �AB 0

0 �AB 1 �BB
0 0 �BB 1

⎞
⎟⎟⎟⎠
,

Corr(4)BBAA =

⎛
⎜⎜⎜⎝

1 �BB 0 0

�BB 1 �BA 0

0 �BA 1 �AA
0 0 �AA 1

⎞⎟⎟⎟⎠
,
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and

For p = 4 case, we discuss another interesting example with four treatments A, B, 
C and D. The set of treatment sequences for this example is � = {ABCD , BDAC, 
CADB, DCBA}. This experiment will be discussed in detail later in Sect.  4. Note 
that the treatment sequences are given by a Latin square design and the treatments 
are interchangeable.

For this example, above six different types of correlation matrices are considered. 
The first three correlation matrices will be the same as above with � = 0.3 , � = 0.2 
and � = 0.1 , respectively. The fourth type correlation structure will be defined in 
similar manner as discussed above. The fifth type correlation matrix is defined 
using AR(1) correlation structure with �AB = �AC = �AD = �BA = �CA = �DA = 0.4 , 
�BC = �BD = �CB = �DB = 0.3 and �CD = �DC = 0.2 . For fourth type and sixth 
type of correlation matrix, �AB = �AC = �AD is taken to be 0.4. In a similar man-
ner, �BA = �BC = �BD is taken to be 0.3 and �CA = �CB = �CD is taken to be 0.2 and 
�DA = �DB = �DC is taken to be 0.1. As the entries of the correlation matrix depend 
on which treatment the subject receives in a particular period, these correlation 
matrices are different for different treatment sequences and are listed as follows:

Corr(5)AABB = Corr(5)BBAA =

⎛
⎜⎜⎜⎝

1 �BB �2
BA

�3
BA

�BB 1 �BA �2
BB

�2
BA

�BA 1 �BB
�3
BA

�2
BA

�BB 1

⎞
⎟⎟⎟⎠
,

Corr(6)AABB =

⎛
⎜⎜⎜⎝

1 �AA �2
AB

�3
AB

�AA 1 �AB �2
AB

�2
AB

�AB 1 �BB
�3
AB

�2
AB

�BB 1

⎞
⎟⎟⎟⎠
,

Corr(6)BBAA =

⎛
⎜⎜⎜⎝

1 �BB �2
BA

�3
BA

�BB 1 �BA �2
BA

�2
BA

�BA 1 �AA
�3
BA

�2
BA

�AA 1

⎞
⎟⎟⎟⎠
.

A B C D

B D A C

C A D B

D C B A

.
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and

In the above, we only specified the forms of correlation structures. Note that for this 
particular example, the form of Corr(5) is the same as that of Corr(6) since the treat-
ment sequences are obtained using a Latin square design. In Sect. 4, we will con-
sider the above six types of correlation structures and calculate the corresponding 
optimal proportions. We will also perform a simulation analysis using this example. 
For simulation analysis, AR(1) correlation structure will be considered with differ-
ent � values. We have performed robustness in “Appendix” and provided explicit 
expressions on how to obtain objective function in Supplementary Section S1.2.

Corr(4)ABCD =

⎛
⎜⎜⎜⎝

1 �AB 0 0

�AB 1 �BC 0

0 �BC 1 �CD
0 0 �CD 1

⎞
⎟⎟⎟⎠
,

CorrBDAC =

⎛
⎜⎜⎜⎝

1 �BD 0 0

�BD 1 �DA 0

0 �DA 1 �AC
0 0 �AC 1

⎞
⎟⎟⎟⎠
,

Corr(4)CADB =

⎛
⎜⎜⎜⎝

1 �CA 0 0

�CA 1 �AD 0

0 �AD 1 �DB
0 0 �DB 1

⎞
⎟⎟⎟⎠
,

Corr(4)DCBA =

⎛
⎜⎜⎜⎝

1 �DC 0 0

�DC 1 �CB 0

0 �CB 1 �BA
0 0 �BA 1

⎞⎟⎟⎟⎠
,

Corr(5∕6)ABCD =

⎛
⎜⎜⎜⎝

1 �AB �2
AC

�3
AD

�AB 1 �BC �2
BD

�2
AC

�BC 1 �CD
�3
AD

�2
BD

�CD 1

⎞
⎟⎟⎟⎠
,

Corr(5∕6)BDAC =

⎛⎜⎜⎜⎝

1 �BD �2
BA

�3
BC

�BD 1 �DA �2
DC

�2
BA

�DA 1 �AC
�3
BC

�2
DC

�AC 1

⎞⎟⎟⎟⎠
,

Corr(5∕6)CADB =

⎛⎜⎜⎜⎝

1 �CA �2
CD

�3
CB

�CA 1 �AD �2
AB

�2
CD

�AD 1 �DB
�3
CB

�2
AB

�DB 1

⎞⎟⎟⎟⎠
,

Corr(5∕6)DCBA =

⎛
⎜⎜⎜⎝

1 �DC �2
DB

�3
DA

�DC 1 �CB �2
CA

�2
DB

�CB 1 �BA
�3
DA

�2
CA

�BA 1

⎞
⎟⎟⎟⎠
.
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2.4  Algorithm for Locally Optimal Crossover Trials

In this section, we propose an algorithm to find locally optimal designs for cross-
over trials. Assumed values of the model parameters are obtained from some 
prior knowledge or pilot studies. To identify the locally optimal crossover design, 
the major challenge is in minimizing the objective function. The complexity of 
the objective function increases with the increase in t, p and k. We use the solnp 
function in R for numerical optimization. 

Algorithm : Pseudo-code for finding locally optimal crossover designs.

Given assumed values of the parameters, construct the design matrix, correlation
matrix, and the parameter vector.

for

Each subject in each period
Calculate the mean of the response

end
for

Each treatment sequence
Calculate the covariance matrix using the correlation matrix
Diagonal entries of covariance matrix are variances of observations
Variance depends on the distribution of the response
Calculate the inverse of covariance matrix

end
for

Each treatment sequence
Calculate the corresponding derivative matrix
Using calculated matrices and variables corresponding to each treatment sequence,
compute the variance matrix of parameter estimates
Calculate variance matrix of treatment effects. Its determinant is the required
objective function

end
function

Define the objective function along with the constraints, i.e., sum of proportions
is equal to one

end
solnpUsing this constraint optimization function calculate optimal proportions

3  Optimal Designs for Two‑Treatment Crossover Trials

The crossover designs for which we will calculate the optimal proportions are 
similar to those discussed by Laska and Meisner [15] and Carriere and Huang [3]. 
Optimal proportions are listed below for p = 2, 3, 4 for binary response and for 
p = 2 for poisson response under two sets of parameter estimates. In this section, 
we consider only two treatments A and B. Considering our baseline constraint to 
be �A = �A = 0 and �1 = 0 , we only have p + 2 parameters in vector � . So, when 
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there are only two treatments involved in the crossover trial, the parameter vector 
� is [�, �2,… , �p, �2, �2].

Optimal proportions for different crossover designs are calculated with each of 
the six different correlation structures mention above. For each correlation matrix 
that we consider, an optimal design �∗ is the one minimizing the determinant of 
Var(𝜏) in Eq. (5) with respect to p� such that 

∑
w∈� pw = 1.

We use different colors to represent different correlation structures. The color 
scheme that we use is given in Table 1.

3.1  Optimal Designs for Binary Response

In case of binary response, we calculate locally optimal designs under model (2) for 
different crossover designs.

We first consider the local optimality approach, for p = 2 case. 
For illustration purpose, we assume that the parameter values are 
�1 = [�, �2, �B, �B] = [0.5,−1.0, 4.0,−2.0] which gives us non-uniform optimal 

Table 1  Color scheme for different correlation structures

Correlation Structure Color

Corr(1) (1− ρ)Ip + ρJp with ρ = 0.1

Corr(2) ρ|i−i |, i = i with ρ = 0.1

Corr(3) with ρ = 0.1

Corr(4) with ρAB = 0.2, ρBA = 0.5

Corr(5) with ρAB = ρBA = 0.4

Corr(6) with ρAB = 0.4, ρBA = 0.3

Table 2  Optimal proportions for p = 2 case

Design points Corr Optimal proportions under �
1

Optimal proportions under �
2

{AB,BA} Corr(1) {0.1770, 0.8230} {0.5070, 0.4930}

Corr(2) {0.1770, 0.8230} {0.5070, 0.4930}

Corr(3) {0.1770, 0.8230} {0.5070, 0.4930}

Corr(4) {0.1770, 0.8230} {0.5070, 0.4930}

Corr(5) {0.1770, 0.8230} {0.5070, 0.4930}

Corr(6) {0.1770, 0.8230} {0.5070, 0.4930}

{AB,BA,AA,BB} Corr(1) {0.0908, 0.5207, 0.0315, 0.3570} {0.2633, 0.2425, 0.2722, 0.2220}

Corr(2) {0.0908, 0.5207, 0.0315, 0.3570} {0.2633, 0.2425, 0.2722, 0.2220}

Corr(3) {0.0908, 0.5207, 0.0315, 0.3570} {0.2633, 0.2425, 0.2722, 0.2220}

Corr(4) {0.0957, 0.4960, 0.0338, 0.3745} {0.2534, 0.2393, 0.2661, 0.2412}

Corr(5) {0.1002, 0.4941, 0.0379, 0.3678} {0.2496, 0.2359, 0.2801, 0.2344}

Corr(6) {0.0972, 0.5050, 0.0367, 0.3611} {0.2502, 0.2400, 0.2808, 0.2290}
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allocations and �2 = [�, �2, �B, �B] = [0.5, 0.06,−0.35, 0.73] which gives us approxi-
mately uniform allocations. Note that we need to know the parameter values before 
calculating the optimal proportions. If the initial guess for the model parameters 
changes, the obtained optimal proportions will change as well. For different cor-
relation structures, the optimal designs (proportions) are stated in Table 2. The same 
information is presented in Figs. 1 and 2 as well.

It can be seen from the graphs in Figs. 1 and 2 that in case of p = 2 the optimal 
proportions do not vary when correlation structure changes under both �2 and �1 . 
Uniform designs (same proportions for each sequence) are often used in practice. It 
is clear that those uniform designs are sub-optimal under �1.

For p = 3 case, as before suppose our guess for the parameter values are 
�1 = [�, �2, �3, �B, �B] = [0.5,−1.0, 2.0, 4.0,−2.0] which gives us non-uniform opti-
mal allocations and �2 = [�, �2, �3, �B, �B] = [0.5, 0.06,−0.53,−0.35, 0.73] which 
gives us approximately uniform optimal allocations. The designs are presented in 
Table 3 and Fig. 3 for the first example, and in Table 4 and Fig. 4 for the second 
example. It can be seen that in case of p = 3 also the optimal proportions do not 
vary much when correlation structure changes under both �1 and �2 . Similar to p = 2 
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Fig. 3  Optimal proportions for p = 3 case with two treatment sequences under �
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2
 , respectively

Table 3  Optimal proportions for p = 3 case for designs with two treatment sequences

Design points Corr Optimal proportions under �
1

Optimal proportions under �
2

{ABB,BAA} Corr(1) {0.5756, 0.4244} {0.4880, 0.5120}

Corr(2) {0.5761, 0.4239} {0.4887, 0.5113}

Corr(3) {0.5762, 0.4238} {0.4888, 0.5112}

Corr(4) {0.6120, 0.3880} {0.5416, 0.4584}

Corr(5) {0.5921, 0.4079} {0.4917, 0.5083}

Corr(6) {0.5721, 0.4279} {0.4700, 0.5300}

{ABA,BAB} Corr(1) {0.1768, 0.8232} {0.5070, 0.4930}

Corr(2) {0.1766, 0.8234} {0.5072, 0.4928}

Corr(3) {0.1766, 0.8234} {0.5072, 0.4928}

Corr(4) {0.1756, 0.8244} {0.5217, 0.4783}

Corr(5) {0.1714, 0.8286} {0.5088, 0.4912}

Corr(6) {0.1715, 0.8285} {0.5043, 0.4957}

{AAB,BBA} Corr(1) {0.2713, 0.7287} {0.4927, 0.5073}

Corr(2) {0.2738, 0.7262} {0.4926, 0.5074}

Corr(3) {0.2740, 0.7260} {0.4926, 0.5074}

Corr(4) {0.2685, 0.7315} {0.5181, 0.4819}

Corr(5) {0.2771, 0.7229} {0.4911, 0.5089}

Corr(6) {0.2740, 0.7260} {0.4702, 0.5298}
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Fig. 4  Optimal proportions for p = 3 case with four treatment sequences under �
1
 and �

2
 , respectively

Table 4  Optimal proportions for p = 3 case for designs with four treatment sequences

Design points Corr Optimal proportions under �
1

Optimal proportions under �
2

{ABB,BAA,AAA,BBB} Corr(1) {0.1222, 0.5344, 0.0000, 0.3434} {0.4880, 0.5120, 0.0000, 0.0000}

Corr(2) {0.1199, 0.5316, 0.0022, 0.3463} {0.4887, 0.5113, 0.0000, 0.0000}

Corr(3) {0.1197, 0.5312, 0.0025, 0.3466} {0.4888, 0.5112, 0.0000, 0.0000}

Corr(4) {0.1115, 0.4975, 0.0100, 0.3720} {0.5398, 0.4556, 0.0046, 0.0000}

Corr(5) {0.1313, 0.5113, 0.0000, 0.3574} {0.4917, 0.5083, 0.0000, 0.0000}

Corr(6) {0.1233, 0.5236, 0.0018, 0.3513} {0.4700, 0.5300, 0.0000, 0.0000}

{ABB,AAB,BAA,BBA} Corr(1) {0.0413, 0.1130, 0.4384, 0.4073} {0.3544, 0.1646, 0.3908, 0.0902}

Corr(2) {0.0316, 0.1196, 0.4373, 0.4115} {0.4266, 0.0957, 0.4777, 0.0000}

Corr(3) {0.0304, 0.1204, 0.4371, 0.4121} {0.4271, 0.0953, 0.4776, 0.0000}

Corr(4) {0.0005, 0.1440, 0.4471, 0.4084} {0.1512, 0.3503, 0.1854, 0.3131}

Corr(5) {0.0811, 0.1033, 0.4297, 0.3858} {0.4420, 0.0747, 0.4833, 0.0000}

Corr(6) {0.0749, 0.1070, 0.4270, 0.3911} {0.4094, 0.0955, 0.4951, 0.0000}

{ABB,ABA,BAA,BAB} Corr(1) {0.5755, 0.0000, 0.4244, 0.0000} {0.4606, 0.0194, 0.4710, 0.0490}

Corr(2) {0.5761, 0.0000, 0.4239, 0.0000} {0.4430, 0.0391, 0.4526, 0.0653}

Corr(3) {0.5762, 0.0000, 0.4238, 0.0000} {0.4408, 0.0415, 0.4504, 0.0673}

Corr(4) {0.6120, 0.0000, 0.3880, 0.0000} {0.4634, 0.1036, 0.4152, 0.0178}

Corr(5) {0.5921, 0.0000, 0.4079, 0.0000} {0.4582, 0.0280, 0.4642, 0.0496}

Corr(6) {0.5721, 0.0000, 0.4279, 0.0000} {0.4420, 0.0142, 0.4787, 0.0651}
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case, it is clear from Tables 3 and 4 that uniform designs are sub-optimal for p = 3 
case with two and four treatment sequences under �1.

An interesting thing to observe from Fig. 4 is that, unlike the previous examples, 
here under �1 the optimal proportions vary a little for different correlation struc-
tures. Also, as before, not only the uniform design is sub-optimal here, the first and 
third designs have optimal allocations very low for some sequences. Also it can be 
observed from Fig. 4 that under �2 for different correlation structures some of the 
optimal proportions are zero for all the three designs. Hence, under �2 , these designs 
fail to have uniform allocations.

For p = 4 case, in a similar way, we calculate locally optimal designs with nomi-
nal parameter values as �1 = [�, �2, �3, �4, �B, �B] = [0.5,−1.0, 2.0,−1.5, 4.0,−2.0] 
which gives us non-uniform allocations and 
�2 = [�, �2, �3, �4, �B, �B] = [0.5, 0.06,−0.53,−0.6,−0.35, 0.73] which gives us 
approximately uniform allocations. From Table 5 and Fig. 5, it is clear that similar 
to p = 2 and p = 3 cases the uniform designs are sub-optimal for p = 4 case under 
�1.

In most cases, we may not have a clear idea about true correlation structure for 
responses, and hence, we choose an working correlation structure. The results in this 
section show that no matter what correlation structure we choose or what correlation 
coefficient (we obtained optimal proportions for different values of correlation coeffi-
cient but details are omitted here) we choose, the proposed design gives almost simi-
lar optimal proportions in each case, which suggests that optimal designs are robust.

Table 5  Optimal proportions for p = 4 case

Design points Corr Optimal proportions under �
1

Optimal proportions under �
2

{AABB,BBAA} Corr(1) {0.2723, 0.7277} {0.4953, 0.5047}

Corr(2) {0.2743, 0.7257} {0.4949, 0.5051}

Corr(3) {0.2744, 0.7256} {0.4949, 0.5051}

Corr(4) {0.2690, 0.7310} {0.5244, 0.4756}

Corr(5) {0.2772, 0.7228} {0.4937, 0.5063}

Corr(6) {0.2745, 0.7255} {0.4700, 0.5300}

{ABBA,BAAB} Corr(1) {0.6075, 0.3925} {0.4992, 0.5008}

Corr(2) {0.6045, 0.3955} {0.4998, 0.5002}

Corr(3) {0.6042, 0.3958} {0.4998, 0.5002}

Corr(4) {0.5815, 0.4185} {0.4927, 0.5073}

Corr(5) {0.6444, 0.3556} {0.5021, 0.4979}

Corr(6) {0.6419, 0.3581} {0.5007, 0.4993}

{ABAB,BABA} Corr(1) {0.1763, 0.8237} {0.5071, 0.4929}

Corr(2) {0.1767, 0.8233} {0.5071, 0.4929}

Corr(3) {0.1767, 0.8233} {0.5071, 0.4929}

Corr(4) {0.1722, 0.8278} {0.5086, 0.4914}

Corr(6) {0.1714, 0.8286} {0.5031, 0.4969}
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3.2  Optimal Designs for Poisson Response

In the case of Poisson response, we calculate locally optimal design for the follow-
ing example under the model,

where notations have the same meaning as in Eq. (2).
We consider an example described in Layard and Arvesen  [16]. In a crossover 

clinical trial to test a standard anti-nausea treatment (drug A) against a proposed treat-
ment (drug B), twenty subjects were tested, ten for each order of administration. The 
response variable is the number of episodes of nausea suffered by a patient during the 
first two hours after cancer chemotherapy, and for a given patient is approximately 
Poisson distributed.

We calculate optimal designs using two values of parameter estimates. 
�1 = [0.2, 0.34,−1.60,−1.65] represents those parameter estimates that give us non-
uniform designs, and �2 = [−0.223,−0.875, 0.405,−0.105] corresponds to parameter 
estimates guessed from the data presented in Table 6.

It can be noted from Table 6 that when responses are Poisson in nature the optimal 
proportions do not vary much when correlation structure changes under both �1 and �2 . 
This suggests us that even when responses are Poisson in nature the proposed design 
gives almost similar optimal proportions for different choices of correlation matrices. 
Hence, obtained optimal designs are robust.

(6)log(�ij) = �ij = � + �i + �d(i,j) + �d(i−1,j),
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Fig. 5  Optimal proportions for p = 4 case under �
1
 and �
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 , respectively



 Journal of Statistical Theory and Practice (2020) 14:23

1 3

23 Page 18 of 27

4  Optimal Design for Multiple‑Treatment Crossover Trials

So far, we have considered crossover designs with two treatments only. In this sec-
tion, we extend our study for multiple treatments. This is motivated by a four-period 
four-treatment trial which was first given in Kenward and Jones  [8] and later dis-
cussed as Example 6.1 in their book [9], Design and Analysis for Crossover Trials.

4.1  Latin Square Design and Optimal Proportions

In this example, binary responses for four-period crossover trial were obtained. 
There were four treatments, and treatment sequences were allocated at random to 
eighty different subjects at four different periods. At the end of each period, efficacy 
measurement of each subject was recorded as success or failure, which resulted in 
joint outcome at the end of the trial. The dataset contains four different treatment 
sequences which were decided before the trial � = {ABCD,BDAC,CADB,DCBA} 
along with the joint outcome of four different periods from the same subject accord-
ing to a particular treatment sequence. The numbers below each sequence denote 
how many subjects received that particular treatment sequence, and the particular 
response was recorded.

We use the correlation matrices defined in Sect.  2.3 and calculate the optimal 
proportions. As mentioned earlier for estimating parameters, we have considered the 
baseline constraints as �1 = �A = �A = 0 , so that the design matrix has full column 
rank and all other parameters are estimable.

Table 6  Optimal proportions for anti-nausea experiment

Design points Correlation structure Optimal design: �
1

{AB,BA} Corr(1) (1 − �)I
p
+ �J

p
 with � = 0.1 {0.3632, 0.6368}

Corr(2) �|i−i�|, i ≠ i
� with � = 0.1 {0.3632, 0.6368}

Corr(3) with � = 0.1 {0.3632, 0.6368}

Corr(4) with �
AB

= 0.2, �
BA

= 0.5 {0.3632, 0.6368}

Corr(5) with �
AB

= �
BA

= 0.4 {0.3632, 0.6368}

Corr(6) with �
AB

= 0.4, �
BA

= 0.3 {0.3632, 0.6368}

Design points Correlation structure Optimal design: �
2

{AB,BA} Corr(1) (1 − �)I
p
+ �J

p
 with � = 0.1 {0.5505, 0.4495}

Corr(2) �|i−i�|, i ≠ i
� with � = 0.1 {0.5505, 0.4495}

Corr(3) with � = 0.1 {0.5505, 0.4495}

Corr(4) with �
AB

= 0.2, �
BA

= 0.5 {0.5505, 0.4495}

Corr(5) with �
AB

= �
BA

= 0.4 {0.5505, 0.4495}

Corr(6) with �
AB

= 0.4, �
BA

= 0.3 {0.5505, 0.4495}
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Using these baseline constraints and glm function in R, we fit the model, which 
gives us parameter estimates for the given data. Then, we use these parameter estimates 
to make a guess for values of unknown parameters. Our nominal guess for the param-
eter values is �2 = [0.5, 0.06,−0.53,−0.6,−0.35, 0.025,−0.23, 0.73, 0.23, 0.30] . 
Now, we follow the same procedure as mentioned in above pseudocode and calcu-
late the optimal designs for different correlation structures. We also calculate optimal 
proportions by considering parameter estimates that gives non-uniform designs, i.e., 
�1 = [−2, 0.25, 0, 0.75, 1, 5,−1.5,−3.5, 2.75, 0.75] . As seen from Table  7, for the 
Latin square design the optimal proportions that we obtain using �1 are non-uniform 
and that using �2 are nearly uniform.

We also calculate optimal design considering all 24 sequences. We consider Corr(2) 
and calculate optimal proportions for different values of � . Please refer the Supplemen-
tary Materials for details. From the tables in the Supplementary Materials, it can be 
noted that corresponding to �1 we have non-uniform allocations for the Latin Square 
design, and almost uniform allocation corresponding to �2 . In case of non-uniform allo-
cations, although nothing is uniform, the optimal design corresponding to �1 has more 
zeros. Also note that the allocations do not vary a lot as � changes, particularly for the 
sequences where we have zero allocations.

4.2  Sensitivity Study and Relative D‑efficiency

In this section, we study the performance of the proposed locally optimal designs via 
sensitivity study in terms of relative D-efficiencies. Let �t be true parameter values and 
�c be assumed parameter values. Then, we have corresponding objective function for 
these two choices of parameter values i.e det(var(𝜏t)) and det(var(𝜏c)) , respectively. 
Hence, the relative loss of efficiency of choosing �c instead of �t can be formulated as

S(𝜏t, 𝜏c) =
det(var(𝜏t))

(
−

1

k

)
− det(var(𝜏c))

(
−

1

k

)

det(var(𝜏t))

(
−

1

k

) ,

Table 7  Optimal proportions for different correlation matrices

Correlation 
structure

�
1

�
2

ABCD BDAC CADB DCBA ABCD BDAC CADB DCBA

Corr(1) 0.1725 0.2483 0.2223 0.3569 0.2463 0.2493 0.2504 0.2540
Corr(2) 0.1747 0.2490 0.2184 0.3579 0.2461 0.2493 0.2501 0.2546
Corr(3) 0.1714 0.2480 0.2236 0.3570 0.2461 0.2492 0.2507 0.2540
Corr(4) 0.1788 0.2556 0.2163 0.3493 0.2478 0.2634 0.2334 0.2554
Corr(5) 0.1784 0.2465 0.2101 0.3650 0.2480 0.2517 0.2442 0.2561
Corr(6) 0.1752 0.2531 0.2170 0.3547 0.2470 0.2656 0.2320 0.2554
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where k is the dimension of � . Then, the relative D-efficiency of the original design 
� compared to the optimal design �∗ can be computed using the formula:

For the Latin square design example, we consider two cases of assumed values of �c 
for model parameters as mentioned in Table 8. For each case, the values of param-
eters are simulated from a uniform distribution. The range of uniform distribution 
is obtained by ±1 and ±2 from true parameter values �t for each case, respectively. 
Here, we consider �t = [0.5, 0.06,−0.53,−0.6,−0.35, 0.025,−0.23, 0.73, 0.23, 0.30] 
(Fig. 6).

4.3  Simulation Studies with Two‑Stage Designs

As stated earlier, the main aim of this paper is to determine optimal and efficient 
crossover designs for experiments where the generalized linear model adequately 
describes the process under study. Crossover trials are repeated measurement 
designs, where these repeated measurements on the same subject have great advan-
tages, but there are also many potential disadvantages associated with it. Neverthe-
less, the impact of these disadvantages can be minimized or reduced if we choose a 
proper design and analysis method.

One of the major disadvantages of repeated measurement designs is that the 
effect of the treatment depends on the subject itself. Stronger subject effects cause 
more variation on estimated treatment effects.

The simulation studies are motivated by the real-life example of Latin square 
design mentioned above. Since all the correlation structures mentioned in Sect. 2.3 
perform similarly in Table 7, we choose Corr(2) for illustration purpose. Note that 
in Corr(2) , we have AR(1) structure, where the correlation between two responses 
decreases as the number of periods between responses increases, which makes 

E𝜉 =

[
det(var(𝜏c))𝜉∗

det(var(𝜏t))𝜉

]− 1

k

.

Table 8  Assumed values for 
model parameters

Parameters �
c

Case 1 Case 2

� U(−0.5, 1.5) U(−1.5, 2.5)
�2 U(−0.04, 0.16) U(−0.14, 0.26)
�3 U(−1.53, 0.47) U(−2.53, 1.47)
�4 U(−1.6, 0.4) U(−2.6, 1.4)
�2 U(−1.35, 0.65) U(−2.35, 1.65)
�3 U(−0.075, 0.125) U(−0.175, 0.225)
�4 U(−1.23, 0.77) U(−2.23, 1.77)
�2 U(−0.27, 1.73) U(−1.27, 2.73)
�3 U(−0.77, 1.23) U(−1.77, 2.23)
�4 U(−0.70, 1.30) U(−1.70, 2.30)
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good practical sense. For these simulation studies, we are considering 400 obser-
vations and two different types of initial guess for � values. In Case 1, we will 
use �2 = [0.5, 0.06,−0.53,−0.6,−0.35, 0.025,−0.23, 0.73, 0.23, 0.30] which is 
obtained from real data. This choice of �2 gives optimal allocations as (0.2460, 0.
2495, 0.2500, 0.2545) , which is approximately uniform. For Case 2, we will use 
�1 = [−2, 0.25, 0, 0.75, 1, 5,−1.5,−3.5, 2.75, 0.75] and this guess of �1 is such that 
optimal allocations are non-uniform. For example, for � = 0.1 the optimal alloca-
tions are (0.172, 0.248, 0.222, 0.358) . Optimal allocations are similar for other val-
ues of �.

The simulation process used here has two stages. First for a given parameter � , we 
define a design matrix corresponding to each treatment sequence along with correla-
tion matrix.

• First stage: 

1. In this stage, we use rbin function in R to simulate 30% of observations 
uniformly over all four treatment sequence. These observations serve as our 
pilot study. Note that we use uniform design for pilot study.

2. From these observations obtained in above step, we estimate the correlation 
coefficient and regression parameters, which are used as the assumed param-
eter values for the second stage.

• Second stage: 

1. Based on the assumed parameter values obtained in the first stage and the 
algorithm described in Sect. 2.4, we calculate the optimal allocation for the 
remaining 70% of the subjects.

2. Using these optimal allocations, we simulate observations for remaining 70% 
of subjects according to the assumed parameter values.

3. In case of uniform design, we simulate total number of observations uni-
formly over all treatment sequence, i.e., one-fourth of the total observations 
correspond to each of the four treatment sequence.

During this process, we calculate the parameter estimates based on the simulated 
observations and calculate the corresponding mean square error (MSE) from the 
true parameter values for each simulation. Above simulation procedure is repeated 
100 times. Finally, we take the average of those individual MSEs to calculate the 
overall MSE reported in Table 9. We repeat the above simulation process for dif-
ferent correlation coefficients and for two different sets of initial �’s, �1 and �2 . It is 
clear from Table 9 and Fig. 7 that if the optimal allocations are non-uniform, then 
the proposed optimal design has a significant advantage over the traditional uniform 
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designs, for all values of the correlation coefficient. It should be noted that those 
high values of MSEs for uniform designs are mostly due to a handful of “bad” data-
sets. In our experience, the proposed optimal designs never give rise to such data.

Fig. 7  Simulation results: ratios 
of MSEs of the uniform versus 
optimal designs, for different 
values of � , for each of the two 
cases

Case 1 Case 2

Ratio of MSE’s

Different Correlations

R
at

io
 o

f M
SE

s

0
2

4
6

8
10

12

Table 9  Simulation results

Corr Mean Squared Errors
Corr(2) Case 1 Case 2

Uniform Optimal Uniform Optimal
ρ Design Design Design Design

0.1 0.109 0.108 2.834 0.393

0.2 0.103 0.100 2.718 0.659

0.3 0.101 0.140 4.925 0.490

0.4 0.094 0.127 4.896 0.484

0.5 0.100 0.123 2.596 0.428

0.6 0.088 0.109 2.632 0.469

0.7 0.086 0.095 5.110 0.458

0.8 0.066 0.077 2.705 0.586

0.9 0.050 0.051 2.761 0.559



 Journal of Statistical Theory and Practice (2020) 14:23

1 3

23 Page 24 of 27

5  Discussion

In practice, it is customary to use uniform designs where the same number of sub-
jects is assigned to each treatment sequence. In the case of linear models, such uni-
form designs are optimal. However, optimal proportions obtained under generalized 
linear models are not uniform. We identified locally optimal designs under different 
correlation structures. Tables 2, 3, 4 and 5 and graphs in Figs. 1, 2, 3, 4 and 5 sug-
gest that the optimal proportions do not vary much from one correlation structure 
to another. These results suggest that the identified designs are robust. The relative 
loss of efficiency increases as we move away from true parameter values. However, 
Fig. 6 suggest that this loss of efficiency does not go beyond 2% even for Case 2. 
Simulation studies and results in Table 9 and Fig. 7 suggest that these designs are 
more efficient than uniform designs as well.

The general equivalence theorem is frequently used to verify whether a design 
obtained numerically is indeed optimal or not. It considers the optimality criterion in 
terms of the Fisher information matrix. In the case of generalized estimating equa-
tions (GEE), instead of using the information matrix, we have an objective function 
in terms of the variance of the parameters of interest, as shown in Eq. (5). Naturally, 
the equivalence theorem cannot be directly used in this case. However, it is possible 
to use the expression in Eq. (5) to derive a necessary and sufficient condition that 
can be used to check whether the derived design is indeed optimal or not. Even a 
speedy algorithm for identifying optimal designs might be developed based on these 
results. This is a topic of the future research.

Acknowledgements The authors would like to thank Dr. Pritam Ranjan for many helpful suggestions.

Appendix

Effect of misspecification of working correlation structures

Table 10 lists the locally optimal design when true correlation structure varies from 
working correlation structure. In the table, first column represents true correlation 
structure and the corresponding optimal designs are calculated under �1 and �2 for 
each misspecified working correlation structure in second column. Also, relative 
D-efficiency is calculated under �1 and �2 for each design. It is clear from the relative 
D-efficiency values in the table that the effect of variance misspecification on the 
locally optimal design is minimal (see Table 10).
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