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A B S T R A C T

Differential Evolution (DE) has become one of the leading metaheuristics in the class of Evolutionary Algorithms,
which consists of methods that operate off of survival-of-the-fittest principles. This general purpose optimization
algorithm is viewed as an improvement over Genetic Algorithms, which are widely used to find solutions to
chemometric problems. Using straightforward vector operations and random draws, DE can provide fast, efficient
optimization of any real, vector-valued function. This article reviews the basic algorithm and a few of its mod-
ifications with various enhancements. We provide guidance for practitioners, discuss implementation issues and
give illustrative applications of DE with the corresponding R codes to find different types of optimal designs for
various statistical models in chemometrics that involve the Arrhenius equation, reaction rates, concentration
measures and chemical mixtures.
1. Introduction

Nature-inspired, metaheuristic approaches to solve all kinds of opti-
mization problems have skyrocketed in the last few decades, especially in
engineering and computer science [1,2]. Some key reasons for their
popularity are their speed, simplicity, flexibility, availability of computer
codes and ease of implementation. Additional compelling reasons for
their widespread use are: (a) they do not require any assumptions, so they
can be applied to solve very different types of optimization problems,
including those in which the objective function is non-differentiable,
multi-modal, multi-objective or high dimensional, and (b) they tend to
provide exact or approximate solutions of high quality to complicated
optimization problems even though there is often no rigorous proof of
convergence.

As the name suggests, nature-inspired metaheuristic algorithms are
motivated by the behavior of animals or other natural processes. Some
examples of popular nature-inspired metaheuristic algorithms are Ge-
netic Algorithms [3], Cuckoo Search [4], Ant Colony Optimization [5],
Grey Wolf Optimization [6], Jumping Frogs Optimization [7], Bat Al-
gorithm [8], and Particle Swarm Optimization (PSO) [9], among many
others. While all being in the same general family of evolutionary algo-
rithms, each of these methods operates with a different number of tuning
parameters and behavioral characteristics. Naturally, some tend to
perform better than others in selected situations [1,2]. provide an
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overview of the development of nature-inspired metaheuristic algo-
rithms and show systematically how they now dominate the optimization
literature for solving real world problems.

In the field of metaheuristic algorithms, there are two primary classes
of algorithms: swarm intelligence and genetic representations. The
former includes methods in which a group of agents work together to
explore the search space and share information as necessary. While many
of the algorithms listed above fall into this category, we will instead focus
on the latter in this work. Methods in the sub-class of genetic represen-
tations involve a set of agents, each made up of chromosomes and genes,
in an evolutionary, survival-of-the-fittest battle to be part of the best
generation. Fraser appeared to be the first to study candidate solutions in
the framework of genetic representations [10]. From this framework, two
main algorithms have been developed. Holland established the original
Genetic Algorithm (GA) in 1975, and more recently as computational
power has grown, Price and Storn created Differential Evolution (DE) in
1997 [11,12]. Since then, many extensions have been proposed to
improve their performance in different situations [13–15].

The primary difference between these two algorithms is that GA is
used to search exclusively over discrete spaces while DE can also be used
over any continuous space. Current optimization literature suggests that
in many situations, DE produces better, more stable solutions than GA
[16,17]. DE employs only vector operations and random number gen-
erators, allowing it to compete more effectively with the speed of the
anuary 2020
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Fig. 1. An illustration of mutation for a single agent in the Differential Evolu-
tion algorithm where a donor vector DG1

i is created by blending 3 randomly

drawn agents. In this case XG1
2 , XG1

P�1 and XG1
P were chosen.
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simpler, yet limited, GA. Additionally, DE has been shown to work well
for complex problems, such as solving multiple-objective problems,
finding clustering weights, and training neural networks [15]. However,
despite these advantages, GA is still more well known and popular than
DE in many disciplines. For example, in chemometrics, there are well
over 100 recently published articles that use GA as of June 2019, but only
a handful that apply DE, see Refs. [18–23]. These few articles do not
provide details and implementation issues for DE or its many variants.
Interestingly, DE is also rarely used for optimization in the statistical
literature. To date, there are only a handful of papers in statistical jour-
nals, that use DE as a general tool for solving various types of optimi-
zation problems [24–26].

The aim of this paper is to describe DE in more detail and show the
usefulness and versatility of DE as yet another powerful tool that requires
few, if any, assumptions to solve complex optimization problems. In what
follows, we review the fundamental concepts of DE and demonstrate how
it solves optimization problems in chemometrics through the design of
efficient chemical experiments. We do not compare the performance of
DE with its competitors, such as PSO or Cuckoo search, since several
papers, including [27], have reported that DE outperforms several other
nature-inspired metaheuristics.

In the next section, we describe the key components of DE, the various
steps of the algorithm and both the empirical and theoretically-motivated
rules for tuning its parameters. Section 3 briefly reviews optimal design
methodology and Section 4 demonstrates how DE can be applied to find
optimal designs for various linear and non-linear models. Section 5
concludes with a discussion on recent enhancements of the basic DE.
Some of these improvements are targeted for solving specific types of
optimization problems and others are more on the algorithm itself, such
as more effective ways for finding suitable tuning parameters. Codes for
generating the optimal designs discussed in this paper can be found in the
supplementary materials.

2. DE algorithm and developments

Differential Evolution is a general purpose evolutionary algorithm
and was proposed by Rainer Storn and Kenneth Price in 1997 as a means
of quickly optimizing functions that do not necessarily have nice prop-
erties, like differentiability or continuity, which are required for many
standard optimization procedures [11,28]. The goal of DE is to find the
optimal solution efficiently and to do so in an easy-to-implement way.
Below we present the standard formulation of DE and then discuss
additional considerations for choosing the key features that determine its
computational cost and convergence.
2

2.1. Algorithm overview

Without loss of generality, suppose wewant to minimize a real-valued
function with V variables h : RV → R by finding x� 2 RV such that
hðx�Þ � hðxÞ for all x 2 RV . The search space of candidate solutions is
defined by the limits of each of the V variables and constitute the land-
scape of the fitness function. These limits may be specified naturally by
the application or selected by the experimenter.

Having defined the problem, the next phase is to initialize the DE
algorithm. The first step is to choose the number of candidate solutions
per generation, P, also known as the population size. Each solution is
represented by a vector of length V, so each generation of candidate
solutions has dimension V � P. In addition to the population size, there
are two parameters F and CR to be selected. We defer discussing the roles
and bounds of these parameters but note that there are several ap-
proaches for choosing their values. The final step in the initialization
process is to specify a stopping rule or condition. In our case we consider
a stopping condition defined by a maximum number of generations Gmax.
Once these preliminary steps are complete, the five basic steps for the DE
algorithm are as follows:

1 Genetic Representation: The initial populationmust be of size P > 4
to ensure that there is enough genetic diversity. Members in the
population are candidate solutions of the optimization problem and
are called agents. Each is represented by a vector of length V and
labeled as XG1

1 , XG1
2 ;…; XG1

P . These comprise the first generation of
solutions. The initial value for each entry in each agent is randomly
chosen over the interval specified for the particular variable.

2 Mutation: Much like GA, a mutation process helps to expand the
search space of DE. For each target vector XG1

i , this mutation produces

a “donor” vector DG1
i by adding the weighted difference of two agents

to a third, all randomly chosen and distinct from the target. For this
process the weighting factor F is chosen on the interval [0,2]. Thus,
with this constant, P vectors are created according to DG1

i ¼ XG1
r0 þ

FðXG1
r1 - XG1

r2 Þ, where r0 6¼ r1 6¼ r2 6¼ i. XG1
r0 is referred to as the base

vector used for generating donor vector DG1
i . Depending on the

bounds and choice of F this process may in some cases lead to values
that fall outside of the acceptable region for each dimension. There
are many strategies in the general optimization literature for dealing
with this problem, but we do not explicitly discuss them here.(See
Fig. 1)

3 Crossover: Crossover blends the current generation of agents with
the population of donor vectors in order to form candidates for the
next generation known as “trial” vectors. This process differs from the
crossover mechanisms typically used in GA in that a decision is made
for each element of the vector and not at a few defined points. In DE
this technique requires the crossover constant CR, chosen from [0,1].
For each i from 1 to P, one of the V elements of DG1

i is randomly

selected to directly enter the trial vector TG1
i . In this way one variable

is forced to change so that each TG1
i will certainly differ from its

original target vector. Next, with probability CR more elements are
taken from DG1

i and placed in the trial vector. Whichever variables do
not take their value from the donor vector inherit their original value
from XG1

i .(See Fig. 2) Assuming variable j is randomly chosen to take
its value from the trial this process is driven by the following
equation:

TG1
i ¼

8>><
>>:

DG1
i for i ¼ j;

DG1
i with probability CR; for i 6¼ j;

XG1
i with probability 1� CR; for i 6¼ j:

(1)
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4 Selection: Selection creates the next generation of agents by
comparing each target vector to its respective trial vector. Whichever
is measured to be the most fit using h becomes XG2

i . In the case of
minimization this process is given by

XG2
i ¼

(
TG1
i if h

�
TG1
i

�
< h

�
XG1

i

�
;

XG1
i otherwise:

(2)

5. Repeat: Repeat steps 2 through 4 over many generations until Gmax is
reached or another specified stopping condition is satisfied.

These 5 steps are summarized in Algorithm 1.

Algorithm 1. Pseudocode for the standard DE algorithm.

2.2. Parameter tuning

The DE algorithm has only 3 tuning parameters, P; F; and CR, which is
fewer than many other metaheuristic algorithms, but their values play a
large role in the convergence of the algorithm. Improper selection of their
values could cause the algorithm to become stuck in a local optimum if
the agents do not efficiently explore the space. The process for tuning
each parameter is in part driven by the application of interest and prior
knowledge of the function landscape. However, it is also important to
consider whether any modifications should be made to the standard al-
gorithm and how these may affect the selection of parameter values. In
this section we describe some of the adaptations at each step in basic DE
and discuss general guidelines for tuning each parameter. For a full study
of the individual parameters and choices for other adjustable features of
DE, see Ref. [12]. There are also several variants of DE that change the
underlying process and in some cases add additional parameters or
change the usage of the existing ones. We review some of the most
substantial of these variants and hybrid algorithms in Section 5.

In the initialization phase, an important choice is the number of
agents P to be used per generation. The search space itself is usually
determined by the application of interest, but the value of P must be
carefully considered to enhance performance. In setting this parameter it
is important to strike a balance between having enough points to explore
the space and the computational time of the program. For example, in a
space where P ¼ 6 gives sufficient new information in each generation
for the algorithm to converge in 100 generations, choosing P ¼ 12 may
not provide any more information per generation but will double the
3

time complexity of each one. If the fitness function is computationally
difficult this could result in a drastic slow-down of the method. In fact, in
many instances in which the stopping criteria is a fixed number of gen-
erations Gmax it is better to fix an appropriate number of allowable
function evaluations and maintain that P� Gmax does not exceed this
number for all choices of P. This approach necessitates balancing be-
tween P and Gmax to achieve the best result. Beyond this, a general rule of
thumb is that P should be at least 10 times the number of function inputs
V to ensure sufficient diversity [12].

The mutation factor F is arguably the most sensitive DE parameter. Its
value will determine the trade-off between exploration and exploitation
of the search space, meaning that a large mutation factor will move
points quickly across the space towards the general direction of the
global optimum, but it will be difficult to make the smaller, exact steps
necessary to reach a precise value. There are many solutions available to
this problem including altering the underlying mutation procedure to
one that is better suited to the search space of interest, dithering (using a
new F for each agent), jittering (using a new F for each variable), and
implementing a self-adaptive DE variant that chooses a new mutation
strategy and parameter value for each agent. Such methods could be
adjusted to give an annealing effect to F that shrinks it as the agents get
closer to the optimum so that they can make more precise steps. As far as
general rules for selecting F [29], found a lower bound based on the
values of P and CR such that choosing a value lower than that will cause
the diversity of each generation to decrease as the total number of gen-
erations increases. On the other hand empirical evidence has indicated
that values chosen between 0.6 and 0.9 will perform well for general
optimization problems [12].

The crossover constant CR is a measure of the rate of mutation of the
population. Even in cases where an appropriate F has been chosen, an
inappropriate CR will prevent the agents from evolving at the right pace
for escaping local optima. There are many procedures for altering the
crossover strategy to better accommodate the search space and also self-
adaptive procedures similar to those for the mutation factor such as the
one presented in Ref. [30]. If the standard selection procedure described
in Section 2.1 is used, then the value of CR is naturally bounded between
0 and 1. However, the original authors of DE discovered through
empirical study that the appropriate range of values is actually limited to
CR 2 f½0;0:3� [½0:8; 1�g. It was found that small values of CR lead to
convergence in cases where the fitness function can be rewritten as the
sum of single variable optimization problems (i.e. separable) and larger
values are used if this is not possible [12].

In addition to the tuning parameters, the fitness function and the
stopping condition determine the total amount of time the algorithm will
run. The more complex the function to be optimized, in terms of
magnitude, order, non-linearity, discontinuity, etc., the longer it will take
to reach the optimum. Restricting the search region as much as possible
can alleviate some of the costs of evaluating a complex fitness function
many times. The stopping condition is user-specified and often based
around a maximal number of iterations or function evaluations. Other
popular options are computational time limits, convergence measures to
test for small changes between generations, and stopping values if the
algorithm is being used for benchmarking. The selection of a stopping
condition is driven mainly by the application and the computational
resources available.

3. An overview of optimal design methodology

Before showing how DE can be usefully applied to solve optimal
design problems, we first briefly review background for constructing a
model-based optimal design given a statistical model and an objective.
Throughout we assume that there are resources to collect a set of N pre-
determined observations for the study and that the assumed statistical
model takes the form

yi ¼ f ðxi; βÞþ εi; i¼ 1;…;N; x 2 X ; (3)
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where yi is the response at the vector of explanatory variables xi. The
errors εi are identically and independently distributed with zero mean
and some constant variance. f ðxi; βÞ is a known continuous function
assumed to capture the relationship between the input x and output y
through the vector of unknownmodel parameters β. The region available
for experimentation, known as the design space, is X and it contains all
possible values of the vectors xi; i ¼ 1;…;N. We require the design space
to be a compact set so that the optimum exists. If the model f ðx; βÞ can be
written as f ðxÞTβ, we refer to it as linear. Otherwise we refer to it as non-
linear.

Given the study objective and the fixed total number of observations
N available for the study, our goal is to optimally select a set of so-called
“support points” xi’s, i ¼ 1;2;…;k, from X to observe responses. If the
model of interests has v experimental factors then each xi can be repre-
sented as a vector with components xi1;…;xiv. If each xi is replicated ni
times, we have an exact design, subject to

Pk
i¼1ni ¼ N. It follows that the

total number of variables to optimize over can increase rapidly as the
number of support points k increases. For example, if we wish to estimate
all parameters in a linear model with v ¼ 5 and all main effects and two-
factor interactions, then there are 16 parameters to estimate and k must
be at least 16. This means that our optimization problem consists of a
total of 95 variables, 16� 5 ¼ 80 factor settings plus 16� 1 ¼ 15 repli-
cate counts. In practice, optimal designs for a high-dimensional model
with several factors are rarely minimally supported (i.e. contain one
support point per parameter), so the number of variables to optimize can
be even larger.

The optimality criteria for measuring design fitness are generally very
complicated mathematical formulations and very few model-criterion
pairings result in simple, closed-form solutions to this challenging opti-
mization problem. The analytic descriptions that have been found are
primarily for simple models, such as low-order, linear polynomials or
nonlinear models with one or two predictors. Consequently, determining
optimal exact designs is difficult as there is no general theory for finding
them or confirming the optimality of candidate designs. For this reason
we refer to the exact designs found by DE as optimal exact designs, but
note that their optimality cannot be confirmed and instead rely on
comparisons to designs implemented in practice.

An alternative approach is to instead work with approximate designs.
These designs are defined by the proportion of runs pi ¼ ni= N at each

support point, with
Pk

i¼1pi ¼ 1. When the criterion is a convex function
of the design, there are numerous important advantages of working with
approximate designs versus exact designs. They include (i) a unified
framework for studying and finding optimal approximate designs, (ii)
theory to confirm the optimality of a design, and (iii) an assessment of
proximity of a design to the optimum without knowing the latter. For
background in approximate designs, see design monographs, such as [31,
32], among several others.

In practice, an optimal design is implemented by rounding eachNpi to
the nearest integer and making sure the resulting replicate counts sum to
N. This approximate design formulation was first presented by Kiefer and
is now the standard approach to designing a study for nonlinear models
and special cases of linear models [31]. For this reason our primary goal
in each example is to find optimal approximate designs, but in many
cases we also present the results of searching for optimal exact designs.
We denote a k-point approximate design with weight pi at xi; i ¼ 1;…; k
by ψ. In what follows, we drop the “approximate” qualifier and assume
that all designs are approximate unless otherwise specified.

Let rf ðx; βÞ be the partial derivative of the mean function with
respect to the model parameters β and define the normalized information
matrix for the design ψ by

Mðψ ; βÞ¼
Xk

i¼1

piðrf ðxi; βÞÞðrf ðxi; βÞÞT: (4)

The covariance matrix of the maximum likelihood estimates for the
4

parameters β is inversely proportional to Mðψ ; βÞ, so making the infor-
mation matrix large in some sense is desirable. One popular choice of
criterion to meet this goal is to maximize the determinant of M. When
errors are independent and normally distributed, it can be shown that
such a design minimizes the volume of the confidence ellipsoid for β and
thus provides the most precise estimates. This is commonly called D-
optimality (with D standing for determinant) and the fitness function is
defined as

hðψ ; βÞ¼ � logjMðψ ; βÞj: (5)

The logarithmic function in this criterion serves a critical purpose; for
fixed β, it can be shown that Equation ð5Þ is a convex function of ψ in the
space of all designs defined overX . Accordingly, a design that minimizes
it over all designs on X is labeled D-optimal. For linear models, the in-
formation matrix does not depend on the parameters β, so any convex
function of it can be minimized directly by choices of k, x1;…; xk and p1;
…; pk. In the case of a non-linear model, the matrix Mðψ ; βÞ depends
directly on β, which it is our goal to estimate. The simplest way to
overcome this circular issue is to assume a set of initial estimates or
nominal values β0 for the parameters. These can come from expert
knowledge, related experiments or a pilot study. With this approxima-
tion, the criterion only depends on ψ and can be optimized directly in the
same manner as the linear case. We refer to such designs for non-linear
models as locally D-optimal since they depend on the choice of nomi-
nal values [33].

While there are many designs for other functions of the information
matrix, D-optimal designs are by far the most widely used in practice.
Another design criterion for estimating parameters is to minimize the
sum of the variances of the estimated parameters. This is tantamount to
finding a design that minimizes the trace of M�1ðψ ;βÞ. Such a criterion
can also shown to be convex and the design that minimizes it over all
designs on X is known as the A-optimal design.

Sometimes a researcher may be interested in estimating a function of
the model parameters. In this case, a different type of criterion is
required. If cðβÞ is the user-selected function of interest, β0 is the nominal
value for β and rcðβÞ is the derivative of cðβÞ with respect to β, we
minimize ðrcðβ0ÞÞTM�1ðψ ; β0Þðrcðβ0ÞÞ over all designs on X . This is
minimizing the asymptotic variance of the estimated function of interest.
We call such designs c-optimal. Applications of c-optimal designs are
abundant. For example, suppose we want to find the dose level of a drug
that produces an 80% response rate, or we want to estimate the lethal
dose that results in a 5% death rate. In both of these cases, the quantities
of interest can be expressed as a nonlinear function of the model pa-
rameters β and c-optimal designs can be used to properly estimate them.

For each of these criteria, we compare designs by measuring the
relative magnitude of their fitness function values. For instance, if we
want to compare two designs, ψ1 and ψ2 and the criterion is A-optimality,
we use the ratio of their criterion values. Specifically, the A-efficiency of
ψ1 relative to ψ2 is

trðM�1ðψ2; βÞÞ
trðM�1ðψ1; βÞÞ

: (6)

If the ratio is less than 1, ψ1 is less A-efficient than ψ2, and vice versa.
It can be shown that if the above ratio is 0.5, then the design ψ1 requires
twice as many observations to perform as well as ψ2. If ψ2 is known to be
A-optimal, then we refer to this ratio as the A-efficiency of ψ1. Similar
formulae hold for other design criteria, except for D-optimality, in which
the ratio must be raised to the power 1=q, where q is the length of the
parameter vector β. This transformation allows us to maintain the
interpretation that design ψ1 with efficiency x requires 1=x times as many
runs to achieve the same performance as ψ2.

Finding optimal designs, regardless of the criterion, is always a
challenging problem, both mathematically and computationally. In the
case of approximate designs with a convex optimality criterion, there is a
powerful and simple tool known as the general equivalence theorem for



Fig. 2. An illustration of the crossover procedure for a single agent in the Dif-
ferential Evolution algorithm. Here we create trial vector TG1

i by combining XG1
i

and DG1
i . The light green elements of TG1

i come from the donor vector DG1
i and

the light red elements come from the target vector XG1
i . The jth element of TG1

i is

marked in dark green as it comes from DG1
i with probability one.

Fig. 3. DE convergence to the locally D-optimal design for the Arrhe-
nius Equation.
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checking the optimality of a design over all designs defined on X . This
result is based on directional derivative considerations of the convex
design criterion and is widely discussed in the primary optimal design
literature: see Ref. [34] and design monographs [32,35].

Each convex optimality criterion has a unique equivalence theorem.
For example, when we have a nonlinear model and the nominal value for
the vector of model parameters is β0, then for the three criteria discussed
above, a design ψ� is locally.

� D-optimal if and only if it satisfies

�rf
�
x; β0

��T
M�1

�
ψ�; β0

��rf
�
x; β0

��� q� 0 for all x 2 X ; (7)

� A-optimal if and only if it satisfies

�rf
�
x; β0

��T
M�2

�
ψ�; β0

��rf
�
x; β0

��� tr
�
M�1

�
ψ�; β0

��� 0; for all x

2 X :

(8)

� c-optimal if and only if it satisfies

��rf
�
x; β0

��T
M�1

�
ψ�; β0

�rc
�
β0
��2

� �rc
�
β0
��T

M�1
�
ψ�; β0

��rc
�
β0
��� 0;

for all x 2 X : (9)

Moreover, each of the above inequalities becomes an equality at the
support points of the optimal design ψ�. The functions on the left hand
side of the inequalities are sometimes called sensitivity functions. In
practice, achieving exact equality at every support point is unlikely, but
up to some small threshold (e.g. 10�6 for our purposes) optimality is still
guaranteed.

The equivalence theorems have several important consequences. If X
is one or two-dimensional, the optimality of a design can easily be
confirmed by plotting the sensitivity function across the design space and
ascertain if the conditions of the equivalence theorem are met. If X is 3-
dimensional or higher, the features of the multivariate sensitivity plot are
harder to appreciate visually. Equivalence theorems can also be directly
used in construction algorithms for generating optimal designs and
checking whether a design is close to the optimum. If the design is not
optimal, its proximity to the optimum can be measured by an efficiency
lower bound. In practice a design with a high efficiency lower boundmay
be adequate. In the following section we implement DE to quickly locate
various types of optimal designs for chemical experiments.

4. DE applications to optimal design

This section provides illustrative applications of DE to find optimal
designs for a variety of chemical experiments. We start by finding designs
for simple models and incrementally augment the problem difficulty. For
each application, we describe the problem setup and how the features of
DE can be adapted to fit the situation. We then show that DE can
5

effectively find optimal designs that coincide with published results or
outperform them. The utility of DE becomes clearer when it is laborious
to calculate the optimal design from theory and DE finds it almost
instantly with the proper setup.

DE algorithms, like other notable nature-inspired metaheuristic al-
gorithms, are widely and freely available in different formats. We choose
to use the R codes available from the package DEoptim in R Version 3.4.3
[36]. All computations were carried out using a 2016 Lenovo P50
Thinkpad 2.9 GHz Intel Core i7 with 16 GB RAM on 64 bit Windows 10.
In what is to follow, we first use DE to search for a minimally supported
optimal design. This is a common starting strategy because the optimi-
zation problem is simpler with fewer variables to optimize and the search
is confined to all designs on X with q points. However, the resulting
minimally supported optimal design may not be optimal among the class
of all designs on X . An equivalence theorem is needed to confirm its
optimality among all designs on X . Later, we discuss what happens if DE
is initialized with more points than the optimal design requires and how
DE may be altered to solve more difficult design problems.
4.1. Estimating parameters in the Arrhenius Equation

We begin by finding locally D-optimal designs for estimating the two
parameters in the Arrhenius equation commonly used in chemical ex-
periments [37]. This model describes the relationship between the mean
temperature and reaction rate of a process. Its basic form is given by

Er¼Aexpð�B =TÞ; β¼ðA;BÞT: (10)

Here Er denotes the expectation of the random variable r, denoting
the reaction time. It is an exponential function of the parameter B, the
activation temperature, and the parameter A is a multiplicative constant
called the Arrhenius frequency parameter. The design variable is the
temperature T and good choices for its settings produce efficient esti-
mates for A and B. Many experiments have been performed to determine
the parameter values for different chemical reactions to better under-
stand their dependence on temperature [38–40].

Our specific application concerns the reaction given by NOþ O3 →
NO2 þ O2, which captures the loss process for ozone in the troposphere
and stratosphere [41]. In order to study the temperature dependence of
this reaction we seek an experimental design that is supported at two
temperature points. Since the equation is non-linear with respect to B any
optimal design will depend on a set of initial parameter values β0. For this
example we choose β0 ¼ ð3:0� 10�12;1500ÞT according to preliminary
results from NASA’s Jet Propulsion Lab [42]. The acceptable range of
temperatures, the design space X , is fixed at ½212; 422�, so that we may
compare the results of DE with the designs found in Ref. [43]. From this
we calculate the vector rEr as the first-order partial derivatives of the
model with respect to A and B, which is given by



Fig. 4. Sensitivity function for local D-optimality of the DE-generated design for
the Arrhenius Equation.

Fig. 5. Design points for 75-point exact designs for the Arrhenius Equation.
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rEr¼
�
expð�B=TÞ;Aexpð�B=TÞ

T

�T

: (11)
Evaluating at the nominal values for the parameters β0, we calculate
the information matrix in Equation (4) and plug it into our fitness
function. Assuming the design of interest ψ has two points T1 and T2 with
weights p1 and p2, then the D-optimality criterion is

h
�
ψ ; β0

�¼ � log
���X2

i¼1

piðrErβ0 ðTiÞÞðrErβ0 ðTiÞÞT
���: (12)

We implement DE to find the locally D-optimal design. In addition to
the two temperatures we also need to search for the proportion of ob-
servations to take at one of the temperature levels (since the other is then
determined by the unity constraint). The number of variables to optimize
is therefore V ¼ 3, so this is a relatively small optimization problem.
Accordingly, we set a population size of P ¼ 10 agents and limit our DE
search for the optimum to Gmax ¼ 50 generations, resulting in a total of
500 evaluations of the fitness function. Each candidate design is repre-
sented by a vector with the two design points first followed by the weight
of the first point. We choose the standard values F ¼ 0:8 and CR ¼ 0:9
from Section 2 for the parameters since the optimization of h is a non-
separable problem .

The algorithm took only 0.1 s to produce a design equally supported
(0.5 wt at each point) at the temperature values 329.3 and 422.0. Fig. 3
shows the evolution of the ten candidate solutions through the fifty
generations across the two temperature dimensions. Since the algorithm
is able to find the correct weight in the first few generations this variable
is omitted from the plot. Candidates from earlier generations are given a
lighter color to represent that they are far from optimal while those from
generation 50 are dark, indicating their optimality. We observe that the
algorithm locates an optimal support point at the boundary of the design
space after just twenty generations and the remaining generations are
used to finely tune the second point.

To confirm that the design found by DE is locally D-optimal, Fig. 4
shows the sensitivity function from (7) for the generated design. We
observe that over the design space, the function is bounded above by 0,
with equality at the two temperature settings. By the equivalence theo-
rem, this confirms the local D-optimality of the DE-generated design
when the vector of nominal values is β0 ¼ ð3:0� 10�12;1500ÞT.

While the approximate design we found is locally D-optimal, con-
ducting an experiment in the laboratory would require an exact design.
One such experiment that studied the reaction we are considering was
conducted in Ref. [44]. Following their setup, we use DE to search for a
75-run D-optimal exact design. Increasing the population size to P ¼ 50
and the number of iterations to Gmax ¼ 200 while leaving the other pa-
rameters and nominal values the same, we were able to find a 75-run
exact design with a lower criterion value (85.77 versus 86.50) than the
implemented design. This result further demonstrates DE’s ability to
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locate practical designs for non-linear models with ease. A visual repre-
sentation of the design found by DE is given in Fig. 5.

Having shown that DE can find exact and locally optimal designs for
this simple model, we now apply it to an extended version known as the
Modified Arrhenius equation [45]. This modification is used when tem-
perature settings are allowed to vary over a wide range. The model is
given by

Ermod ¼ A’
Tm

expð�B = TÞ; (13)

where A’ is now a positive parameter independent of the temperature
setting, m is a new parameter that describes how the exponential scales
with temperature and Ermod is the mean reaction time under this modified
model. Following [43] we fix m ¼ 5 and set the nominal parameters to
β0 ¼ ðA’ ¼ 1;B ¼ 1500ÞT. This setting for B was retained from the stan-
dard model and we set A’ ¼ 1 for simplicity because the determinant of
the information matrix does not depend on its value.

To find a locally D-optimal design for this 2-parameter model (sincem
is fixed) using DE, we first compute the gradient of the mean function

rErmod ¼
�
T�mexpð�B=TÞ;�A

0
T�ðmþ1Þexpð�B=TÞ�T: (14)

We then repeat as before and use a 2-point design to initiate the DE
algorithm to search for a locally D-optimal design for estimating A’ and B
using the criterion in Equation (5) with the above gradient. For this more
challenging problem, we increase Gmax to 60 and leave the remaining DE
parameters as they were. We keep the design space as ½212;422�. After
reaching the maximum number of generations in 0.1 s, DE found a design
equally supported at 392.72 and 212.60. This design has 99:9% D-effi-
ciency relative to the D-optimal design supported equally at 390.5 and
209.5 on an unbounded design space. See Ref. [42] for details.

The above examples show that DE can solve simple optimization
problems very fast with little or no tuning of the parameters required and
minimal computational expense. The next few applications are more
complicated to optimize; they either have additional constraints on the
optimization problems or more variables to optimize. We show that DE
can find the optimumwith similar ease even if we initialize the algorithm
with candidate designs that have more than the required number of
support points.

4.2. Estimating the effect of reaction order and decay rate on concentration

For a more complicated example, consider a modification of the
model in Ref. [46] for studying the influence of reaction order and decay
rate on the concentration of a chemical at a given time. The original
model is given by

Ec¼ð1� ð1� λÞθTÞ 1
1�λ; (15)

where c is the concentration at time T, λ is the reaction order and θ is the



Fig. 6. Sensitivity function for local A-optimality of the DE-generated design for
the modified Atkinson model.
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decay rate. In some circumstances, it is appropriate to include a third
parameter ν to make the model more flexible. The modified version of
Equation (15) now takes the form

Ec� ¼ ð1� ð1� λÞθTÞ 1
1�λ

1þ expðνλÞ ; β¼ðλ; θ; νÞT: (16)

For this model we seek a locally A-optimal design with 3 support
points. Taking inspiration from Ref. [46] we select the nominal param-
eters β0 ¼ ð0:5; 0:5; 0:1ÞT. Following a similar procedure as in the pre-
vious example, we begin by calculating the first order partial derivatives
of the mean function to obtain the information matrix Mðψ ;β0Þ, where ψ
is the design and β0 is the nominal value for the vector of model pa-
rameters. We recall that the A-optimality criterion is given by

h
�
ψ ; β0

�¼ tr
�
M�1

�
ψ ; β0

��
: (17)
Fig. 7. Convergence of DE for the Atkinson example initialized with 6 support point
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We seek a minimally supported design with 3 points over the design
space X ¼ ½0;4�3. Since there is only a single explanatory variable, the
number of dimensions to search over is 3� 2� 1 ¼ 5. We set P ¼ 50; F ¼
:8;CR ¼ :9 and Gmax ¼ 100. Running the algorithm with these settings
did not allow for enough exploration of the space, so Gmax was increased
from 100 in increments of 50 until 300. This led to a design equally
supported at 0.000, 1.151, and 3.343.

Generating this design took only 1.5 s of CPU time and required
minimal tuning of the parameters. Fig. 6 shows that the sensitivity
function of the DE-generated design satisfies the general equivalence
theorem (8), confirming the local A-optimality of the design on X with
the nominal values β0. For this example we also used DE to search for A-
optimal exact designs for this model, but in all cases we considered (N ¼
3; 10;40;100) the design found by DE is actually the rounded approxi-
mate design, so the details have been omitted.

Can DE find an optimal design if we instead start the search using
candidate designs with more points than the (unknown) number of
support points of the optimal design? To investigate this issue, we repeat
the above analysis, but instead of optimizing over 5 variables with 3
support points and 2 wt, we supply designs with 6 support points and 5
wt, making for a total of 11 variables. DE was again able to converge to
the equally-supported A-optimal design by clustering the excessive
points. Due to the increased dimension of the search space, achieving this
result required 300 generations with all other parameters maintaining
their values from the 5-variable situation.

Fig. 7 shows the best design from every 100 generations. The x-axis
gives the values of the 6 support points while the y-axis shows the cor-
responding weights. As before, support points from later generations are
given a darker color to indicate their convergence to the optimal design.
When the best design from a given generation has several points that are
indistinguishable their weights are summed and a single point is shown.
This plot demonstrates the rapid pace at which DE begins to cluster the
additional points and move towards the optimal weights. Table 1 gives
s. Each panel ðaÞ-ðdÞ displays the best design found after every 100 generations.



Table 1
The best design found by DE for Atkinson’s model after every 100 generations.

Gen T1ðp1Þ T2ðp2Þ T3ðp3Þ T4ðp4Þ T5ðp5Þ T6ðp6Þ
1 0.038

(0.318)
1.004
(0.201)

1.143
(0.094)

2.910
(0.091)

3.329
(0.174)

3.832
(0.123)

100 0.000
(0.357)

1.036
(0.055)

1.187
(0.246)

3.267
(0.066)

3.435
(0.099)

3.339
(0.177)

200 0.000
(0.347)

1.628
(0.153)

1.632
(0.281)

3.338
(0.048)

3.339
(0.004)

3.345
(0.167)

300 0.000
(0.333)

1.151
(0.268)

1.151
(0.062)

3.344
(0.046)

3.344
(0.219)

3.344
(0.068)

Final 0.000
(0.333)

1.151 (0.333) 3.344 (0.334)

Table 2
13-point approximate design for the emulsion mixture experiment. ðaÞ is the 13-
point design found by DE and ðbÞ is a 7-point D-optimal design that results from
merging the rows of ðaÞ.
(a)

Run x1 x2 x3 pi

1 1 0 0 0.143
2 0 1 0 0.142
3 0 0 1 0.143
4 0 0.5 0.5 0.083
5 0 0.5 0.5 0.059
6 0.5 0 0.5 0.077
7 0.5 0 0.5 0.065
8 0.5 0.5 0 0.143
9 0.34 0.33 0.33 0.035
10 0.33 0.34 0.33 0.012
11 0.33 0.33 0.34 0.037
12 0.34 0.33 0.33 0.058
13 0.33 0.34 0.33 0.002

(b)

x1 x2 x3
P

pi

1 0 0 1
7

0 1 0 1
7

0 0 1 1
7

0 1
2

1
2

1
7

1
2

0 1
2

1
7

1
2

1
2

0 1
7

1
3

1
3

1
3

1
7
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the raw values from each design shown. We observe that earlier gener-
ations have six unique support points; however, by generation 200 the
points form three clusters and the focus shifts to finding the appropriate
weights. By generation 300 the collective weight at the three points
yields the equally-supported design we report. From this example, we
observe that even when the user starts with candidate designs with more
points than needed, DE is still able to find the optimal design.

4.3. Estimating the effect of microemulsion mixtures on drug solubility

In our third application, we apply DE to find an optimal design for a
mixture experiment with several factors. In mixture experiments, each
run is a mixture of the same ingredients, but the relative proportion of
each ingredient in each run may be different, and thus affect the mean
measured response. These problems arise frequently in life and physical
sciences. For example [47], studied the effect of microemulsion formu-
lation composition on the solubility and dissolution of drugs.

There are several possible models for a mixture experiment with a
fixed number of ingredients. If there are d ingredients, the most
frequently used linear model is the Scheff�e polynomial [48] given by

Ey¼
Xd

i¼1

βixi þ
Xd�1

i¼1

Xd

j¼iþ1

βijxixj: (18)

In the above equation, there are q ¼ dþ
�
d
2

�
parameters β1;…; βd;

β12;…; βðd�1Þd and d inputs x1;…;xd. This model is similar to a standard
linear model with d factors and all two-factor interactions, except that the
design space is a d� 1 simplex, i.e. each xi � 0 subject to x1 þ x2 þ …þ
xd ¼ 1.

To find D-optimal designs for this problem over the ðd � 1Þ-dimen-
sional simplex using DE, we proceed as before by first computing the
information matrix. In this experiment, there are d ¼ 3 ingredients: oil,
water, and a surfactant to study the drug dissolution properties y of
microemulsion formulations. The model used by Ref. [47] to study this
relationship is given by

Ey¼ β1x1 þ β2x2 þ β3x3 þ β12x1x2 þ β13x1x3 þ β23x2x3 þ β123x1x2x3; (19)

which is equivalent to Equation (18) with the addition of a three-way
interaction of all ingredients. In Ref. [47] the authors fit this model
with the 13-points exact design in Table 3(b). We apply DE to find an
approximate design of comparable size with a better ability to estimate
the model parameters. Since the three ingredient proportions must sum
to 1 in each run, we only need to optimize over two experimental factors.
A search among all 13-point designs shows the total number of variables
that DE has to optimize is 38. We initially set P ¼ 175 and ran the al-
gorithm for Gmax ¼ 2000 generations. Clearly this setting does not follow
the rule of thumb P � 10V in Section 2. However, we find that the
marginal improvement to the final design does not warrant using addi-
tional resources to produce 380 agents. Instead it is more efficient to use
only half as many agents and run the algorithm for twice as many gen-
erations. We set F ¼ 0:8;CR ¼ 0:7 and slowly increases the value of CR to
8

0.9 through multiple trials as it improves performance. We observe that
the basic form of DE is not able to quickly locate an optimal design for
this problem due to the large amount of time required per generation and
this limits the number of generations possible. To overcome this issue we
implemented a parallel version of DE [49] that spreads the calculations
required in each generation over many nodes. DE naturally lends itself to
parallel computing since many of its operations can be performed in
isolation and then reassembled. Further details of this approach and
other DE variants are discussed in Section 5.

Using this variant of DE we were able to locate the D-optimal design
given in Table 2(a). It took 24 s of CPU time across 8 nodes to converge to
a 13-point design with many duplicated points. Further investigation
reveals that the design is equally weighted at 7 points and its D-opti-
mality can be confirmed visually using the equivalence contour plot
shown in Fig. 8, which shows that the contour values at each of the 7
points from our design is approximately 0. In this plot x1 and x2 are given
on the x and y axes respectively. With these two values determined, x3
can be inferred. The contour value is derived from the sensitivity function
from Equation ð7Þ. The key implication is that the 13-point design used
by the authors is not optimal for the proposed model and a direct
calculation shows that the relative D-efficiency of their design to the one
found with DE is only 79%. Through this comparison we observe the
benefits of DE: DE is fast and finds the optimal design effortlessly and
accurately.

We note that this comparison between the design in Ref. [47] and the
DE generated design is not exactly fair. While both designs have 13
points, our design has only 7 unique supports and is an approximate
design, as defined in Section 3. To implement this design in practice we
need to multiply each weight by the desired run size (in this case 13).
Since the weights are not regular fractions of 13 we will need to do some
rounding in order to achieve a useable design. Through this process we
lose some efficiency. In order to mitigate this loss we could instead find
an 13-point D-optimal exact design directly, but this is known to be a very



Table 3
13-point exact designs for the emulsion mixture experiment.ðaÞ is the 13-point
design found by DE and ðbÞ is the design implemented in Ref. [47].

(a)

x1. x2 x3

0 0 1
0.01 0.01 0.98
0 0.50 0.50
0.01 0.49 0.50
0 1 0
0.01 0.97 0.02
0.32 0.33 0.35
0.34 0.34 0.32
0.49 0 0.51
0.51 0 0.49
0.49 0.51 0
0.53 0.47 0
1 0 0

(b)

x1 x2 x3

0.65 0.18 0.17
0.65 0.22 0.13
0.65 0.25 0.10
0.69 0.16 0.15
0.69 0.19 0.12
0.72 0.12 0.17
0.73 0.13 0.14
0.75 0.15 0.10
0.76 0.09 0.15
0.78 0.05 0.17
0.79 0.09 0.12
0.82 0.05 0.13
0.85 0.05 0.10

Fig. 8. Sensitivity contours of the DE-generated design for the emulsion mixture
experiment. The function is maximized at the 7 points included in the design,
confirming its D-optimality.
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difficult problem to solve analytically for general run size. However, DE
is able to overcome this challenge. To do this we search over the
26-dimensional space for a good exact design. Setting P ¼ 150, F ¼ 0:8
and CR ¼ 0:9 DE required 15 s across 8 nodes and Gmax ¼ 2000 gener-
ations to find the design presented in Table 3(a). We observe that the
design points all come from the optimal approximate design, with some
points replicated once. This design has 99% efficiency relative to the
optimal one found earlier, again showing a clear advantage over the
design chosen by the researchers. Thus, DE is capable of producing both
exact and approximate designs for problems with a large number of
optimization parameters.
4.4. Estimating the effect of substrate concentration and inhibition amount
on reaction velocity

Until now we have used DE to find optimal approximate and exact
designs for linear and non-linear models of various complexities. How-
ever, we have so far only considered non-linear models with a single
input variable and with the prior knowledge of a nominal set of values. It
is useful to consider a final example in which neither of these situations
apply. For this example we will search for Bayesian D-optimal designs for
the 4-parameter mixed inhibition model described in Ref. [50,51]. This
model considers the relationship between substrate concentration s, in-
hibition amount i, and reaction velocity v and is given by

Ev¼ Vmax 	 s
km

�
1þ i

kic

�
þ s

�
1þ i

kiu

�: (20)

In this model the vector of parameters is β ¼ ðVmax; km; kic; kiuÞT,
representing the velocity at the maximum concentration, the Michaelis-
Menten constant, and two dissociation constants respectively. For this
model we still assume that we have some prior knowledge of the true
9

value of these parameters, but unlike the previous examples it takes the
form of a multivariate distribution. The goal is to use DE to find a
Bayesian D-optimal design that minimizes the D-optimality criterion in
Equation (5) averaged over the prior distribution. Formally, we seek a
design that minimizes

hðψ ; βÞ¼ � log
�Z

R4

jMðψ ; βÞjπðβÞdβ
�
; (21)

where πðβÞ is the multivariate prior we assume for β.
We consider several choices for πðβÞ including both discrete and

continuous distributions with and without correlation. Following [50,51]
we assume that the mean of each continuous prior is given by βμ ¼
ð7:298;4:386;2:582;5:0ÞT. Furthermore, we consider two design spaces:
9 � s � 30; 0 � i � 60 and 0 � s � 30;18 � i � 60. The set of plausible
parameter values is given by km 2 ½4;5�; kic 2 ½2;3�; and kiu 2 ½4;5�. To
approximate the integral in Equation (21) we average over a systematic
sample from the prior distribution. Taking inspiration from Ref. [52], the
sample is derived from a series of Halton draws. This reduces computa-
tional time and provides a reasonable estimate of the integral. To further
speed up the algorithm we use the same parallel version of DE that was
implemented in the previous example.

We consider uniform priors, both continuous and discrete, and two
multivariate normal distributions, one with independence and the other
with weak to moderate correlation. For each prior we search for a
minimally supported design by initializing DE with a population size of
P ¼ 120 for Gmax ¼ 250 generations. We begin with CR ¼ 0:1 and F ¼
0:8 and increase CR in steps of size 0.1 between iterations if the algorithm
fails to converge. For each continuous prior we use 125 Halton draws to
evaluate the integral [52].

Table 4 shows the DE designs under each combination of prior and
design space. In this table Σ1 and Σ2 are variance-covariance matrices
with diagonal equal to ð0:50;0:11;0:11;0:20Þ, and an average correlation
of 0 and 0.46 respectively. Specifically, Σ1 and Σ2 are given by



Table 4
Bayesian D-optimal designs for the enzyme kinetic model under four prior distributions for β and two design spaces.

s 2 ½9;30�; i 2 ½0;60�
Run MVNorm (βμ;Σ1) MVNorm (βμ;Σ2) U (βμ � 1;βμ þ 1) Ud

s i p s i p s i p s i p

1 30 4.07 0.25 30 4.07 0.25 30 4.32 0.25 30 4.35 0.25
2 9 3.57 0.25 9 3.61 0.25 9 3.82 0.25 9 3.81 0.25
3 30 0 0.25 30 0 0.25 30 0 0.25 30 0 0.25
4 9 0 0.25 9 0 0.25 9 0 0.25 9 0 0.25

s 2 ½0;30�; i 2 ½18; 60�
Run MVNorm (βμ;Σ1) MVNorm (βμ;Σ2) U (βμ � 1;βμ þ 1) Ud

s i p s i p s i p s i p

1 29.81 18.03 0.25 29.95 18.11 0.25 29.92 18 0.25 29.87 18.03 0.25
2 4.28 18.06 0.25 4.64 18.03 0.25 4.75 18.14 0.25 4.59 18.05 0.25
3 29.96 41.44 0.25 29.71 39.11 0.25 29.59 40.16 0.25 29.77 42.58 0.25
4 4.77 39.56 0.25 4.78 39.17 0.25 5.25 41.05 0.25 5.06 40.47 0.25

Fig. 9. Sensitivity contour of the design found by DE under the independent
multivariate normal prior and design space s 2 ½9; 30�; i 2 ½0;60�.

Table 5
Relative D-efficiency of design from Ref. [51] to DE 21-point exact designs for the
enzyme kinetic model under four prior distributions for β and two design spaces.

s 2 ½9;30�; i 2 ½0;60� s 2 ½0; 30�; i 2 ½18;60�
MVNorm (βμ;Σ1) 79.0% 78.9%
MVNorm (βμ;Σ2) 79.0% 79.0%
U (βμ � 1;βμ þ 1) 79.0% 78.9%
Ud 78.9% 79.1%
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66
0:500 0:000 0:000 0:000
0:000 0:110 0:000 0:00077
Σ1 ¼

2
4 0:000 0:000 0:110 0:000
0:000 0:000 0:000 0:200

3
5 Σ2

¼

2
664
0:500 0:052 0:148 0:010
0:052 0:110 0:092 0:098
0:148 0:092 0:110 0:052
0:010 0:098 0:052 0:200

3
775

Ud is a discrete uniform distribution of 44 ¼ 256 grid points over the
parameter space. For the design space that requires a larger concentra-
tion s � 9 we see that each design places points at extreme values of s,
two where there is no inhibition and two where there is slight inhibition.
Under the second design space that requires more inhibition i � 18, we
observe that the optimal design points lie away from the boundaries of
the space, but are still at the extreme ends of the concentration range but
more towards the lower bound of the inhibition range. Using the
Bayesian extension of the general equivalence theorem we can visually
verify that the designs found by DE are indeed optimal under each
particular prior and design space. Fig. 9 displays one such plot of the
sensitivity function of the DE-generated design.

The above approximate designs are implementable if the sample size
is a multiple of 4. Researchers may be interested in a design of a specific
size that does not meet this requirement. For this reason it is also useful to
showcase DE’s ability to find optimal exact designs in a situation where
prior information about the parameters is limited. To do this we consider
the 21-point design implemented in Ref. [51]. We repeat the same search
as before, but this time over a 42-dimensional space. Due to the increased
size of the problem we initialize DE with a population size of p ¼ 210 for
Gmax ¼ 1250. In the same manner as the approximate case we begin with
10
CR ¼ 0.1 and F ¼ 0.8 and increase CR in steps of size 0.1 as necessary.
Table 5 reports that the exact designs found by DE have much higher

D-optimality than the design used in practice. This indicates that even
when a large number of design points is desired DE is still capable of
finding an efficient design. This observation holds regardless of the prior
distribution we assume for the parameter values.

5. Popular DE variants and hybrid algorithms

In the two previous example we employed a parallel version of DE to
arrive at designs that outperforms the ones available in the published
literature. There are many such advancements to the basic DE algorithm.
The most popular variations on the basic DE algorithm fall into two
classes: adaptive-tuning and multiple-objective. For many optimization
problems solved with metaheuristic algorithms the selection of tuning
parameters is a bottleneck. DE attempts to solve this issue by having only
a few such parameters, yet sometimes many trials are required to choose
their correct values. Many of the enhancements for DE use a self-adaptive
parameter search that studies the history of past agents to appropriately
tune parameters for future generations. Some popular members of this
class include JADE, SADE, and SHADE [53–55], which have collectively
been cited hundreds of times. The other major class of DE variants con-
cerns optimization problems with multiple objectives. There are many
novel algorithms based on such multi-objective approaches to DE (for
example, see Ref. [56–58]) and the leading methods involve minimizing
the Pareto frontier or utilizing Lagrange multipliers.

There are also many new algorithms developed by hybridizing DE
with other metaheuristic algorithms. Akin to crafting ensemble statistical
models, these hybrid algorithms allow for a more thorough search of the
space and the relative weight given to the approaches of each method
when crafting the algorithm determines its efficacy. Some examples of
hybrid DE algorithms involve blending it with Simulated Annealing, PSO,
and k-means clustering [59–61]. These methods have shown great suc-
cess at tackling optimization problems that the individual algorithms
struggled to solve.

This overview covers some DE variants but there are many other
modifications of the basic DE algorithm that have been proposed since its
initial conception. Some of these methods are motivated by the
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application at hand while others are motivated by further heuristic
considerations aimed at improving the performance of DE in various
ways. For a most recent review of the latest innovations of DE see [62].

6. Conclusion

In this article we reviewed the basic formulation of Differential
Evolution and apply it to find various types of optimal designs in the
chemical sciences. The algorithm is metaheuristic and is based upon the
ideas of evolutionary biology. Through the genetic representation of
candidate solutions to a real-valued fitness function, DE uses mutation
and crossover of the genes of each agent to produce sequential im-
provements to the fit of subsequent generations. We discussed the
foundational ideas of the algorithm and the specific methods and ideas
behind tuning each parameter.

We implemented DE codes and demonstrates DE’s ability to solve
design problems for statistical models with different number of param-
eters. Both approximate and exact optimal designs can be found by DE in
a few seconds to estimate some or all parameters in linear and non-linear
models. DE or its variants can also be effective in solving high dimen-
sional and other complex design problems. For high dimensional opti-
mization problems it would be appropriate to apply different nature-
inspired metaheuristic algorithms and observe whether they produce
the same or approximately the same solution. If they do, we are much
more assured that the solution is likely to be correct. If needed, readers
can hybridize two or three such algorithms to take advantage of the
positive qualities of each to enhance the hybridized algorithm perfor-
mance. We close by reminding the reader that DE is a general purpose
optimization tool and can solve both design and non-design optimization
problems. We hope that this introduction to DE stimulates further che-
mometric research in this direction.
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