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Abstract

National statistical agencies are regularly required to produce estimates about
various subpopulations, formed by demographic and/or geographic classifi-
cations, based on a limited number of samples. Traditional direct estimates
computed using only sampled data from individual subpopulations are usu-
ally unreliable due to small sample sizes. Subpopulations with small sam-
ples are termed small areas or small domains. To improve on the less reli-
able direct estimates, model-based estimates, which borrow information from
suitable auxiliary variables, have been extensively proposed in the literature.
However, standard model-based estimates rely on the normality assumptions
of the error terms. In this research we propose a hierarchical Bayesian (HB)
method for the unit-level nested error regression model based on a normal
mixture for the unit-level error distribution. Our method proposed here is
applicable to model cases with unit-level error outliers as well as cases where
each small area population is comprised of two subgroups, neither of which
can be treated as an outlier. Our proposed method is more robust than the
normality based standard HB method (Datta and Ghosh, Annals Stat. 19,
1748–1770, 1991) to handle outliers or multiple subgroups in the population.
Our proposal assumes two subgroups and the two-component mixture model
that has been recently proposed by Chakraborty et al. (Int. Stat. Rev. 87,
158–176, 2019) to address outliers. To implement our proposal we use a uni-
form prior for the regression parameters, random effects variance parameter,
and the mixing proportion, and we use a partially proper non-informative
prior distribution for the two unit-level error variance components in the
mixture. We apply our method to two examples to predict summary char-
acteristics of farm products at the small area level. One of the examples is
prediction of twelve county-level crop areas cultivated for corn in some Iowa
counties. The other example involves total cash associated in farm opera-
tions in twenty-seven farming regions in Australia. We compare predictions
of small area characteristics based on the proposed method with those ob-
tained by applying the Datta and Ghosh (Annals Stat. 19, 1748–1770, 1991)
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and the Chakraborty et al. (Int. Stat. Rev. 87, 158–176, 2019) HB meth-
ods. Our simulation study comparing these three Bayesian methods, when
the unit-level error distribution is normal, or t, or two-component normal
mixture, showed the superiority of our proposed method, measured by pre-
diction mean squared error, coverage probabilities and lengths of credible
intervals for the small area means.

AMS (2000) subject classification. Primary 62F15; Secondary 62D05.
Keywords and phrases. Nested error regression, Outliers, Prediction intervals
and uncertainty, Robust empirical best linear unbiased prediction

1 Introduction

National statistical offices around the world have been mandated for
many years to produce reliable statistics for important variables such as
population, income, unemployment, and health outcomes for various geo-
graphic domains (e.g., states, counties) and/or demographic domains (e.g.,
age, race, gender). However, the sample available from many of these do-
mains are often small to produce direct estimates of adequate accuracy. This
situation is known as small area estimation. To develop estimates that are
more reliable than the direct estimates, data from the entire sample (that is,
a sample covering all small areas) is used and combined with other appro-
priate auxiliary variables to produce indirect estimates of the small domain
characteristics. Model-based approaches have been shown to be useful in
producing reliable small area or small domain estimates.

The earliest important application of model based small area estima-
tion is by Fay and Herriot (1979). They adopted shrinkage estimation of
Stein (1955), popularized as empirical Bayes estimation by Efron and Mor-
ris (1973). Using empirical Bayes method, Fay and Herriot (1979) proposed
shrinkage of a direct estimator of a small-area mean to a suitable regression
plane determined jointly by the direct estimators and auxiliary variables
from the small areas. This approach is based on modeling of small area level
summary statistics, often sample means.

Battese et al. (1988) proposed the popular nested-error regression (NER)
model to develop small area estimates based on data available on the indi-
vidual sampled units. Battese et al. (1988) proposed a regression model
for a response for all the units in the population based on some auxiliary
variables. The NER model, aptly called unit-level model, is developed un-
der the normality assumption of small area random effects and unit-level
random errors. For unit-level data, the NER model has been the basis for
producing reliable small-area estimates either by a frequentist or a Bayesian
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approach. Datta and Ghosh (1991) used the NER model, in conjunction
with suitable noninformative priors for the regression coefficients and vari-
ance parameters, to develop hierarchical Bayes estimates of finite population
small area means. Prasad and Rao (1990) and Datta and Lahiri (2000) used
a frequentist approach for the NER model to develop empirical best linear
unbiased prediction (EBLUP) of the finite population means. To facilitate
our discussion of robust HB method of small area estimation we reviewed
the existing HB models in the next section.

It is desirable to have a model that is robust in the presence of random er-
rors prone to outliers. To address the specific case where outliers are present,
Chakraborty et al. (2019) proposed an HB alternative to Datta and Ghosh’s
method (1991). By using a two-component mixture of normal distribution,
this model accommodates populations where a small portion of unit-level
errors come from a secondary distribution with a larger variance than the
primary distribution. Chakraborty et al. (2019) showed that their model
consistently performs as well as or better than that of Datta and Ghosh
(1991), including in the special case of no outliers (i.e. “no contamination”).

We note that the model proposed by Chakraborty et al. (2019) is most
effective when only a small portion of the population comes from the sec-
ondary distribution. In this paper we suggest an HB method built from the
NER model to handle more general cases of two-component mixture popu-
lations, where the proportion of members from the secondary distribution
may be as high as 50 percent.

2 Existing Unit-Level HB Small Area Models

The NER model of Battese et al. (1988) is immensely popular in unit-
level modeling for small area estimation. This model supposes that a pop-
ulation is partitioned in m small areas with Ni units in the ith small area.
The value of the response variable for the jth unit in the ith small area Yij
satisfies

Yij = xT
ijβ + vi + eij , j = 1, . . . , Ni, i = 1, . . . ,m, (2.1)

where xij = (xij1, . . . , xijq)
T is a q×1 vector of values for predictor variables

for that observation. Here β = (β1, . . . , βq)
T denotes the vector of regression

coefficients. The zero mean random variables vi and eij account for area-
and unit-level errors, respectively, and are assumed to be independent of
each other. We further assume that vi’s are i.i.d. N(0, σ2

v). As in Battese
et al. (1988), under appropriate distributional assumptions for the eij ’s, our
goal is to predict the population mean θi in the ith county defined as the
conditional mean of the response given the realized random effect vi, where
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θi = x̄T
i(p)β + vi, and x̄i(p) =

1
Ni

∑Ni
j=1 xij . The x̄i(p)’s are known for all the

small areas.
A special case of an HB model introduced by Datta and Ghosh (1991)

includes the following HB version of the NER model. We denote this by DG
HB model.

(I) Conditional on β,v = (v1, . . . , vm)T , σ2
e , and σ2

v ,

Yij
ind∼ N(xT

ijβ + vi, σ
2
e)

for j = 1, . . . , Ni, i = 1, . . . ,m.

(II) Conditional on β, σ2
e and σ2

v , vi
iid∼ N(0, σ2

v) for all i.

(III) Model parameters β, σ2
e and σ2

v are assigned the improper prior

π(β, σ2
v , σ

2
e) ∝

1

σ2
e

. (2.2)

Based on a random sample of size ni, i = 1, . . . ,m, from all the small areas
Datta and Ghosh (1991) used the above model to develop HB predictors of
small area finite population means Ȳi’s, i = 1, . . . ,m. This model can also be
used to develop Bayes predictors of θi’s. For small ni/Ni, the two quantities
Ȳi and θi’s are approximately the same.

While the HB estimates developed by Datta and Ghosh (1991) are effec-
tive for populations in which the unit-level random errors follow a normal
distribution, they are less effective when the errors follow a mixture of nor-
mal distributions. This scenario can be formulated by a two-component
normal mixture model for the unit-level errors, which have the same mean
but different variances. Another example of this situation is a population
with “representative outliers” (Chambers, 1986). In this case, the underly-
ing distribution of outliers is assumed to have the same zero mean, but a
larger variance than that of the non-outliers.

Chakraborty et al. (2019) proposed a two-component normal mixture for
the unit-level error distribution. This model, referred to as the CDM model
hereafter, specifically facilitates small area estimation for populations which
are suspected to contain representative outliers. Chambers (1986) defines a
representative outlier as a value which is non-unique in the population and
influences the estimates of finite population means Ȳi’s from the model. The
CDM HB model, which modifies the DG HB model, is given below:
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(I) Conditional on β = (β1, . . . , βq)
T , vi, zij , pe, σ

2
1, σ

2
2, and σ2

v ,

Yij ∼ zijN(xT
ijβ + vi, σ

2
1) + (1− zij)N(xT

ijβ + vi, σ
2
2)

for j = 1, . . . , Ni, i = 1, . . . ,m.

(II) The indicator variables zij are i.i.d. with P (zij = 1|pe) = pe for all i, j.
Also, zij ’s are independent of vi’s, β, σ

2
1, σ

2
2, and σ2

v .

(III) Conditional on β, z, pe, σ
2
1, σ

2
2, and σ2

v , vi
iid∼ N(0, σ2

v) for all i.

The DG HB model is a limiting version of the CDM HB model when pe is
on the boundary. A key assumption of the CDM HB model is that outlier
observations come from a distribution which has the same mean xT

ijβ + vi
(conditional on random effects) as the distribution of non-outliers but a
larger variance. The variances for non-outliers and outliers are denoted
as σ2

1 and σ2
2, respectively, with σ2

1 < σ2
2. A priori outliers are assumed

to occur in the various small areas with equal probability (1 − pe). The
CDM HB model is completed by assigning independent noninformative pri-
ors for β, σ2

1, σ
2
2, pe, and σ2

v , with β ∼ Uniform(Rq), σ2
v ∼ Uniform(R+),

π(σ2
1, σ

2
2) ∝

1

(σ2
2)

2
I(σ2

1 < σ2
2), and pe ∼ Uniform(0, 1).

In the frequentist approach Prasad and Rao (1990) also used the NER
model to derive the EBLUPs of θi and Ȳi and estimators of their mean
squared errors (MSE). In a subsequent article, Sinha and Rao (2009) inves-
tigated robustness of EBLUPs and the estimates of MSE in the presence
of outliers. Their investigation showed that while the departure of random
small area effects from the normality does not severely affect the EBLUPs
and MSE estimates, a departure of normality assumption of the unit-level
error terms adversely impacts the EBLUPs and their MSE estimates. Sinha
and Rao (2009) proposed a robust empirical best linear unbiased prediction
(REBLUP) approach to mitigate the impact of outliers in the unit-level error
and/or in the area-level random effects on the EBLUPs.

We note that Chakraborty et al. (2019) used a Bayesian version of a pop-
ular contamination model to accommodate a small fraction of outliers in the
sample. There are applications where the population is actually a mixture
of multiple component distributions, where each component is a significant
minority. To address such applications, we propose an HB model built from
the NER model to handle more general cases of two-component mixture
populations, where the proportion of members from the secondary distribu-
tion may be nearly half. The proposed new model is more appropriate to
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deal with mixture populations, comprised of two sub-groups, differentiated
by their variances. We propose our new model in Section 3. We apply this
new HB model as well as the DG HB and CDM HB models in Section 4
to two examples to predict summary characteristics of farm products at the
small area level. One of the examples is prediction of county-level crop areas
cultivated for corn in twelve Iowa counties (cf. Battese et al. (1988)). The
other example involves total cash associated in farm operations in twenty-
seven farming regions in Australia based on a dataset by Chambers et al.
(2011).

Chakraborty et al. (2019) showed via simulations that the CDM model
performs as well as the DG HB model when the data set contains no outliers
but has smaller empirical bias and mean squared error when the data con-
tain outliers. The performance of CDM HB predictors is comparable to the
REBLUP method predictors that was proposed by Sinha and Rao (2009).
Due to a lack of space we exclude the Sinha-Rao frequentist method here
to focus only on Bayesian techniques. For more details on the comparative
performance of these robust methods and the DG HB method, we refer the
reader to Section 6 of Chakraborty et al. (2019). In the setup of the corn
data, we compare in Section 5 our proposed method with two competing
Bayesian methods via simulation studies. Two data analyses and the simu-
lation studies demonstrated the superiority of the new proposed HB model.
Concluding comments are provided in Section 6, and relevant proofs and in-
depth details are relegated to the Appendix and Supplementary Information
sections.

3 An HB Normal Mixture Model for Unit-Level Error

We propose here a model that is a mixture extension of the nested-error
regression model which accounts for unit-level error terms coming from two
different normal distributions. To extend the basic NER model to account
for observations from a mixture of two underlying distributions, we rely on
the same assumptions (I) to (III) of the CDM model. The CDM model is
a contamination model frequently used in the literature to accommodate a
handful of outlying observations. In some applications, however, there may
be a larger proportion of observations which may be different from the rest
of the data. In these cases, since this group of observations is not really
outliers, a mixture model, which we propose below, will be better suited
than the contamination model. However, the proposed mixture model is
also flexible enough to explain a small fraction of outliers in a dataset.
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In our new formulation of the two-component mixture model for the
unit-level error component, we treat the unit-level variances σ2

1 and σ2
2 sym-

metrically, and consequently assign the prior

π(σ2
1, σ

2
2) ∝

1

(σ2
1 + σ2

2)
2
.

It is a key difference in the priors assumed in our proposed model, which we
refer as GDM hereafter, and those used for CDM. To ensure the identifia-
bility of all the parameters in the likelihood of the mixture model described
by the hierarchy (I) to (III), we assume pe > 2−1, that avoids the label-
switching problem. To complete specification of the prior distribution for
the remaining parameters, we assign the same independent noninformative
uniform prior to β, σ2

v and pe given by

π(β, σ2
v , pe) ∝ I(pe≥2−1).

We establish the propriety of the posterior distribution in Appendix A.1.
We used Gibbs sampling for our computation. Full conditional distributions
for Gibbs sampling are listed in the Supplementary Material.

4 Data Analysis

4.1. Prediction of County Means of Crop Areas Battese et al. (1988)
proposed the NER model to compute EBLUP prediction of mean hectares
of corn grown in twelve counties of Iowa based on auxiliary variables pro-
vided by LANDSAT satellite data from the U.S. Department of Agriculture.
The two auxiliary variables considered are mean number of pixels of corn
and soybeans in sample segments satellite imaging. Of 37 measurements
of hectares of corn sample, one observation from Hardin County was sus-
pected as an outlier. The reported hectares of corn in this segment seems
to be very low relative to the pixels of corn observed there, relative to other
segments in the same county. Battese et al. (1988) suggested removing the
suspected outlier altogether from the data set to improve the fit of the basic
nested-error regression model. Datta and Ghosh (1991) subsequently used
this reduced data to develop their HB prediction.

It is well-known that discarding suspected outliers can lead to loss of valu-
able information about the data set. By including the outlier from Hardin
County when fitting a robust model, it would make sense that the estimated
mean corn hectares would be higher than in the non-robust DG model.
Chakraborty et al. (2019) demonstrated that when the full set of sampled
observations is used, their HB prediction (CDM HB) of mean in Hardin
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County is closer to REBLUP estimate of Sinha and Rao (2009), than the
prediction obtained from the DG HB model. When applied to the reduced
data set (n = 36), where the suspected outlier is discarded, the CDM HB
model performs similarly to the DG HB model, indicating no loss in apply-
ing the CDM model to data which may not have any outliers. We apply
the proposed model to calculate point estimates (posterior means) and stan-
dard errors (posterior standard deviations) of mean corn production in each
county and compare our results to the predictions obtained from DG and
CDM models. The results are shown in Table 1.

Our proposed model performs as well as the CDM model in the presence
of a suspected outlier. The point estimates and standard errors calculated
based on the proposed model, with the exception of one county, are very close
to those produced by the CDM method. While there is considerable agree-
ment in the estimates from the two robust Bayesian methods, the estimate
for the Hardin county from the non-robust DG HB method is substantially
different from the others.

We present in Fig. 1 a graphical display of posterior probability that
an observation’s unit-level error comes from subpopulation 2. The horizon-
tal axes of the plots in Fig. 1 represent the standardized versions of the
reported hectares of corn in a surveyed segment yij , defined by E(yij −
θi|y)/

√
var(yij − θi|y) where y = {yij ; j = 1, . . . , ni, i = 1, . . . ,m}, E(·|y)

and var(·|y) represent the posterior mean and posterior variance operators.

Table 1: Various HB point estimates and standard errors of county hectares
of corn (Full)
County ni DG CDM GDM

Mean SD Mean SD Mean SD

Cerro Gordo 1 123.8 11.7 123.4 9.8 123.6 11.3
Hamilton 1 124.9 11.4 126.6 10.3 125.8 10.2
Worth 1 110.0 12.3 108.0 11.3 107.7 11.7
Humboldt 2 114.2 10.7 112.3 10.2 112.0 10.7
Franklin 3 140.3 10.8 142.1 8.1 142.4 8.4
Pocahontas 3 110.0 9.6 111.4 7.6 111.6 7.3
Winnebago 3 116.0 9.7 114.3 7.6 113.7 7.9
Wright 3 123.2 9.5 122.7 7.9 122.3 7.7
Webster 4 112.6 9.9 113.9 6.9 114.3 6.8
Hancock 5 124.4 8.9 123.5 6.1 123.6 6.1
Kossuth 5 111.3 8.9 108.2 6.8 108.1 6.9
Hardin 6 130.7 8.3 135.3 7.5 136.5 7.4
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Figure 1: Posterior probabilities of observations coming from subpopulation
2 in full and reduced corn data

The vertical axes represent the posterior probability of an observation com-
ing from the subpopulation 2. The GDM model identifies the second Hardin
County observation, which has the most extreme standardized residual, as
a likely member of a secondary subpopulation when analyzing the full data,
as shown in the left panel of Fig. 1. The posterior probability that this
observation may belong to the secondary population is 0.62, which is about
2.5 times the corresponding prior probability 0.25. For the other observa-
tions, most of their posterior probabilities are near 0.25, not much different
from their prior values. We note here that in the right panel of Fig. 1, we
plotted the same posterior probabilities for the reduced data, after removing
the second observation from Hardin county. Interestingly, for none of these
observations, the posterior probabilities are greater than 0.25.

We also compare model estimates for the data set after removing the out-
lier. The point estimates and posterior standard deviations given by each
method for the reduced data are given in Table 2. For the first 11 counties
listed, the estimates produced by each model change only slightly (smaller
changes for the robust methods) from those calculated using the full data
set. As expected, the estimate for Hardin County changes the most signif-
icantly. With the outlier removed, the point estimates for Hardin County
increase in all three models but the change is less for the two mixture mod-
els and is the most substantial for the DG model. A similar conclusion was
reached by Chakraborty et al. (2019) for Sinha-Rao REBLUP, see Table 1 of
Chakraborty et al. (2019). This makes sense, as the estimates from the mix-
ture and robust models should be less sensitive to outliers. The corn hectare
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Table 2: Various HB estimates and standard errors of county hectares of
corn (Reduced)
SA ni DG CDM GDM

Mean SD Mean SD Mean SD

Cerro Gordo 1 122.0 11.6 121.7 9.7 121.9 10.2
Hamilton 1 126.4 10.9 127.2 9.7 126.3 9.8
Worth 1 107.6 12.4 105.6 10.1 105.3 10.9
Humboldt 2 108.9 10.5 108.2 8.7 108.0 9.3
Franklin 3 143.6 9.7 144.1 7.0 144.3 7.0
Pocahontas 3 112.3 9.7 112.5 6.5 112.3 6.7
Winnebago 3 113.4 9.1 112.5 6.8 111.5 7.4
Wright 3 121.9 8.8 121.9 6.6 121.8 6.7
Webster 4 115.5 9.2 115.7 5.7 115.8 6.1
Hancock 5 124.8 8.4 124.4 5.4 124.6 5.5
Kossuth 5 107.7 8.5 106.3 5.7 106.0 5.6
Hardin 5 142.6 9.0 143.5 5.9 143.6 5.6

estimates in Hardin County given by the three models are also much closer
in value to each other relative to the full data set. (Again, these estimates
agree very closely with the REBLUP estimate; see Table 1 of Chakraborty
et al. (2019)).

For the reduced data set, a comparison of posterior standard deviations
associated with the HB estimates shows that the standard deviations from
the mixture models are consistently lower than those given by the DG HB
model. We also compare posterior standard deviations between the full data
analysis and the reduced data analysis. Intuitively, the presence of an outlier
will cause an increase in unit-level variances, and therefore may also cause
an increase in posterior variances of small area means. While the standard
deviations produced by the robust CDM and GDM HB models appear to be
higher for the full data than for the reduced data, the standard deviations
given by the DG HB model seem to change only moderately. Standard
deviations for the non-robust DG HB model are the highest.

Tables 3 and 4 show posterior means, posterior standard deviations and
posterior medians, respectively, for β0, β1, β2, pe, σ

2
v , σ

2
1, and σ2

2. The esti-
mated values of β0, β1, and β2 found from various methods appear to be
similar, despite the difference in priors for (σ2

1, σ
2
2) and pe. We note that

the estimate of pe is higher when using the proposed HB model, which con-
strains pe between 2−1 and 1, than when using the CDM model, which does
not constrain pe but constrains σ

2
1 < σ2

2. In the proposed method, we define
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the primary variance σ2
1 as the variance of the distribution from which more

than 50% of observations occur and the secondary variance σ2
2 for the dis-

tribution of the remaining observations. When examining the full data, we
calculate the posterior mean and median estimates of σ2

1 to be 246.33 and
203.78 respectively, while those for σ2

2 are 1059.20 and 533.24 respectively.
We can compare these values to the estimates produced using the CDM
HB approach, where the primary distribution is defined as the one with the
smaller variance. Using the CDM method and the full set of data, we find
the posterior mean and median of σ2

1 to be 186.95 and 173.04 respectively,
and those of σ2

2 as 842.25 and 480.48 respectively. Notably, in both methods,
the primary population occurs with pe > 2−1 and has the smaller variance
σ2
1.
4.2. AAGIS Farm Data Analysis Chambers et al. (2011) considered

data from the Australian Agricultural and Grazing Industries Survey (AAGIS)
to provide at the regional level the estimated Total Cash Costs (TCC) as-
sociated with operation of a farm based on the farm area covariate. In our
illustration we treated their sampled data of 1,652 farms as the finite popu-
lation with 27 small areas. In the original dataset, there were 29 small areas.
We merged two small areas which had small values of Ni with the neighbor-
ing ones. From this population we considered a random sample of 50 units to
create our working sample. We drew a sample of 50 units with probabilities
proportional to the sizes of the small areas. These 50 data points, along with
the identification codes of the 27 small areas are given in Table 5. Here the
response Y is the total cash costs associated with operation of the farms,
and we consider the farm area as the predictor variable x. A preliminary
analysis of the data indicated a long right-tail for the response. To address
this excessive skewness, we consider a logarithm transformation of the orig-
inal response. We also use a similar transformation for the covariate farm

area.
Following Eq. 2.1, we fit a model Y ∗

ij = β0 + β1x
∗
ij + vi + eij to predict

the m = 27 small area means θ∗i = β0+β1x̄
∗
i(p)+vi of Yij ’s, for i = 1, . . . , 27,

where x∗ij = log (xij) and Y ∗
ij = log(Yij). We use the HB model to predict

θi = exp(θ∗i ), as prediction in the original scale of the response is preferable.
Here θi is unknown but the finite population is known, so we approximate

θi by ȲiG =
(∏Ni

j=1 Yij

)1/Ni

, the geometric mean of responses of all units in

the ith small area.
The predictors θ̂i’s are calculated for DG, CDM and GDM HB models,

and compared with ȲiG’s. Since the posterior distributions are long-tailed
(to the right), we use the median of the θ̂i,k values, given by exp(β0,k +
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Table 5: Small Areas and Samples from the AAGIS Farm Data
Small Small Small

Area yij Xij Area yij Xij Area yij Xij

111 453006 48583.0 223 31913070a 260.1 411 47169 2985.0
121 144606 647.7 223 18592 40.5 421 80999 838.0
121 1212066 11660.0 231 108257 744.7 421 121788 2886.6
121 16695291a 445.5 231 145922 279.0 422 63476 362.3
122 140520 1042.0 312 410995 48526.0 422 54554 288.0
122 137756 2063.9 313 21792 3200.0 431 123407 1135.7
122 198754 1978.0 314 307842 12040.0 431 55208 500.0
123 83055 628.0 321 50352 1251.0 512 216138 176732.0
123 245025 1205.3 321 140634 3989.0 521 227858 2682.0
123 106124 491.0 322 149343 1537.9 521 147555 1403.6
131 167385 1021.0 322 38283 8461.5 521 49280 354.1
131 335802 1807.0 322 188839 2443.3 522 157571 3152.3
132 134251 2332.0 322 254143 1603.0 531 82563 151.0
221 47380 652.3 331 96744 1862.0 531 220028 40.0
221 231261 2630.0 331 269170 25101.2 631 599960 1126.4
222 68023 683.8 332 216304 23083.9 631 263680 775.3
222 60066 1881.0 711 173869 120800.0
a suspected with high unit error variance from a subpopulation

β1,kx̄
∗
i + vi,k), to estimate θi. To evaluate the effectiveness of an estimator

θ̂i, we computed the following four deviation measures for the estimator from
the “truth”; the average absolute deviation (AAD), the average squared de-
viation (ASD), average absolute relative deviation (AARD) and the average
squared relative deviation (ASRD):

AAD(θ̂) =
1

m

m∑

i=1

|θ̂i − ȲiG|, ASD(θ̂) =
1

m

m∑

i=1

(θ̂i − ȲiG)
2,

AARD(θ̂) =
1

m

m∑

i=1

|θ̂i − ȲiG|
ȲiG

, ASRD(θ̂) =
1

m

m∑

i=1

(θ̂i − ȲiG)
2

Ȳ 2
iG

.

These summary measures for the three competing methods are given in
Table 6.

We also calculated 90% credible intervals (CrI) for θi under the DG, CDM
and GDM methods, and reported the ratios of their lengths in Table 7. In
Fig. 2 we plotted the posterior probabilities of each sampled observation
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Table 6: Performance of competing methods
AAD ASD AARD ASRD

DG 50168 4865362824 0.37 0.34
CDM 49059 4413325890 0.38 0.36
GDM 36857 2592492269 0.22 0.09

coming from the subpopulation 2. We noticed that the GDM method cor-
rectly identifies the observations that are believed to have unit-level error
distribution from subpopulation 2.

5 Simulation Study

Sinha and Rao (2009) and Chakraborty et al. (2019) employed a simu-
lation study to evaluate and compare performances of suggested extensions
of NER models. We follow their example by first assuming a population
with m = 40 small areas, where each small area has Ni = 200 units. We
assume a single auxiliary variable xij for each unit in the population, drawn
independently from N(1, 1). The set of auxiliary variables X is kept fixed
for all simulations.

For each simulation, we independently generate sets of area-level random
effects vi for i = 1, . . . ,m from N(0, 1). In the first four simulation setups, we
generate eij such that the mean of the unit-level errors is centered around 0.
In these scenarios, we generate eij from one of the four possible distributions:
(i) all eij are generated independently from N(0, 1); (ii) each eij is drawn
from N(0, 1) with probability pe = 0.90 and from the secondary population
with distribution N(0, 52) otherwise; (iii) each eij is drawn from N(0, 1) with
probability pe = 0.60 and from N(0, 52) otherwise; (iv) eij are iid from a
t-distribution with 4 degrees of freedom. We also perform a fifth simulation
motivated by an example in Chambers et al. (2014) in which a very small
fraction of eij ’s come from a secondary distribution with a non-zero mean.
Here, each eij is drawn from N(0, 1) with probability pe = 0.97 and from
N(5, 52) otherwise. Setting β0 = 1 and β1 = 1 as in Sinha and Rao (2009)
for each simulation method, we generate m small area finite populations of
Yij = β0 + β1xij + vi + eij based on Eq. 2.1.

We compute a summary of auxiliary information for each small area as
X̄i =

1
Ni

∑Ni
j=1 xij for i = 1, . . . ,m. We then take a sample of size ni = 4

from each small area. Using auxiliary information, our goal is prediction of
small area means Ȳi = 1

Ni

∑Ni
j=1 Yij , i = 1, · · · ,m. From each sample, we

derive HB predictors from the DG model and robust HB predictors from the
outlier-accommodating CDM model and the more general proposed mixture
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Ȳ
iG

θ̂ i
,D

G
θ̂ i

,C
D
M

θ̂ i
,G

D
M

L
ow

er
U
p
p
er

L
ow

er
U
p
p
er

L
ow

er
U
p
p
er

D
G

G
D
M

C
D
M

G
D
M

52
1

83
3

7.
60

21
54
03

15
15
86

15
52
14

13
80
08

69
26
9
31
96
90

72
28
5
30
32
67

91
40
2
20
83
03

2.
14

1.
98

52
2

47
1

8.
19

24
52
06

17
12
82

17
61
02

15
87
91

72
33
8
41
06
03

74
49
0
41
96
38

91
30
3
28
25
74

1.
77

1.
80

53
1

60
2

6.
53

12
46
81

14
99
93

15
18
91

13
95
69

64
71
1
35
27
85

70
67
1
33
25
99

78
96
6
28
08
41

1.
43

1.
30

63
1

62
2

6.
62

13
35
61

18
02
22

18
28
37

19
76
33

84
49
5
46
18
79

86
29
4
45
08
67

96
45
6
39
18
33

1.
28

1.
23

71
1

30
1

12
.4
7
50
31
57

26
11
86

28
45
49

34
76
53

72
57
2
98
47
29

84
39
8
92
74
91

16
52
86

78
85
02

1.
46

1.
35

231

Author's personal copy



Shuchi Goyal et al.

−5 0 5 10 15

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Posterior Probabilities for Being in  Different

Groups

Standardized Residuals

P
r
o
b
a
b
il
it
ie

s
Small Area 121

Unit 3 Small Area 223

Unit 1

Figure 2: Posterior probabilities of observations coming from subpopulation
2

model. These predictors are denoted as DG, CDM, and GDM, respectively,
in subsequent data visualizations included in this paper. Since all three HB
methods perform equally well when the unit-level errors contain no contam-
ination, the plots for this simulation setup are relegated to Appendix A.2.
We visualize the results of the other four simulation methods in Figs. 3, 4
and 5.

For each simulation setup, we simulate S = 100 populations. For the
sth simulated population, where s = 1, . . . , S, we compute the true small

area means θ
(s)
i . We denote the predictors of small area means calculated

using HB methods as θ̂
(s)
i and the variances of those predictors as V

(s)
i . For

each HB method, given the predicted small area means θ̂
(s)
i , we calculate

empirical biases as eBi =
1
S

∑S
s=1

(
θ̂
(s)
i − θ

(s)
i

)
and empirical mean squared

errors as eMi =
1
S

∑S
s=1

(
θ̂
(s)
i − θ

(s)
i

)2
.

In Fig. 3, we provide plots of empirical biases and empirical mean squared
errors (MSEs) for HB predictors considered. None of the HB predictors
shows signs of systematic bias. However, in the simulation setup where
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Figure 3: Plot of empirical biases and empirical MSEs of θ̂s
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Figure 4: Plot of posterior variances and their empirical relative biases

234

Author's personal copy



A Hierarchical Bayes Unit-Level...

Small Area Index

1
.0

1
.2

1
.4

1
.6

0 10 20 30 40

0
0
.2

0
.1

1

Ratio of CI lengths (DG/GDM)

Ratio of CI lengths (CDM/GDM)

Non−coverage of DG

Non−coverage of CDM

Non−coverage of GDM

Small Area Index

1
.0

1
.2

1
.4

1
.6

0 10 20 30 40

0
0
.2

0
.0

6

Ratio of CI lengths (DG/GDM)

Ratio of CI lengths (CDM/GDM)

Non−coverage of DG

Non−coverage of CDM

Non−coverage of GDM

Small Area Index

1
.0

1
.2

1
.4

1
.6

0 10 20 30 40

0
0
.2

0
.1

2

Ratio of CI lengths (DG/GDM)

Ratio of CI lengths (CDM/GDM)

Non−coverage of DG

Non−coverage of CDM

Non−coverage of GDM

Small Area Index

1
.0

1
.2

1
.4

1
.6

0 10 20 30 40

0
0
.2

0
.0

6

Ratio of CI lengths (DG/GDM)

Ratio of CI lengths (CDM/GDM)

Non−coverage of DG

Non−coverage of CDM

Non−coverage of GDM

Small Area Index

1
.0

1
.2

1
.4

1
.6

0 10 20 30 40

0
0
.2

0
.1

1

Ratio of CI lengths (DG/GDM)

Ratio of CI lengths (CDM/GDM)

Non−coverage of DG

Non−coverage of CDM

Non−coverage of GDM

Small Area Index

1
.0

1
.2

1
.4

1
.6

0 10 20 30 40

0
0
.2

0
.0

6

Ratio of CI lengths (DG/GDM)

Ratio of CI lengths (CDM/GDM)

Non−coverage of DG

Non−coverage of CDM

Non−coverage of GDM

Small Area Index

1
.0

1
.2

1
.4

1
.6

0 10 20 30 40

0
0
.2

0
.1

1

Ratio of CI lengths (DG/GDM)

Ratio of CI lengths (CDM/GDM)

Non−coverage of DG

Non−coverage of CDM

Non−coverage of GDM

Small Area Index

1
.0

1
.2

1
.4

1
.6

0 10 20 30 40

0
0
.2

0
.0

6

Ratio of CI lengths (DG/GDM)

Ratio of CI lengths (CDM/GDM)

Non−coverage of DG

Non−coverage of CDM

Non−coverage of GDM

Figure 5: Plot of lengths and non-coverages of credible intervals (CrI)
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pe = 0.6, the empirical biases of the GDM HB predictors seem to have
smaller variability than the empirical biases of the other two HB predictors.
In the case of 3% contamination in eij or where eij is determined by a t-
distribution, the three models perform equally well in producing small MSEs.
In the case of 10% contamination, the MSEs of the CDM and GDM HB
predictors are approximately equal for most of the small areas but smaller
than the DG model prediction. The most substantial difference among the
three models results in the case where pe = 0.6. Here, the GDM predictor
has the lowest MSEs overall of the three methods, followed by the CDM
predictor and then by the DG predictor. Moreover, the GDM model MSEs
stay generally stable across all small areas.

Next, Fig. 4 shows posterior variances V
(s)
i for 40 small areas and the

relative biases of those variances, calculated as REV = {(1/S)
∑S

s=1 V
(s)
i −

eMi}/eMi. The CDM and GDM predictors seem to enjoy lower posterior
variances than the DG model. Furthermore, as the amount of contamina-
tion increases, the GDM model also produces lower posterior variances than
the CDM model. The differences between the three models become more

pronounced as contamination increases. The DG model also displays a mild
tendency toward positive relative bias when calculating posterior variance.

The CDM and GDM models do not show systematic bias in calculations of
posterior variance and overall perform equally well.

Figure 5 shows empirical non-coverage probabilities of 90% and 95%
credible intervals of small area means θi. For each simulation setup, we

also use solid horizontal lines to show the mean non-coverage probability of
the credible intervals produced by each method. For a Bayesian method, we

compute our 90% credible interval I
(s)
i,90 for θi by the 5th and 95th percentiles

of the posterior distribution of θi. We then calculate the non-coverage prob-

abilty of this credible interval as eCi,90 = 1
S

∑S
s=1 I[θ

(s)
i �∈ I

(s)
i,90]. The same

calculations are done for 95% credible intervals using the 2.5th and 97.5th

percentiles. The label on the right axis of each plot is the non-coverage
probability of the GDM HB credible intervals. The plots also show two

ratios which compare the lengths of the DG HB and CDM HB credible in-
tervals to those of the GDM HB credible intervals. We denote the length

of the 90% credible interval I
(s)
i,90 as L

(s)
i,90. The empirical average length of

the credible interval of θi for a specific HB method is then computed as

L̄i,90 = 1
S

∑S
s=1 L

(s)
i,90. Again, this calculation is repeated for the 95% credi-

ble intervals. We see the credible intervals produced by the DG HB method

consistently have the lowest non-coverage probabilities for each simulation,
compared to the CDM HB and GDM HB intervals.
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We also observe that the credible intervals by the DG HB model are on
average larger than those developed from the other two models, except for
the t-distributed eij scenario where the DG HB and CDM HB credible inter-
vals have similar lengths. Though the DG HB credible intervals most often

capture the true value θ
(s)
i and have low non-coverage probabilities, they are

longer than the GDM HB credible intervals, which closely attain the target
coverage probability. While CDM HB and GDM HB intervals have similar
non-coverage probabilities and nearly achieve the target when eij is gener-
ated from a t-distribution, the ratios of average lengths (CDM/GDM) are
consistently higher than one when greater levels of contamination are intro-
duced into the population, indicating that the narrower GDM HB credible
intervals are as successful as the CDM HB credible intervals in capturing the
true values.

At 3% contamination of eij from the secondary distribution (pe = 0.97),
the non-coverage probabilities of the GDM HB and CDM HB credible inter-
vals remain approximately equal, but the 90% and 95% intervals produced
by the CDM HB model are up to 5% greater in length than their respective
GDM HB measures. When 10% of eij come from a secondary distribution
(pe = 0.90), the non-coverage probabilities of the credible intervals found
from the CDM HB approach are slightly lower than those found from the
GDM HB model, but the CDM HB credible intervals are also about 10%
greater in length than their respective GDM HB measures. When eij comes
from a primary distribution with probability pe = 0.60, the CDM HB model
credible intervals are about 40% longer than those given by the GDM HB
model but continue to have a slightly lower non-coverage probability. We
note that the non-coverage probabilities of the GDM HB credible intervals
seem to be consistent across all simulation setups. In contrast, the non-
coverage probabilities of the CDM HB credible intervals appear to decrease
when the concentration of eij from a secondary distribution increases, but
the CDM HB credible intervals become wider relative to the GDM HB cred-
ible intervals in higher contamination cases.

6 Conclusion

Since Battese et al. (1988) introduced the NER model it has been the
basis for many important developments in small area estimation for unit-
level data. Datta and Ghosh (1991) applied the HB method to the NER
model to develop Bayesian inference for small area means. This approach,
however, is not robust in the presence of outliers or under non-normality of
unit-level errors. The HB method proposed by Chakraborty et al. (2019),
which also relied on an HB approach to the NER model, built upon the work
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of Datta and Ghosh (1991) to accommodate populations contaminated with
outliers due to unit-level errors.

The CDM model is robust in the presence of outliers, but not under
circumstances where the proportion of unit-level errors from the secondary
distribution is fairly large. In this paper, we propose an alternate HB ap-
proach to extend the NER model for more general cases where unit-level
errors come from a mixture of two different normal distributions. Based
on simulation studies, we find that the proposed model provides HB esti-
mates with lower empirical MSEs, posterior variances and narrower credible
intervals than the DG and CDM HB models. The consistent superior per-
formance of the proposed model to the DG and CDM HB models regardless
of the presence of mixture in the unit-level error indicates that there is no
loss to applying it to all data sets.
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Appendix A

A Integrability of Joint Posterior Probability Density Function

Chakraborty et al. (2019) showed that the joint posterior density function
of β, σ2

1, σ
2
2, pe, and σ2

v is proper. In particular, they showed that the function

L(β, σ2
1, σ

2
2, pe, σ

2
v)
I{σ2

1<σ2
2}

(σ2
2)

2
(A.1)

is integrable with respect to β, σ2
1, σ

2
2, pe, and σ2

v , where L(β, σ2
1, σ

2
2, pe, σ

2
v)

is the likelihood function based on the distribution yij , j = 1, . . . , ni, i =
1, . . . ,m obtained as the marginal distribution from (I)−(III) in Section 2.

Similar arguments show that L(β, σ2
1, σ

2
2, pe, σ

2
v)
I{σ2

1≥σ2
2}

(σ2
1)

2
is also integrable

with respect to the same variables. Now we note that
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=
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This implies,

L(β, σ2
1 , σ

2
2 , pe, σ

2
v)

I{2−1<pe<1}
(σ2

1 + σ2
2)

2
< L(β, σ2

1 , σ
2
2 , pe, σ

2
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(
I{σ2

1<σ2
2}

(σ2
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2
+

I(σ2
1≥σ2

2)

(σ2
1)

2

)

. (A.2)

The LHS of Eq. A.2 is bounded above by two integrable functions, hence
it is also integrable.

A.2 Simulation Results with no Contamination of Unit-Level
Errors
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Figure 6: Plots of various measures of θ̂s when no unit-level contamination
is present
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