Skip to main content
Skip to main menu Skip to spotlight region Skip to secondary region Skip to UGA region Skip to Tertiary region Skip to Quaternary region Skip to unit footer

Slideshow

Tags: Colloquium Series

The Statistics Department hosts weekly colloquia on a variety of statistcal subjects, bringing in speakers from around the world.

Discrete renewal processes are ubiquitous in stochastic phenomenon. In this talk constructing a discrete process where renewals are more (or less) likely during specified seasons is of specific interest. For example thunderstorms in the Southern United States can take place at any time in the year, but are most likely during the summer. Hurricanes, tornadoes, and snowstorms are other meteorological count processes obeying periodic dynamics. Rare…
A statistical analysis of data that have been multiplied by randomly drawn noise variables in order to protect the confidentiality of individual values has recently drawn some attention (Nayak, Sinha, and Zayatz, 2011; Sinha, Nayak, Zayatz, 2012). If the distribution generating the noise variables has low to moderate variance, then noise multiplied data have been shown to yield accurate inferences in several typical parametric models under a…
Introductory statistics is in need of a radicalreconceptualization. This need comes from changes to our culture and from revolutionary changes in technology. We propose a new model for introductory statistics that aims to produces citizen statisticians-- citizens capable of critically engaging with data.
This is an exciting and influential time for the field of Statistics in science. Technological advances in genetic, genomic, and the other 'omic sciences are providing large amounts of complex data that are presenting a number of challenges for the biological community. Many of these challenges are deeply rooted statistical issues that involve experimental design. Although there are many different computational tools for processing these data,…
This talk consists of two research topics regarding modern non-standard data analytic situations. In particular, data under the High Dimension, Low Sample Size (HDLSS) situation and data lying on manifolds are analyzed. These situations are related to the statistical image and shape analysis. The first topic is an asymptotic study of the high dimensional covariance matrix. In particular, the behavior of eigenvalues and eigenvectors of the…
Recently there has been an interest in asymptotic expansions of the tail probabilities of a variety of processes that are ubiquitous in statistics. However, little to no work has been done when the AR(1) process is built upon extreme value random variables. This process appears when the distribution of the current maximum is dependent on the previous. The goal of this dissertation is to explore asymptotic expansions of tail probabilities on this…
Complex time series with features, such as non-linearity, high-dimensionality and functional structures, have inspired many interests in statistics community due to limitations of traditional time series models and advancement of methodology and theory of nonparametric statistics. In this dissertation, the nonparametric models for such complex time series are studied. For modeling the financial volatility, we proposed estimators for…
In this dissertation, I propose an empirical likelihood based method to solve the nonresponse problem and changepoint detection problem. Both methods avoid potential model misspecification problems from which existing parametric methods may suffer. Moreover, the proposed imputation method can correct the bias of the estimate of the complete data for distributions with under- or over-dispersion problem. And the empirical likelihood changepoint…
With the rapid development of second-generation sequencing technologies, RNA-Seq has become a popular tool for transcriptome analysis. It offers the chance to detect novel transcripts by obtaining tens of millions of short reads. After mapped to the genome and/or to the reference transcripts,   RNA-Seq data can be summarized by a tremendous number of short-read counts. The huge number of short-read counts enables researchers to make…
We consider the problem of detecting hotspots in spatial point patterns observed over time while accounting for an inhomogeneous background intensity. For example, in disease surveillance, the interest is often in identifying regions of unusually high incidence rate given a background incidence rate that may be spatially varying due to underlying variation in population density, say. I will present a K-scan method that uses components of the…

Support us

We appreciate your financial support. Your gift is important to us and helps support critical opportunities for students and faculty alike, including lectures, travel support, and any number of educational events that augment the classroom experience. Click here to learn more about giving.

Every dollar given has a direct impact upon our students and faculty.