Skip to main content
Skip to main menu Skip to spotlight region Skip to secondary region Skip to UGA region Skip to Tertiary region Skip to Quaternary region Skip to unit footer


Mary Meyer

Colorado State University

Penalized splines are a popular method for nonparametric function estimation in partial linear generalized regression models. Constrained versions are presented in this talk, which are useful if the function is known to be increasing or convex. The shape assumptions often fall into the category of a priori knowledge, but occasionally the research question might concern the shape. A model-selection criterion for determining if the constraints hold is shown to have nice large-sample properties and to perform well in small samples. Several applications are presented.

Support us

We appreciate your financial support. Your gift is important to us and helps support critical opportunities for students and faculty alike, including lectures, travel support, and any number of educational events that augment the classroom experience. Click here to learn more about giving.

Every dollar given has a direct impact upon our students and faculty.