Skip to main content
Skip to main menu Skip to spotlight region Skip to secondary region Skip to UGA region Skip to Tertiary region Skip to Quaternary region Skip to unit footer


Pritam Ranjan

<a href="">Acadia University</a>

For many expensive computer simulators, the outputs are deterministic and thus the desired statistical surrogate (emulator) is an interpolator of the observed data. Gaussian spatial process (GP) is commonly used to model such simulator outputs. Fitting a GP model to n data points requires numerous inversion of a correlation matrix R. This becomes computationally unstable due to near-singularity of R. The popular approach to overcome near-singularity introduces over-smoothing of the data. In this talk, I will present an iterative regularization approach to construct a new predictor that gives higher prediction accuracy.

Support us

We appreciate your financial support. Your gift is important to us and helps support critical opportunities for students and faculty alike, including lectures, travel support, and any number of educational events that augment the classroom experience. Click here to learn more about giving.

Every dollar given has a direct impact upon our students and faculty.