Skip to main content
Skip to main menu Skip to spotlight region Skip to secondary region Skip to UGA region Skip to Tertiary region Skip to Quaternary region Skip to unit footer


Chuanshu Ji

<a href="">University of North Carolina at Chapel Hill</a>

Asset pricing and volatility modeling take a center stage in financial econometrics. This talk introduces a new method that helps calibration of stochastic volatility models via Markov chain Monte Carlo (MCMC) Bayesian inference based on returns and option data. With the presence of high-dimensional latent volatility processes, numerical integration for computing option prices is required at every time point and every iteration of MCMC. There is an urgent need for developing approximation schemes that reduce numerical integration from a high-dimensional space (of diffusion sample paths) to a low-dimensional space (of 2D or 3D random vectors). We propose using bivariate Gaussian or gamma mixtures of Gaussian to approximate joint distributions of certain integrated volatilities and additive functionals in the lifetime of relevant options or other derivatives. When implementing those schemes to computation of various derivatives prices represented by generalized Black-Scholes formulas, they significantly improve the efficiency (speed/accuracy) of related MCMC algorithms.

Support us

We appreciate your financial support. Your gift is important to us and helps support critical opportunities for students and faculty alike, including lectures, travel support, and any number of educational events that augment the classroom experience. Click here to learn more about giving.

Every dollar given has a direct impact upon our students and faculty.