Skip to main content
Skip to main menu Skip to spotlight region Skip to secondary region Skip to UGA region Skip to Tertiary region Skip to Quaternary region Skip to unit footer


Feifang Hu

George Washington University

Advances in genetics have allowed scientists to identify genes (biomarkers) that are linked with certain diseases. To translate these great scientific findings into real-world products (personalized medicine) for those who need them, clinical trials play an essential and important role. To develop personalized medicine, we need new designs of clinical trials so that genetics information and other biomarkers can be incorporated in treatment selection.

This talk first provides a brief review of design and statistical inference related with personalized medicine. Personalized medicine raises some new challenges for both design and statistical inference of clinical trials due to its complex data structure. A new family of covariate-adaptive designs is proposed for personal medicine. New techniques are introduced to study the theoretical properties of the proposed designs and their corresponding statistical inference. Advantages of the proposed methods are demonstrated through both theoretical and numerical studies. Some further statistical issues are also discussed.

More information about Feifang Hu may be found at

This Colloquium is sponsored jointly by the University of Georgia Department of Statistics and the University of Georgia Department of Epidemiology and Biostatistics.

Support us

We appreciate your financial support. Your gift is important to us and helps support critical opportunities for students and faculty alike, including lectures, travel support, and any number of educational events that augment the classroom experience. Click here to learn more about giving.

Every dollar givenĀ has a direct impact upon ourĀ students and faculty.