Skip to main content
Skip to main menu Skip to spotlight region Skip to secondary region Skip to UGA region Skip to Tertiary region Skip to Quaternary region Skip to unit footer


Bing Li

Penn State University

We propose a general theory and the estimation procedures for nonlinear sufficient dimension reduction where the predictor or the response, or both, are random functions. The relation between the response and predictor can be arbitrary and the sets of observed time points can vary from subject to subject. The functional and nonlinear nature of the problem leads naturally to consideration of two levels of functional spaces: the first space consisting of functions of time; the second space consisting of functions defined on the first space. We take both spaces to be reproducing kernel Hilbert spaces. A particularly attractive feature of our construction is that the two functional spaces are nested, so that the kernel for the first space determines the kernel for the second. We propose two estimators, functional generalized sliced inverse regression (f-GSIR) and functional genearlized sliced average variance estimator (f-GSAVE) for this general dimension reduction problem. We investigated the performances of our estimators by simulations, and applied them to data sets about phoneme recognition and handwritten symbols. 

This is a joint research with Jun Song.

Support us

We appreciate your financial support. Your gift is important to us and helps support critical opportunities for students and faculty alike, including lectures, travel support, and any number of educational events that augment the classroom experience. Click here to learn more about giving.

Every dollar given has a direct impact upon our students and faculty.