Skip to main content
Skip to main menu


Colloquium: Jie Yang

Jie Yang
Jie Yang
University of Illinois Chicago
Caldwell Room 102
Jie Yang.pdf (136.21 KB)

D-Optimal Designs for Multinomial Logistic Models

We consider optimal designs for general multinomial logistic models, which cover baseline-category, cumulative, adjacent-categories, and continuation-ratio logit models, with proportional odds, non-proportional odds, or partial proportional odds assumption. We derive the corresponding Fisher information matrices in three different forms to facilitate their calculations, determine the conditions for their positive definiteness, and search for optimal designs. We conclude that, unlike the designs for binary responses, a feasible design for a multinomial logistic model may contain less experimental settings than parameters, which is of practical significance. We also conclude that even for a minimally supported design, a uniform allocation, which is typically used in practice, is not optimal in general for a multinomial logistic model. We develop efficient algorithms for searching D-optimal designs. Using examples based on real experiments, we show that the efficiency of an experiment can be significantly improved if our designs are adopted.

Support us

We appreciate your financial support. Your gift is important to us and helps support critical opportunities for students and faculty alike, including lectures, travel support, and any number of educational events that augment the classroom experience. Click here to learn more about giving.

Every dollar givenĀ has a direct impact upon ourĀ students and faculty.